STUDIES on the FAUNA of CURAÇAO and OTHER CARIBBEAN ISLANDS: No

Total Page:16

File Type:pdf, Size:1020Kb

STUDIES on the FAUNA of CURAÇAO and OTHER CARIBBEAN ISLANDS: No STUDIES ON THE FAUNA OF CURAÇAO AND OTHER CARIBBEAN ISLANDS: No. 88. Social behavior of the Paguridae and Diogenidae of Curaçao by Brian A. Hazlett (Biological Laboratories, Harvard University) INTRODUCTION 1 Collecting areas on Curafao 6 Relationships of the hermit crabs studied 7 SOCIAL BEHAVIOR OF HERMIT CRABS IN GENERAL 9 DESCRIPTIONS OF BEHAVIOR PATTERNS 18 Clibanarius tricolor 18 Clibanarius antillensis 38 Clibanarius cubensis 41 Clibanarius vittatus 45 Calcinus tibicen 47 Paguristes cadenati 57 Paguristes grayi 60 Pagurus miamensis 63 Pagurus pygmaeus 72 Pagurus bonairensis 76 Pagurus marshi 82 Pylopagurus operculatus 86 EXPERIMENTAL ANALYSES OF HERMIT CRAB BEHAVIOR 90 Aggression 90 Diel variation 90 Dominance orders 90 Shell-fighting 102 Analyses of stimuli 104 Visual stimuli 104 Chemical stimuli Ill Tactile stimuli 115 DISCUSSION 120 SUMMARY 138 LITERATURE 140 INTRODUCTION The number of unanswered questions and untouched problems This is in the study of animal behavior is very large. particularily true in the sub-discipline of animal communications. The fact that the behavior of one animal can change the behavior of a second animal is too often only tacitly implied or stated without amplifi- cation. Before the of be studied "language" any organism can as behavioral the of a phenomenon or communications systems a phylogenetic series studied as an evolutionary phenomenon, it is that the basic behavioral of the essential biology species or group examined work be and described. The present is an attempt to fulfillthis latter requirement. The social behavior of the marine hermit crabs (Paguridae and Diogenidae) of Curasao, N.A., is described and in part analyzed. In addition to providing this basis, data have been gathered, which upon analysis have elucidated certain features of the aggressive communications systems of eight species of hermit crabs. From the data gathered, the following aspects of hermit crab behavior are described: the behavior patterns of these crustaceans, as observed under laboratory and field conditions, the results of a number of experimental analyses of behavioral stimuli, and the of of results some preliminary investigations dominance hierarchies. behavior of hermit crabs has little The social taken very space in zoological literature. However, much has been written about the behavior and physiology of individual crabs from the viewpoint 3 of shell habitation (see REESE 1962a, 1963), neurophysiology STIEVE (ALEXANDROWICZ 1952, 1963), sensory physiology (BOHN 1902, GOLDSMITH 1918, BROCK 1927, ROLLER 1927, TEN CATE 1930, and others), symbiotic relationships (BROCK 1927, BRIGHTWELL 1951, 1953, BERNER 1953) and feeding behavior (ORTON 1927, of BROCK 1930). JACKSON (1913) produced a rather good study general anatomy and biology as did MAKAROV (1938) in his intro- ductionto a systematic treatmentof the Russian Paguridae. BOUVIER (1892) and BOHN (1903) briefly mentioned that hermit crabs do themselves for shells. ALLEE & DOUGLIS fight among (1945) observed that specimens of Pagurus longicarpus fight one another for shells and that there was a dominance order in this fighting, crabs extracted smaller crabs. Their obser- insofar as larger always vations were confined mostly to interactions in which one individual was without a shell. They observed that the aggressive (shell-less) crab "grasps the chelae and the legs of the occupant with one of its large pinchers jerks quickly, and so removes the smaller crab, and often throws it some distance away." REESE (1962b) carried out more extensive observations of shell fights between individuals but of crabs of Calcinus laevimanus, again, one the interacting was artificially shell-less. Reports of sexual behavior also have been few. MATTHEWS (1959) suggested that copulation in Pagurus prideauxi is not necessarily confined to the short period following female ecdysis. He found the spermatophores on immature females, outer cuticular membrane of living, embryonated ova attached to the pleopods and on imma- ture males. MATTHEWS attributed this diversity of recepients of spermatophores to "indiscrimination of the part of the male [which] proposes he may copulate with any hermit crab of his species that he can physically overpower." MACGINITIE & MAC- GINITIE (1949) and MATTHEWS (1956) mention that male hermit crabs are sometimes seen dragging females about prior to copulation. BOTT (1940) reported that in Pagurus