A4dc5c211740f7d4b1b06776a1
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Ascothoracida
19 Ascothoracida Jens T. Høeg Benny K. K. Chan Gregory A. Kolbasov Mark J. Grygier A. Kolbasov,JensK. K. T. Høeg,Chan,J. Grygier Gregoryand Benny Mark general: The Ascothoracida are ecto-, meso- or endopar- pliar instar stages have small vestiges of the thoracopods of the asites in echinoderms and anthozoans (Grygier and Høeg ensuing a-cyprid. The hindbody ends in an unpaired terminal 2005). Except for the secondarily hermaphroditic species of spine and a pair of caudal setae or spines (fig. 19.1A, B). the Petrarcidae, they have separate sexes. The larger female A-Cyprid: The a-cyprid (or ascothoracid larva) has a bivalved is accompanied by dwarf cypridiform-like males, often living carapace that surrounds the body, although the hindbody will inside her mantle cavity. Ascothoracidans use their piercing normally protrude posteriorly (fig. 19.1D, E, I, J). The cara- mouthparts for feeding on their hosts, although in some pace surface can be almost smooth (fig. 19.1I) or covered by advanced forms nutrient absorption may also take place prominent polygonal cuticular ridges (fig. 19.1J). There are through the integument. The approximately 100 described five pairs of lattice organs (without a pore field) along the species are classified in 2 orders, the Laurida and Dendroga- dorsal hinge line. The prehensile antennules are Z-shaped and strida (Grygier 1987; Kolbasov et al. 2008b). The life cycle in- composed of four to six segments, whose precise homology cludes up to six free-swimming naupliar instars (fig. 19.1A–C, to the antennular segments in facetotectan y-cyprids and cir- F, G), an a-cypris larva (fig. -
Remarkable Convergent Evolution in Specialized Parasitic Thecostraca (Crustacea)
Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea) Pérez-Losada, Marcos; Høeg, Jens Thorvald; Crandall, Keith A Published in: BMC Biology DOI: 10.1186/1741-7007-7-15 Publication date: 2009 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Pérez-Losada, M., Høeg, J. T., & Crandall, K. A. (2009). Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea). BMC Biology, 7(15), 1-12. https://doi.org/10.1186/1741-7007-7-15 Download date: 25. Sep. 2021 BMC Biology BioMed Central Research article Open Access Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea) Marcos Pérez-Losada*1, JensTHøeg2 and Keith A Crandall3 Address: 1CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Portugal, 2Comparative Zoology, Department of Biology, University of Copenhagen, Copenhagen, Denmark and 3Department of Biology and Monte L Bean Life Science Museum, Brigham Young University, Provo, Utah, USA Email: Marcos Pérez-Losada* - [email protected]; Jens T Høeg - [email protected]; Keith A Crandall - [email protected] * Corresponding author Published: 17 April 2009 Received: 10 December 2008 Accepted: 17 April 2009 BMC Biology 2009, 7:15 doi:10.1186/1741-7007-7-15 This article is available from: http://www.biomedcentral.com/1741-7007/7/15 © 2009 Pérez-Losada et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton. -
External Morphology of the Two Cypridiform Ascothoracid-Larva
ARTICLE IN PRESS Zoologischer Anzeiger 247 (2008) 159–183 www.elsevier.de/jcz External morphology of the two cypridiform ascothoracid-larva instars of Dendrogaster: The evolutionary significance of the two-step metamorpho- sis and comparison of lattice organs between larvae and adult males (Crustacea, Thecostraca, Ascothoracida) Gregory A. Kolbasova, Mark J. Grygierb, Jens T. Høegc,Ã, Waltraud Klepald aDepartment of Invertebrate Zoology, White Sea Biological Station, Faculty of Biology, Moscow State University, Moscow 119992, Russia bLake Biwa Museum, Oroshimo 1091, Kusatsu, Shiga 525-0001, Japan cDepartment of Cell Biology and Comparative Zoology, Institute of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark dCell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria Received 17 August 2006; received in revised form 4 July 2007; accepted 5 July 2007 Corresponding editor: A.R. Parker Abstract We describe the external morphology of the two cypridiform larval instars (first and second ascothoracid-larvae, or ‘‘a-cyprids’’) of the ascothoracidan genus Dendrogaster. Ascothoracid-larvae of five species were studied with light and scanning electron microscopy, including both ascothoracid-larval instars in Dendrogaster orientalis Wagin. The first and second instars of the ascothoracid-larvae differ in almost all external features. The carapace of instar 1 has a smooth surface and lacks pores, setae, and lattice organs, while instar 2 has all these structures. The antennules of the first instar have only a rudimentary armament, the labrum does not encircle the maxillae, thoracopods 2–3 are not armed with a plumose coxal seta, and the abdomen is four-segmented (versus five-segmented in instar 2). -
