Transcriptome Profiling of UPF3B&Sol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thrombocytopenia-Absent Radius Syndrome
Thrombocytopenia-absent radius syndrome Description Thrombocytopenia-absent radius (TAR) syndrome is characterized by the absence of a bone called the radius in each forearm and a shortage (deficiency) of blood cells involved in clotting (platelets). This platelet deficiency (thrombocytopenia) usually appears during infancy and becomes less severe over time; in some cases the platelet levels become normal. Thrombocytopenia prevents normal blood clotting, resulting in easy bruising and frequent nosebleeds. Potentially life-threatening episodes of severe bleeding ( hemorrhages) may occur in the brain and other organs, especially during the first year of life. Hemorrhages can damage the brain and lead to intellectual disability. Affected children who survive this period and do not have damaging hemorrhages in the brain usually have a normal life expectancy and normal intellectual development. The severity of skeletal problems in TAR syndrome varies among affected individuals. The radius, which is the bone on the thumb side of the forearm, is almost always missing in both arms. The other bone in the forearm, which is called the ulna, is sometimes underdeveloped or absent in one or both arms. TAR syndrome is unusual among similar malformations in that affected individuals have thumbs, while people with other conditions involving an absent radius typically do not. However, there may be other abnormalities of the hands, such as webbed or fused fingers (syndactyly) or curved pinky fingers (fifth finger clinodactyly). Some people with TAR syndrome also have skeletal abnormalities affecting the upper arms, legs, or hip sockets. Other features that can occur in TAR syndrome include malformations of the heart or kidneys. -
Sex-Specific Hippocampal 5-Hydroxymethylcytosine Is Disrupted in Response to Acute Stress Ligia A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Department of Statistics Statistics, Department of 2016 Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress Ligia A. Papale University of Wisconsin, [email protected] Sisi Li University of Wisconsin, [email protected] Andy Madrid University of Wisconsin, [email protected] Qi Zhang University of Nebraska-Lincoln, [email protected] Li Chen Emory University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/statisticsfacpub Part of the Other Statistics and Probability Commons Papale, Ligia A.; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keles, Sunduz; and Alisch, Reid S., "Sex- specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress" (2016). Faculty Publications, Department of Statistics. 62. https://digitalcommons.unl.edu/statisticsfacpub/62 This Article is brought to you for free and open access by the Statistics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Statistics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Ligia A. Papale, Sisi Li, Andy Madrid, Qi Zhang, Li Chen, Pankaj Chopra, Peng Jin, Sunduz Keles, and Reid S. Alisch This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/statisticsfacpub/62 Neurobiology of Disease 96 (2016) 54–66 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress Ligia A. Papale a,1,SisiLia,c,1, Andy Madrid a,c,QiZhangd,LiChene,PankajChoprae,PengJine, Sündüz Keleş b, Reid S. -
List of Genes Associated with Sudden Cardiac Death (Scdgseta) Gene
List of genes associated with sudden cardiac death (SCDgseta) mRNA expression in normal human heart Entrez_I Gene symbol Gene name Uniprot ID Uniprot name fromb D GTEx BioGPS SAGE c d e ATP-binding cassette subfamily B ABCB1 P08183 MDR1_HUMAN 5243 √ √ member 1 ATP-binding cassette subfamily C ABCC9 O60706 ABCC9_HUMAN 10060 √ √ member 9 ACE Angiotensin I–converting enzyme P12821 ACE_HUMAN 1636 √ √ ACE2 Angiotensin I–converting enzyme 2 Q9BYF1 ACE2_HUMAN 59272 √ √ Acetylcholinesterase (Cartwright ACHE P22303 ACES_HUMAN 43 √ √ blood group) ACTC1 Actin, alpha, cardiac muscle 1 P68032 ACTC_HUMAN 70 √ √ ACTN2 Actinin alpha 2 P35609 ACTN2_HUMAN 88 √ √ √ ACTN4 Actinin alpha 4 O43707 ACTN4_HUMAN 81 √ √ √ ADRA2B Adrenoceptor alpha 2B P18089 ADA2B_HUMAN 151 √ √ AGT Angiotensinogen P01019 ANGT_HUMAN 183 √ √ √ AGTR1 Angiotensin II receptor type 1 P30556 AGTR1_HUMAN 185 √ √ AGTR2 Angiotensin II receptor type 2 P50052 AGTR2_HUMAN 186 √ √ AKAP9 A-kinase anchoring protein 9 Q99996 AKAP9_HUMAN 10142 √ √ √ ANK2/ANKB/ANKYRI Ankyrin 2 Q01484 ANK2_HUMAN 287 √ √ √ N B ANKRD1 Ankyrin repeat domain 1 Q15327 ANKR1_HUMAN 27063 √ √ √ ANKRD9 Ankyrin repeat domain 9 Q96BM1 ANKR9_HUMAN 122416 √ √ ARHGAP24 Rho GTPase–activating protein 24 Q8N264 RHG24_HUMAN 83478 √ √ ATPase Na+/K+–transporting ATP1B1 P05026 AT1B1_HUMAN 481 √ √ √ subunit beta 1 ATPase sarcoplasmic/endoplasmic ATP2A2 P16615 AT2A2_HUMAN 488 √ √ √ reticulum Ca2+ transporting 2 AZIN1 Antizyme inhibitor 1 O14977 AZIN1_HUMAN 51582 √ √ √ UDP-GlcNAc: betaGal B3GNT7 beta-1,3-N-acetylglucosaminyltransfe Q8NFL0 -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