prideauxi, a male remains with the female during the period of moulting and until egg laying. BRANDES (1897) mentioned that the male P. prideauxi holds the tarsal segment of the second right ambulatory leg of the female with his left cheliped prior to copulation. BRANDES observed that 4 the is held the during copulation, major cheliped over female (in a protective fashion) as they both ease partially out of their shells. COFFIN (1960) noted that the male Pagurus samuelis held the shell of the with his minor for number of female cheliped a hours prior to the one-second long copulation. The male waved the shell of the female back and forth, bumping it against his shell his and shell while or body and/or twisting body pressing against the shell of the female. During copulation, both eased out until only 2/3 of their abdomens remained in their shells. KAMALVENI (1949) reported on the copulation of Clibanarius olivaceous. How- ever, the observed pairs were without shells artificially and their minute with ambulatories have been 90 pairing, intertwining may aberrant. He also stated that recently moulted females generally attracted the attention of but details. males, gave no Although the literature pertaining directly to the social behavior of hermit crabs is limited, many of the phenomena mentioned in this paper have been observed in other crustaceans. DOUGLIS (1946) reported straight-line dominance orders in the lobster, Homarus americanus. BOVBJERG (1953, 1956) and LOWE (1956) have investigated the development of aggression and straight-line dominance orders in several species of crayfish. Both size and sex, predominantly the former, were found to be factors in determining the order in a hierarchy. Although many authors have mentioned that members of a given crustacean species may fight with conspecific individuals, the is described the manner of fighting usually not nor signal-display level of aggression recognized. One notable exception has been the work of CRANE (1941a, 1943, 1957, 1958) and others on the conspicu- ous movements of the major cheliped of male fiddler crabs, Uca species. CRANE has observed that these courtship movements signal territory holding to other males and thus tend to keep them from intruding. In additon, CRANE (1958) has described a number of displays in Uca maracoaniwhich she believes act as communicatory signals to conspecific individuals concerning the psycho-physiological stateof the displaying crab. Another groupin which a signal-display level of aggressive communication has been recognized is the snapping shrimp, Alpheus and Synalpheus (HAZLETT & WINN 1962). 5 Both the of the claw and the of sight open snapping jet water produced by a "snap", act as retreat-causing stimuli, thereby avoiding actual physical contact between interacting individuals. without individuals Physical combats damage are frequent among of the common shore crab, Pachygrapsus crassipes (HIATT 1948, BOVBJERG 1960) and the grapsoid crab, Dotilla mictyroides (TWEEDIE 1950). ALCOCK (1892) and CRANE (1941b) reported that burrow- occupying Ocypode crabs produce a twittering sound when an intruding conspecific individual enters its burrow. Presumably, substrate detection of this sound tends to induce retreat in the intruder. The of males presence of chemical attraction and/or excitation by ripe females has been supposed for a number of lower crustaceans - Pandalus danae (NEEDLER 1931), P. borealis (CARLISLE 1959), Palaemonetesvulgaris (BURKENROAD 1947), Leanderserratus (FORSTER 1951), Crangon crangon (NOUVEL 1939), Orchestia gammarella - for (WILLIAMSON 1954) but proven none. A wide-spread charac- is restriction of time teristic among crustaceans the when mating takes place. In the great majority of species investigated, copulation is restricted to a short period following a female moult - Cancer pagurus and Carcinus maenas (WILLIAMSON 1902) and Neptunus pelagicus (CHHAPGAN 1956). Often the male crab carries the female about for hours or days prior to her moulting, probably to assure that he is present when she is ready to mate - Carcinus maenas (BROEKHUYSEN 1937), Callinectes hastatus (CHIDESTER 1911) and Gammarus pungens (HOMES 1903). The author wishes his Dr. E. O. WILSON for his to express gratitude to guidance, aid and advice in connection with all phases of this work, and to Dr. W. H. BOSSERT for his with mathematical in of Harvard University assistance problems and pro- gramming the computer-analyzed portions of this study. In addition, thanks are given to Dr. A. J. PROVENZANO, Jr., of the University of Miami, for confirmation of species identification, to Dr. INGVAR KRISTENSEN and the staff of the Carai'bisch Marien-Biologisch Instituut (Caribbean Marine Biological Institute) in Cura9ao, N.A., for their aid and hospitality, and to Miss JOANNE HELSBERG for aid in the preparation of the text. I also wish to thank the National Science Foundation, whose training grant in evolutionary biology, administered by the Department of Biology of Harvard University, was the source of travel and facility funds that made this work possible. Part of this research was carried