Barnacle Editor Workshop
Barnacle Editor Workshop VLIZ InnovOcean Site Wandelaarkaai 7 – entrance Pakhuis 61 (UNESCO) B-8400 Oostende, Belgium February 24-28, 2020 Final Report Barnacle Participants: Keith Crandall, Meeting Organizer, George Washington University, Washington, DC USA Jens Hoeg, University of Copenhagen, Copenhagen, Denmark Marcos Pérez-Losada, George Washington University, Washington, DC USA Benny Chan, Academia Sinica, Taipei, Taiwan Henrick Glenner, University of Bergen, Bergen, Norway Andy Gale, University of Portsmouth, Portsmouth, United Kingdom Niklas Dreyer, Academia Sinica, Taipei, Taiwan WoRMS Data Management Team (DMT): Stefanie Dekeyzer (Meeting Coordinator) Bart Vanhoorne Wim Decock Leen Vandepitte Target Group: The barnacles – more specifically, the broader group of Thecostraca including the traditional barnacles (Cirripedia) as well as the related groups of Facetotecta and Ascothoracida. The thecostracan barnacles rank among the most commonly encountered marine crustaceans in the world. They deviate from almost all other Crustacea in that only the larvae are free-living, while the adults are permanently sessile and morphologically highly specialized as filter feeders or parasites. In the most recent classifications of the crustacean Maxillopoda 1 and latest phylogenetic analyses 2-4 the Thecostraca sensu Grygier 5, comprising the Facetotecta, Ascothoracida, and Cirripedia, form monophyletic assemblages. Barnacle phylogenetics has advanced greatly over the last 10 years. Nonetheless, the relationships and taxonomic status of some groups within these three infraclasses are still a matter of debate. While the barnacles where the focus of Darwin’s detailed taxonomic work, there has not been a comprehensive review of the species of barnacles as a whole since Darwin. As a consequence, the barnacle entries within the WoRMS Database is woefully out of date taxonomically and missing many, many species and higher taxa. -
Benvenuto, C and SC Weeks. 2020
--- Not for reuse or distribution --- 8 HERMAPHRODITISM AND GONOCHORISM Chiara Benvenuto and Stephen C. Weeks Abstract This chapter compares two sexual systems: hermaphroditism (each individual can produce gametes of either sex) and gonochorism (each individual produces gametes of only one of the two distinct sexes) in crustaceans. These two main sexual systems contain a variety of alternative modes of reproduction, which are of great interest from applied and theoretical perspectives. The chapter focuses on the description, prevalence, analysis, and interpretation of these sexual systems, centering on their evolutionary transitions. The ecological correlates of each reproduc- tive system are also explored. In particular, the prevalence of “unusual” (non- gonochoristic) re- productive strategies has been identified under low population densities and in unpredictable/ unstable environments, often linked to specific habitats or lifestyles (such as parasitism) and in colonizing species. Finally, population- level consequences of some sexual systems are consid- ered, especially in terms of sex ratios. The chapter aims to provide a broad and extensive overview of the evolution, adaptation, ecological constraints, and implications of the various reproductive modes in this extraordinarily successful group of organisms. INTRODUCTION 1 Historical Overview of the Study of Crustacean Reproduction Crustaceans are a very large and extraordinarily diverse group of mainly aquatic organisms, which play important roles in many ecosystems and are economically important. Thus, it is not surprising that numerous studies focus on their reproductive biology. However, these reviews mainly target specific groups such as decapods (Sagi et al. 1997, Chiba 2007, Mente 2008, Asakura 2009), caridean Reproductive Biology. Edited by Rickey D. Cothran and Martin Thiel. -
THE ECHINODERM NEWSLETTER Number 22. 1997 Editor: Cynthia Ahearn Smithsonian Institution National Museum of Natural History Room