RBM8A (Human) Recombinant Protein (P01)
RBM8A (Human) Recombinant predominantly in the nucleus, although it is also present Protein (P01) in the cytoplasm. It is preferentially associated with mRNAs produced by splicing, including both nuclear Catalog Number: H00009939-P01 mRNAs and newly exported cytoplasmic mRNAs. It is thought that the protein remains associated with spliced Regulation Status: For research use only (RUO) mRNAs as a tag to indicate where introns had been present, thus coupling pre- and post-mRNA splicing Product Description: Human RBM8A full-length ORF ( events. Previously, it was thought that two genes encode AAH17088, 1 a.a. - 174 a.a.) recombinant protein with this protein, RBM8A and RBM8B; it is now thought that GST-tag at N-terminal. the RBM8B locus is a pseudogene. Two alternative start codons result in two forms of the protein, and this gene Sequence: also uses multiple polyadenylation sites. [provided by MADVLDLHEAGGEDFAMDEDGDESIHKLKEKAKKRKG RefSeq] RGFGSEEGSRARMREDYDSVEQDGDEPGPQRSVEG WILSVTGVHEEATEEDIHDKFAEYGEIKNIHLNLDRRTG YLKGYTLVEYETYKEAQAAMEGLNGQDLMGQPISVD WCFVRGPPKGKRRGGRRRSRSPDRRRR Host: Wheat Germ (in vitro) Theoretical MW (kDa): 44.88 Applications: AP, Array, ELISA, WB-Re (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Preparation Method: in vitro wheat germ expression system Purification: Glutathione Sepharose 4 Fast Flow Storage Buffer: 50 mM Tris-HCI, 10 mM reduced Glutathione, pH=8.0 in the elution buffer. Storage Instruction: Store at -80°C. Aliquot to avoid repeated freezing and thawing. Entrez GeneID: 9939 Gene Symbol: RBM8A Gene Alias: BOV-1A, BOV-1B, BOV-1C, MDS014, RBM8, RBM8B, Y14, ZNRP, ZRNP1 Gene Summary: This gene encodes a protein with a conserved RNA-binding motif. -
The Exon Junction Complex Core Represses Caner-Specific Mature Mrna Re-Splicing: a Potential Key Role in Terminating Splicing
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438154; this version posted April 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Communication The Exon Junction Complex Core Represses Caner-specific Mature mRNA Re-splicing: A Potential Key Role in Terminating Splicing Yuta Otani1,2, Toshiki Kameyama1,3 and Akila Mayeda1,* 1 Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan 2 Laboratories of Discovery Research, Nippon Shinyaku Co., Ltd., Kyoto, Kyoto 601-8550, Japan 3 Present address: Department Physiology, Fujita Health University, School of Medicine, Toyoake, Aichi 470-1192, Japan * Correspondence: [email protected] (A.M.) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438154; this version posted April 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: Using the TSG101 pre-mRNA, we previously discovered cancer-specific re-splicing of mature mRNA that generates aberrant transcripts/proteins. The fact that mRNA is aberrantly re- spliced in various cancer cells implies there must be an important mechanism to prevent deleterious re-splicing on the spliced mRNA in normal cells. We thus postulated that the mRNA re-splicing is controlled by specific repressors and we searched for repressor candidates by siRNA-based screening for mRNA re-splicing activity. -
Human Lectins, Their Carbohydrate Affinities and Where to Find Them
biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body. -
A Upf3b-Mutant Mouse Model with Behavioral and Neurogenesis Defects