Recommended publications
  • Tropical Hermit Crab Clibanarius Clibanarius
    MARINE ECOLOGY - PROGRESS SERIES Vol. 8: 197-201, 1982 Published May P Mar. Ecol. Prog. Ser. / Reproduction of the Continuously Breeding Tropical Hermit Crab Clibanarius clibanarius Sudha Varadarajan* and T. Subramoniam Department of Zoology, University of Madras, Madras 600005,India ABSTRACT: On the Indian east coast, the hermit crab Clibanarius clibanarius breeds continuously with peak activity from September to January, corresponding to the onset of the retreating monsoon. Individuals within the population breed asynchronously and vary widely in their carapace lengths. probably because of steady, year-round recruitment. Our data on reproduction emphasize the flexible use of an apparently stable, tropical environment by these crabs. INTRODUCTION 18 m. In January and February, 1976 and January, 1977 all crabs were scarce and few could be collected. In tropical marine waters, where sea temperatures Females, smaller in size than males, often occupied fluctuate little seasonally, many invertebrates are smaller gastropod shells of different species of Murex, known to reproduce throughout the year (Giese and Bursa, Babylonia or Turitella. After removal from the Pearse, 1974). In Indian waters a major factor that shell, the length from the tip of the rostrum to the influences intertidal as well as offshore forms is the posterior indentation on the mid-dorsal line of the monsoon rain that differs in time and intensity on the cephalothorax was taken as carapace length. The soft east and west coasts (Panikkar and Jayaraman, 1966). abdomen was opened, the ovaries were separated from Semiannual breeding patterns have been reported for the hepatic tissue and gonad-indexes and hepatic a number of species on the east coast of India (Giese indexes (Giese, 1967) and egg mass indexes (Sub- and Pearse, 1974), where little rain falls during the ramoniam, 1979) were calculated' '.
    [Show full text]
  • The Larval Development of the Hermit Crab Areopaguristes Nigroapiculus (Decapoda: Anomura: Diogenidae) Reared Under Laboratory Conditions Elena S
    Journal of the Marine Biological Association of the United Kingdom, 2011, 91(5), 1031–1039. # Marine Biological Association of the United Kingdom, 2011 doi:10.1017/S0025315410002225 The larval development of the hermit crab Areopaguristes nigroapiculus (Decapoda: Anomura: Diogenidae) reared under laboratory conditions elena s. kornienko and olga m. korn A.V. Zhirmunsky Institute of Marine Biology, Far East Branch, Russian Academy of Sciences, 17 Pal’chevskogo Street, 6900041, Vladivostok, Russia The larval development of the hermit crab Areopaguristes nigroapiculus (Komai, 2009) (Decapoda: Anomura: Diogenidae) is described and illustrated from the material reared in the laboratory. The development included three zoeal and a single mega- lopal stages. At 22–258C, megalop of A. nigroapiculus was attained 6–9 days after hatching. The present paper is the first description of the complete larval development in the genus Areopaguristes. Morphological characters of zoeas and megalop of A. nigroapiculus are compared with those described for the closely related Paguristes species. The comparison on the zoeal characters revealed that A. nigroapiculus is distinguished from Paguristes species by the absence of anterolateral carapace spines and by the fused fourth telson process in zoea III. These two features are possible generic characters of Areopaguristes. In the rest of larval characters, A. nigroapiculus agree well with Paguristes species having three zoeal stages. In the plankton of Peter the Great Bay, the larvae of A. nigroapiculus sporadically occurred only in July and August, at depths of 3–45 m and surface water temperatures of 18–228C. Keywords: Decapoda, Anomura, Diogenidae, Areopaguristes nigroapiculus, larva, Sea of Japan Submitted 2 June 2010; accepted 29 November 2010; first published online 1 February 2011 INTRODUCTION At present, the genus Areopaguristes is represented by 22 species (Komai, 2009).