•...~ ..~ THE ECHINODERM NEWSLETTER Number 22. 1997 Editor: Cynthia Ahearn Smithsonian Institution National Museum of Natural History Room W-31S, Mail Stop 163 Washington D.C. 20560, U.S.A. NEW E-MAIL: [email protected] Distributed by: David Pawson Smithsonian Institution National Museum of Natural History Room W-321, Mail Stop 163 Washington D.C. 20560, U.S.A. The newsletter contains information concerning meetings and conferences, publications of interest to echinoderm biologists, titles of theses on echinoderms, and research interests, and addresses of echinoderm biologists. Individuals who desire to receive the newsletter should send their name, address and research interests to the editor. The newsletter is not intended to be a part of the scientific literature and should not be cited, abstracted, or reprinted as a published document. A. Agassiz, 1872-73 ., TABLE OF CONTENTS Echinoderm Specialists Addresses Phone (p-) ; Fax (f-) ; e-mail numbers . ........................ .1 Current Research ........•... .34 Information Requests .. .55 Announcements, Suggestions .. • .56 Items of Interest 'Creeping Comatulid' by William Allison .. .57 Obituary - Franklin Boone Hartsock .. • .58 Echinoderms in Literature. 59 Theses and Dissertations ... 60 Recent Echinoderm Publications and Papers in Press. ...................... • .66 New Book Announcements Life and Death of Coral Reefs ......•....... .84 Before the Backbone . ........................ .84 Illustrated Encyclopedia of Fauna & Flora of Korea . • •• 84 Echinoderms: San Francisco. Proceedings of the Ninth IEC. • .85 Papers Presented at Meetings (by country or region) Africa. • .96 Asia . ....96 Austral ia .. ...96 Canada..... • .97 Caribbean •. .97 Europe. .... .97 Guam ••• .98 Israel. 99 Japan .. • •.••. 99 Mexico. .99 Philippines .• . .•.•.• 99 South America .. .99 united States .•. .100 Papers Presented at Meetings (by conference) Fourth Temperate Reef Symposium................................•...... -
Five New Species of Bathyal Atlantic Ascothoracida (Crustacea: Maxillopoda) from the Equator to 50° N Latitude
BULLETIN OF MARINE SCIENCE, 46(3): 655-<i76, l~ FIVE NEW SPECIES OF BATHYAL ATLANTIC ASCOTHORACIDA (CRUSTACEA: MAXILLOPODA) FROM THE EQUATOR TO 50° N LATITUDE Mark J. Grygier ABSTRACT Five new species of Ascothoracida are described from the Atlantic Ocean at depths of700- 3,500 m: Synagoga paucisetosa new species, host unknown, from 3,459 m in the equatorial Atlantic, based on a male; Synagoga bisetosa new species, host unknown, from about 2,000 m outside the Strait of Gibraltar, based on an immature ?female; Thalassomembracis atlan- ticus new species, host Chrysogorgia quadriplex Thomson, from about 1,450 m SW of the British Isles, based on a female; Zoanthoecus scrobisaccus new species, host Epizoanthus fatuus (M. Schultze), from 927 m near the Azores, based on females, a male, and nauplii; Dendrogaster deformator new species, host Novodinia antillensis (A. H. Clark), from 711 m in the Bahamas, based on females. New specimens of Cardomanica longispinata (Grygier), host Chrysogorgia elegans (Verrill), are recorded from the Lesser Antilles. Both new species of Synagoga have a pair of Waginella-like pits on the front inner surfaces of the carapace valves. Synagoga bisetosa has a unique thoracopod segmentation and is intermediate between other Synagoga species and Waginella in some features. Fouling organisms associated with some specimens of Cardomanica longispinata bring into question the nature of the relation- ship with the host. Naupliar antennule segmentation in Zoanthoecus scrobisaccus seems to be different from that of other ascothoracidans, with implications for maxillopodan system- atics. Dendrogaster deformator is morphologically and ecologically intermediate between other species of Dendrogaster and the closely related genus Bifurgaster. -
Fossil Calibrations for the Arthropod Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration. -
Madrepora Oculata in Japan, with Remarks on the Development of Its Spectacular Galls
58 Journal of Marine Science and Technology, Vol. 28, No. 1, pp. 58-64 (2020) DOI: 10.6119/JMST.202002_28(1).0007 LIVE SPECIMENS OF THE PARASITE PETRARCA MADREPORAE (CRUSTACEA: ASCOTHORACIDA) FROM THE DEEP-WATER CORAL MADREPORA OCULATA IN JAPAN, WITH REMARKS ON THE DEVELOPMENT OF ITS SPECTACULAR GALLS Hiroyuki Tachikawa1, Mark J. Grygier2,3, and Stephen D. Cairns4 Key words: coral parasite, gall formation, ahermatypic coral, nau- logical account of the successive stages of gall formation and plius larva. illustrations of the parasites’ nauplius larvae, are presented here. A comparison is made to enlarged corallites in another deep-sea coral, Lophelia pertusa (Linnaeus), attributed to ABSTRACT infection by sponges, along with a suggestion of a possible Grossly enlarged corallites, which had earlier been inter- mutualistic benefit to the host of