    [Show full text]
  • Pagurid Crabs (Decapoda Anomura) from St
    PAGURID CRABS (DECAPODA ANOMURA) FROM ST. JOHN, VIRGIN ISLANDS, WITH DESCRIPTIONS OF THREE NEW SPECIES 1) BY ANTHONY J. PROVENZANO, Jr. Institute of Marine Science,University of Miami, Florida, U.S.A. INTRODUCTION As part of a survey of the marine fauna and flora of the recently established U. S. Virgin Islands National Park at St. John, a series of collections have been made by Marine Laboratory personnel. Among the Crustacea taken were a number of new records for the Virgin Islands, including three species not referable to any yet named. The present report deals with the hermit crabs of the families Diogenidae and Paguridae; these families corresponding to those of MacDonald, Pike & Williamson ( 1 9 5 7 ) . Synonymies are restricted to the original description and one or more references usually containing more complete information. Size of specimens where given refers to carapace length. The station numbers refer to records kept by Herman Kumpf while at St. John; the field data being on file in the Marine Laboratory Museum. Unless otherwise noted, the general locality for material examined is St. John. Holotypes are deposited in the U. S. National Museum, while most of the remaining material is deposited in the University of Miami Marine Laboratory Museum (UMML). The writer is indebted to Dr. Marvin L. Wass of the Virginia Fisheries Labora- tory for examining the three new species and for comments incorporated in the manuscript. He would also like to thank Dr. John Randall and his co-workers who made special efforts to collect hermit crabs during their general field studies.
    [Show full text]
  • Ga7459. B) Polyonyx Pedalis, 1 Female 4.56×4.73 Mm, Mayotte, St
    23 Figure 11. A) Polyonyx biunguiculatus, 1 male 2.68×3.23 mm, Mayotte, St. 23, MNHN- Ga7459. B) Polyonyx pedalis, 1 female 4.56×4.73 mm, Mayotte, St. 19, MNHN-Ga7464 (coloration altered by preservative). C) Polyonyx triunguiculatus, 1 male 3.69×4.37, Mayotte, St. 23, MNHN-Ga7438. D) Polyonyx aff. boucheti, 1 ovigerous female 2.20×3.24 mm, Mayotte, St. 12, MNHN-Ga7465. Polyonyx triunguiculatus Zehntner, 1894 Polyonyx triunguiculatus (Figure 11 C) - Haig, 1966: 44 (Mayotte, lagoon, small blocks and coarse sands, coll. A. Crosnier, September 1959, 2 males 2.7 and 3.2 mm, 1 female 1.9 mm, 2 ovigerous females 3.1 and 3.2 mm; same, coarse sands, 50 m, 1 male 3.7 mm, 1 female 3.3 mm, MNHN). - BIOTAS collections, Glorioso, 3-7 May 2009, det. J. Poupin from photo, St. GLOR-2, reef platform and shallow canyons with dead Acropora digitifera head, 7-14 m, specimen MEPA 948; St. GLOR-5, reef slope East side, 17 m, specimen MEPA 1045. - Mayotte, KUW fieldwork November 2009, St. 14, La Prudente bank, 15-17 m, 2 males 3.38×4.13 and 3.31×3.79 mm, 1 ovigerous female 3.29×4.20, 1 juvenile broken, MNHN-Ga7436; St. 17, North reef, 22 m, 1 male 3.43×3.94, 1 ovigerous female 3.10×3.97 mm, MNHN-Ga7437; St. 23, Choizil pass ‘Patate à Teddy’, 15-30 m, 1 male 3.69×4.37, 1 female 2.72×3.12 mm, MNHN-Ga7438; St. 25, islet M'tzamboro, 15-20 m, 1 ovigerous female 3.46×4.45 mm, 1 female 2.74×3.06 mm, 2 ovigerous females 2.89×3.44 and 3.40×3.99 mm, 1 female not measured, MNHN-Ga7439; St.
    [Show full text]
  • Epibenthic Mobile Invertebrates Along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-21-2014 Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Ecology and Evolutionary Biology Commons, Other Education Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Netchy, Kristin, "Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5085 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure by Kristin H. Netchy A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Marine Science College of Marine Science University of South Florida Major Professor: Pamela Hallock Muller, Ph.D. Kendra L. Daly, Ph.D. Kathleen S. Lunz, Ph.D. Date of Approval: March 21, 2014 Keywords: Echinodermata, Mollusca, Arthropoda, guilds, coral, survey Copyright © 2014, Kristin H. Netchy DEDICATION This thesis is dedicated to Dr. Gustav Paulay, whom I was fortunate enough to meet as an undergraduate. He has not only been an inspiration to me for over ten years, but he was the first to believe in me, trust me, and encourage me.
    [Show full text]
  • Molecular Phylogenetic Analysis of the Paguristes Tortugae Schmitt, 1933 Complex and Selected Other Paguroidea (Crustacea: Decapoda: Anomura)
    Zootaxa 4999 (4): 301–324 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4999.4.1 http://zoobank.org/urn:lsid:zoobank.org:pub:ACA6BED4-7897-4F95-8FC8-58AC771E172A Molecular phylogenetic analysis of the Paguristes tortugae Schmitt, 1933 complex and selected other Paguroidea (Crustacea: Decapoda: Anomura) CATHERINE W. CRAIG1* & DARRYL L. FELDER1 1Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, Louisiana, 70504–2451, [email protected]; https://orcid.org/0000-0001-7679-7712 *Corresponding author. [email protected]; https://orcid.org/0000-0002-3479-2654 Abstract Morphological characters, as presently applied to describe members of the Paguristes tortugae Schmitt, 1933 species complex, appear to be of limited value in inferring phylogenetic relationships within the genus, and may have similarly misinformed understanding of relationships between members of this complex and those presently assigned to the related genera Areopaguristes Rahayu & McLaughlin, 2010 and Pseudopaguristes McLaughlin, 2002. Previously undocumented observations of similarities and differences in color patterns among populations additionally suggest genetic divergences within some species, or alternatively seem to support phylogenetic groupings of some species. In the present study, a Maximum Likelihood (ML) phylogenetic analysis was undertaken based on the H3, 12S mtDNA, and 16S mtDNA sequences of 148 individuals, primarily representatives of paguroid species from the western Atlantic. This molecular analysis supported a polyphyletic Diogenidae Ortmann, 1892, although incomplete taxonomic sampling among the genera of Diogenidae limits the utility of this finding for resolving family level relationships.
    [Show full text]
  • Genus Panopeus H. Milne Edwards, 1834 Key to Species [Based on Rathbun, 1930, and Williams, 1983] 1
    610 Family Xanthidae Genus Panopeus H. Milne Edwards, 1834 Key to species [Based on Rathbun, 1930, and Williams, 1983] 1. Dark color of immovable finger continued more or less on palm, especially in males. 2 Dark color of immovable finger not continued on palm 7 2. (1) Outer edge of fourth lateral tooth longitudinal or nearly so. P. americanus Outer edge of fourth lateral tooth arcuate 3 3. (2) Edge of front thick, beveled, and with transverse groove P. bermudensis Edge of front if thick not transversely grooved 4 4. (3) Major chela with cusps of teeth on immovable finger not reaching above imaginary straight line drawn between tip and angle at juncture of finger with anterior margin of palm (= length immovable finger) 5 Major chela with cusps of teeth near midlength of immovable finger reaching above imaginary straight line drawn between tip and angle at juncture of finger with anterior margin of palm (= length immovable finger) 6 5. (4) Coalesced anterolateral teeth 1-2 separated by shallow rounded notch, 2 broader than but not so prominent as 1; 4 curved forward as much as 3; 5 much smaller than 4, acute and hooked forward; palm with distance between crest at base of movable finger and tip of cusp lateral to base of dactylus 0.7 or less length of immovable finger P. herbstii Coalesced anterolateral teeth 1-2 separated by deep rounded notch, adjacent slopes of 1 and 2 about equal, 2 nearly as prominent as 1; 4 not curved forward as much as 3; 5 much smaller than 4, usually projecting straight anterolaterally, sometimes slightly hooked; distance between crest of palm and tip of cusp lateral to base of movable finger 0.8 or more length of immovable finger P.