infection by P. madreporae preted as tumors, epibionts, or parasitic galls, on colonies of and a full list of records of Petrarcidae and presumed petrarcid deep-sea scleractinians of the genus Madrepora from various galls from Japan. Indo-Pacific localities, were recognized as galls in 1996 by Grygier and Cairns on account of the new species of as- I. INTRODUCTION cothoracidan crustacean, Petrarca madreporae Grygier, they had found inside enlarged corallites from a site in Indonesia. Deep, cold-water coral “reefs”, with a framework of Here we report the confirmatory recovery of living specimens branching ahermatypic and azooxanthellate scleractinian cor- of P. madreporae from an enlarged corallite of a possibly als of such genera as Lophelia, Oculina, Enallopsammia, undescribed variant of Madrepora oculata Linnaeus in Japan. Solenosmilia, and Madrepora, have become the subject of Two affected coral colonies were taken by fishermen off much recent attention (e.g., Roberts et al., 2009; Hourigan et Katsuura, Chiba Prefecture, at ca. -
Towards a Barnacle Tree of Life: Integrating Diverse Phylogenetic Efforts Into a Comprehensive Hypothesis of Thecostracan Evolution
Towards a barnacle tree of life integrating diverse phylogenetic efforts into a comprehensive hypothesis of thecostracan evolution Ewers-Saucedo, Christine; Owen, Christopher L.; Pérez-Losada, Marcos; Høeg, Jens T.; Glenner, Henrik; Chan, Benny K. K.; Crandall, Keith A. Published in: PeerJ DOI: 10.7717/peerj.7387 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Ewers-Saucedo, C., Owen, C. L., Pérez-Losada, M., Høeg, J. T., Glenner, H., Chan, B. K. K., & Crandall, K. A. (2019). Towards a barnacle tree of life: integrating diverse phylogenetic efforts into a comprehensive hypothesis of thecostracan evolution. PeerJ, 7, [e7387]. https://doi.org/10.7717/peerj.7387 Download date: 10. Oct. 2021 Towards a barnacle tree of life: integrating diverse phylogenetic efforts into a comprehensive hypothesis of thecostracan evolution Christine Ewers-Saucedo1,*, Christopher L. Owen2,3,*, Marcos Pérez-Losada3,4,5, Jens T. Høeg6, Henrik Glenner7, Benny K.K. Chan8 and Keith A. Crandall3,4 1 Zoological Museum, Christian-Albrechts University, Kiel, Germany 2 Systematic Entomology Laboratory, USDA-ARS, Beltsville, MD, USA 3 Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA, USA 4 Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 5 CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal 6 Marine Biology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark 7 Marine Biodiversity Group, Department of Biology, University of Bergen, Bergen, Norway 8 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan * These authors contributed equally to this work. -
Possible Lattice Organs in Cretaceous Thylacocephala
Contributions to Zoology, 71 (4) 159-169 (2002) SPB Academic Publishing bv, The Hague Possible lattice in Cretaceous organs Thylacocephala Sven Lange & Frederick+R. Schram Institutefor Biodiversity and Ecosystem Dynamics, University ofAmsterdam, Mauritskade 57, 1092 AD Amsterdam, Netherlands Key words: Thylacocephala, fossils, lattice organs, Thecostraca, Cirripedia, Ascothoracida, Crustacea, Cretaceous. Abstract form has come to be recognized (Pinna et al. 1982; Secretan 1983; Briggs & Rolfe 1983). Typically a reminiscent of the lattice in thecostracan the entire This Structures, organs large carapace envelops body. cara- described from the cuticle ofCretaceous crustaceans, are carapace pace covers the major part of the head and trunk, The lattice like thylacocephalans. new organ structures occur thus obscuring potentially important information similar in pairs along the dorsal midline. While these have a such as Out from under the outline lattice lack do segmentation. carapace to true organs, they seem to pores and two sets of limbs Secretan 1985; Rolfe not occur in the highly apomorphicpattern found in thecostracans. protrude (see three These discrepancies do not easily support earlier ideas of a 1985): a set of pairs of sub-chelate raptorial of the within the thecostracans. position thylacocephalans limbs, and another set forming a posterior battery the lattice for The significance of possible organs inferring a of usually eight (but sometimesmore) small swim- relationship between thylacocephalans and thecostracans is ming limbs. Recently, Lange et al. (2001) described discussed. another set of limbs corresponding to antennules and antennae. In addition to these limbs, a pair of often out from the compound eyes bulge an- Contents large terior of the A of feather- margin carapace.