    [Show full text]
  • Pseudopaguristes, a New and Aberrant Genus of Hermit Crabs (Anomura: Paguroidea: Diogenidae)
    Micronesica 34(2):185-199, 2002 Pseudopaguristes, a new and aberrant genus of hermit crabs (Anomura: Paguroidea: Diogenidae) PATSY A. MCLAUGHLIN Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, WA 98221-9081B, U.S.A. Abstract—Pseudopaguristes, gen. nov., an aberrant, presently mono- typic, genus of the hermit crab family Diogenidae, is diagnosed and its type species, Pseudopaguristes janetkae, sp. nov., is described and illus- trated. As its name implies, this new genus is, in many morphological characters, nearly identical to the genus Paguristes Dana. However, it differs most significantly in gill number, the sexually dimorphic, enlarged right cheliped of the male, the dimorphic propodus of the left second pereopod of the female, and the development of a preungual process at the base of the claw of the dactyl of the fourth pereopod that, together with the claw, gives the appearance of a miniature chela. Introduction During survey work by faculty and staff of the University of Guam Marine Laboratory, a pair of splendidly and distinctly colored hermit crabs was dredged off Agat Bay from 90 m depth. A second, smaller pair were collected subsequently in shallow water from the fore reef area of Agat Bay north of Alutom Island. Although the females superficially looked very typical of a species of the genus Paguristes Dana 1851, the appearance of the males suggested a member of the family Paguridae. Not only was the right cheliped considerably larger, this appendage also was morphologically very different from the left, with both dif- fering from the chelipeds of the females.
    [Show full text]
  • A Novel Interaction: the Thin Stripe Hermit Crab, Clibanarius
    A NOVEL INTERACTION: THE THIN STRIPE HERMIT CRAB, CLIBANARIUS VITTATUS, KILLS THE FLORIDA CROWN CONCH, MELONGENA CORONA, FOR ITS SHELL by Jennifer Cutter A Thesis Submitted to the Faculty of Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2017 Copyright by Jennifer Cutter 2017 ii ACKNOWLEDGEMENTS I would like to thank Florida Atlantic University, Harbor Branch Oceanographic Institute, and Dr. Donna Devlin for giving me the opportunity to conduct this fascinating study. I would also like to thank the other committee members (Dr. Vincent Encomio, Dr. Edward Proffitt, and Dr. William Brooks) for their help, advice, and guidance. This work was made possible through funding from the Indian River Lagoon Research Fellowship awarded by the Harbor Branch Foundation and a scholarship awarded by The Broward Shell Club. Additionally, I would like to thank Dr. Richard Turner for being willing to meet with me on several occasions to answer questions and share his vast knowledge. iv ABSTRACT Author: Jennifer Cutter Title: A Novel Interaction: The thin stripe hermit Crab, Clibanarius vittatus, kills the Florida crown conch, Melongena corona, for its shell Institution: Florida Atlantic University Thesis Advisor: Dr. Donna Devlin Degree: Master of Science Year: 2017 The hermit crab Clibanarius vittatus kills Melongena corona solely to acquire a better fitting shell. This finding is contrary to previous studies, which found that hermit crabs of other species cannot kill gastropods or, in most instances, remove freshly dead gastropods from their shells. This interaction cannot be classified as predation because Melongena tissue was never consumed.
    [Show full text]
  • Interspecific Shell Fighting in Three Sympatric Species of Hermit Crabs in Hawaii' BRIAN A
    Interspecific Shell Fighting in Three Sympatric Species of Hermit Crabs in Hawaii' BRIAN A. HAZLETT2 INTERSPECIFIC COMPETITION is often difficult distribution to some extent. Calcines latens is to measure due to the lack of a definitive limit­ generally found a foot or so deeper than Cliba­ ing factor for the two (or more) species. The narius zebra and Calcines laeoimanus (Reese, gastropod shell inhabited by a hermit crab rep­ 1968b) . All three species are found primarily resents a very discrete, definable portion of the in the gastropod shell Tr ocbus sandioicbiensis ecological needs of every animal. A hermit crab and to a lesser extent in Turbo sandioicensis must have protection for its soft abdomen or it and other shells. Preliminary searches of the will rather quickly be eaten. In addition, the study area revealed that very few empty gastro­ ritualized shell fighting behavior patterns of pod shells of the size utilized by the crabs were hermit crabs (Hazlett, 1966a, 1966b, 1967) present in the water, although many shells are offer an easily observed specific behavioral pa­ found above the high tide level on Gravel rameter which reflects the extent of interspecific Island. Since every crab (of all three species) vs. intraspecific competition for this ecological must have a shell to survive and since shells factor. seemed to be in short supply, it could be argued Levins (1968) has proposed that the degree that shells are a limiting factor in this area. of niche overlap between two species can be The following experiments were designed to calculated as the summation of interspecific com­ ( 1) measure the extent of interspecific com­ petition interaction values (a.) for all the fac­ petition and (2 ) investigate the behavioral basis tors of ecological importance to the species.
    [Show full text]
  • Identification of a Hermit Crab, Clibanarius Signatus , in Hormuz Island; Abundance, Sex Ratio and Shell Selection Behaviors
    ﻣﺠﻠﻪ ﻋﻠﻤﻲ ﺷﻴﻼت اﻳﺮان ﺳﺎل ﺑﻴﺴﺖ و دوم/ ﺷﻤﺎره ز/4 ﻣﺴﺘﺎن 1392 ﺷﻨﺎﺳﺎﻳﻲ ﺧﺮﭼﻨﮓ ﻣﻨﺰوي Clibanarius signatus د ر ﺟﺰﻳ ﺮه ﻫﺮﻣﺰ ؛ ﻓﺮاواﻧﻲ، ﻧﺴﺒﺖ ﺟﻨﺴﻲ و ﻋﺎدت ﺻﺪف ﮔﺰﻳﻨﻲ اﻳﻦ ﮔﻮﻧﻪ * ﻧﺒﻲ اﻟﻪ ﺧﻴﺮآﺑﺎدي )1( ، ﺳﻴﺪ ﺟﻌﻔﺮ ﺳﻴﻒ آﺑﺎدي )2( ، ﻓﺮﻳﺪون ﻋﻮﻓﻲ )3( ، ﻋﻠﻴﺮﺿﺎ ﻣﻬﻮري )4( *[email protected] 1 -2و داﻧﺸﻜﺪه ﻋﻠﻮم درﻳﺎﻳﻲ، داﻧﺸﮕﺎه ﺗﺮﺑﻴﺖ ﻣﺪرس، ﻧﻮر ﺻ ﻨﺪوق ﭘﺴﺘﻲ : 356 - 46414 3 - ﻣﺆﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﺷﻴﻼت اﻳﺮان، ﺗﻬﺮان ﺻﻨﺪوق ﭘﺴﺘﻲ : 775 - 14155 4 - ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎت ﻣﺤﻴﻂ زﻳﺴﺖ درﻳﺎﻳﻲ ﺧﻠﻴﺞ ﻓﺎرس و درﻳﺎي ﻋﻤﺎن، ﺟﺰﻳﺮه ﻫﺮﻣﺰ. ﻛﺪ ﭘﺴﺘﻲ : 79199 - 75756 ﺗﺎرﻳﺦ درﻳﺎﻓﺖ : اردﻳﺒﻬﺸﺖ 1392 ﺗﺎرﻳﺦ ﭘﺬﻳﺮش : آذر 1392 ﻟﻐﺎت ﻛﻠﻴﺪي: ﺧﺮﭼﻨﮓ ﻣﻨﺰوي، Clibanarius signatus ، ﺟﺰﻳﺮه ﻫﺮﻣﺰ، ﺷﻨﺎﺳﺎﻳﻲ، ﺻﺪف ﮔﺰﻳﻨﻲ ﺳﺨﺖ ﭘﻮﺳﺘﺎن ﻳﻜﻲ از ﻣﺘﻨﻮع ﺗﺮﻳﻦ و ﺑﺰرگ ﺗﺮﻳﻦ زﻳﺮ ﺷﺎﺧﻪ ﻫﺎي اﻳﻦ ﺗﺤﻘﻴ ﻘﺎت ﺑﻌﻀﺎً ﻣﻨﺠﺮ ﺑﻪ ﺷﻨﺎﺳﺎﻳﻲ و ﻣﻌﺮﻓﻲ ﮔﻮﻧﻪ ﻫﺎي ﺟﺪﻳﺪ ﺑﻨﺪ ﭘﺎﻳﺎن ﺑﺎ ﭘﺮاﻛﻨﺸ ﻲ وﺳﻴﻊ در زﻳﺴﺘﮕﺎه ﻫﺎي ﻣﺨﺘﻠﻒ درﻳﺎﻳﻲ ﻣﻲ - ﮔﺸﺘﻪ اﺳﺖ ( Lemaitre & McLaughlin, 2006; ﺑﺎﺷﻨﺪ . ﺧﺮﭼﻨﮓ ﻫﺎي ﻣﻨﺰوي ﻳﻚ ﮔﺮوه از ﺳﺨﺖﭘ ﻮﺳﺘﺎن راﺳﺘﻪ McLaughlin & Lemaitre, 2007 .) ﺧﺮﭼﻨﮓ ﻣﻨﺰوي .C Decapoda و ﻓﻮق ﺧﺎﻧﻮاده Paguroidea ﻣﻲ ﺑﺎﺷﻨ ﺪ ﻛﻪ ﺗﺎﻛﻨﻮن signatu s از ﺧﺎﻧﻮاده Diogenidae ﻧﻴﺰ در ﺗﺤﻘﻴﻘﺎﺗﻲ ﻛﻪ در درﻳﺎي ﺑﻴﺶ از 1100 ﮔﻮﻧﻪ از آن ﻫﺎ ﺷﻨﺎﺳﺎﻳﻲ ﺷﺪه اﺳﺖ ( McLaughlin ﻋﻤﺎن و ﺳﻮاﺣﻞ ﭘﺎﻛﺴﺘﺎن ﺻﻮرت ﮔﺮﻓﺘﻪ اﺳﺖ ﻣﻮرد ﺷﻨﺎﺳﺎﻳﻲ و et al ., 2010 ) و ﻣﻲ ﺗﻮان آن ﻫﺎ را ﻳﻜﻲ از ﻣﻬﻢ ﺗﺮﻳﻦ ﺟﻮاﻣﻊ ﺑﺮرﺳﻲ ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ (;Moradmand & Sari, Kazmi 2007 ﺟﺎﻧﻮري در ﻧﻮاﺣﻲ ﺟﺰر و ﻣﺪي ﻗﻠﻤﺪاد ﻛﺮد، زﻳ ﺮا ﻧﻘﺸﻲ ﺑﺴﻴﺎر ﻣﻬﻢ et al. , 2007 ) . اﻳﻦ ﮔﻮﻧﻪ در ﺳﻮاﺣﻞ ﺧﻠﻴﺞ ﻓﺎرس و درﻳﺎي ﻋﻤﺎن در زﻧﺠﻴﺮه ﻏﺬاﻳﻲ اﻳﻔﺎ ﻣﻲ ﻛﻨﻨﺪ ( & Naderloo et al., 2012 ) Fransozo ) ﻣﻌﺮﻓﻲ و ﺛﺒﺖ ﺷﺪ ه اﺳﺖ .
    [Show full text]
  • An Illustrated Key to the Malacostraca (Crustacea) of the Northern Arabian Sea. Part VI: Decapoda Anomura
    An illustrated key to the Malacostraca (Crustacea) of the northern Arabian Sea. Part 6: Decapoda anomura Item Type article Authors Kazmi, Q.B.; Siddiqui, F.A. Download date 04/10/2021 12:44:02 Link to Item http://hdl.handle.net/1834/34318 Pakistan Journal of Marine Sciences, Vol. 15(1), 11-79, 2006. AN ILLUSTRATED KEY TO THE MALACOSTRACA (CRUSTACEA) OF THE NORTHERN ARABIAN SEA PART VI: DECAPODA ANOMURA Quddusi B. Kazmi and Feroz A. Siddiqui Marine Reference Collection and Resource Centre, University of Karachi, Karachi-75270, Pakistan. E-mails: [email protected] (QBK); safianadeem200 [email protected] .in (FAS). ABSTRACT: The key deals with the Decapoda, Anomura of the northern Arabian Sea, belonging to 3 superfamilies, 10 families, 32 genera and 104 species. With few exceptions, each species is accompanied by illustrations of taxonomic importance; its first reporter is referenced, supplemented by a subsequent record from the area. Necessary schematic diagrams explaining terminologies are also included. KEY WORDS: Malacostraca, Decapoda, Anomura, Arabian Sea - key. INTRODUCTION The Infraorder Anomura is well represented in Northern Arabian Sea (Paldstan) (see Tirmizi and Kazmi, 1993). Some important investigations and documentations on the diversity of anomurans belonging to families Hippidae, Albuneidae, Lithodidae, Coenobitidae, Paguridae, Parapaguridae, Diogenidae, Porcellanidae, Chirostylidae and Galatheidae are as follows: Alcock, 1905; Henderson, 1893; Miyake, 1953, 1978; Tirmizi, 1964, 1966; Lewinsohn, 1969; Mustaquim, 1972; Haig, 1966, 1974; Tirmizi and Siddiqui, 1981, 1982; Tirmizi, et al., 1982, 1989; Hogarth, 1988; Tirmizi and Javed, 1993; and Siddiqui and Kazmi, 2003, however these informations are scattered and fragmentary. In 1983 McLaughlin suppressed the old superfamily Coenobitoidea and combined it with the superfamily Paguroidea and placed all hermit crab families under the superfamily Paguroidea.
    [Show full text]