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Mol Psychiatry Manuscript Author . Author Manuscript Author manuscript; available in PMC 2018 September 27. Published in final edited form as: Mol Psychiatry. 2018 August ; 23(8): 1773–1786. doi:10.1038/mp.2017.173. A Upf3b-mutant mouse model with behavioral and neurogenesis defects L Huang1, EY Shum1, SH Jones1, C-H Lou1, J Dumdie1, H Kim1, AJ Roberts2, LA Jolly3,4, J Espinoza1, DM Skarbrevik1, MH Phan1, H Cook-Andersen1, NR Swerdlow5, J Gecz3,4, and MF Wilkinson1,6 1Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA 2Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, MB6, La Jolla, CA 92037, USA 3School Adelaide Medical School and Robison Research Institute, University of Adelaide, Adelaide, SA 5005, Australia 4South Australian Health and Medical Research Institute, Adelaide, SA, 5005, Australia 5Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, California, USA 6Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA Abstract Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum (ASD), attention deficit hyperactivity disorder (ADHD), and schizophrenia (SCZ). -
HHS Public Access Author Manuscript
HHS Public Access Author manuscript Author Manuscript Author ManuscriptGenet Epidemiol Author Manuscript. Author Author Manuscript manuscript; available in PMC 2016 June 01. Published in final edited form as: Genet Epidemiol. 2015 December ; 39(8): 664–677. doi:10.1002/gepi.21932. Multiple SNP-sets Analysis for Genome-wide Association Studies through Bayesian Latent Variable Selection Zhaohua Lu, Hongtu Zhu, Rebecca C Knickmeyer, Patrick F. Sullivan, Williams N. Stephanie, and Fei Zou for the Alzheimer’s Disease Neuroimaging Initiative* Departments of Biostatistics, Psychiatry, and Genetics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Abstract The power of genome-wide association studies (GWAS) for mapping complex traits with single SNP analysis may be undermined by modest SNP effect sizes, unobserved causal SNPs, correlation among adjacent SNPs, and SNP-SNP interactions. Alternative approaches for testing the association between a single SNP-set and individual phenotypes have been shown to be promising for improving the power of GWAS. We propose a Bayesian latent variable selection (BLVS) method to simultaneously model the joint association mapping between a large number of SNP-sets and complex traits. Compared to single SNP-set analysis, such joint association mapping not only accounts for the correlation among SNP-sets, but also is capable of detecting causal SNP- sets that are marginally uncorrelated with traits. The spike-slab prior assigned to the effects of SNP-sets can greatly reduce the dimension of effective SNP-sets, while speeding up computation. An efficient MCMC algorithm is developed. Simulations demonstrate that BLVS outperforms several competing variable selection methods in some important scenarios. -
UPF3A Rabbit Pab
Leader in Biomolecular Solutions for Life Science UPF3A Rabbit pAb Catalog No.: A15893 Basic Information Background Catalog No. This gene encodes a protein that is part of a post-splicing multiprotein complex involved A15893 in both mRNA nuclear export and mRNA surveillance. The encoded protein is one of two functional homologs to yeast Upf3p. mRNA surveillance detects exported mRNAs with Observed MW truncated open reading frames and initiates nonsense-mediated mRNA decay (NMD). 55kDa When translation ends upstream from the last exon-exon junction, this triggers NMD to degrade mRNAs containing premature stop codons. This protein binds to the mRNA and Calculated MW remains bound after nuclear export, acting as a nucleocytoplasmic shuttling protein. It 17kDa/51kDa/54kDa forms with Y14 a complex that binds specifically 20 nt upstream of exon-exon junctions. This gene is located on the long arm of chromosome 13. Two splice variants encoding Category different isoforms have been found for this gene. Primary antibody Applications WB,IF Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 65110 Q9H1J1 IF 1:50 - 1:200 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 327-476 of human UPF3A (NP_075387.1). Synonyms UPF3A;HUPF3A;RENT3A;UPF3 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of mouse testis, using UPF3A antibody (A15893) at 1:1000 dilution. -
ALS Mutations of FUS Suppress Protein Translation and Disrupt the Regulation of Nonsense-Mediated Decay
ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay Marisa Kamelgarna, Jing Chenb, Lisha Kuangb, Huan Jina, Edward J. Kasarskisa,c, and Haining Zhua,b,d,1 aDepartment of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536; bDepartment of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536; cDepartment of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536; and dLexington VA Medical Center, Research and Development, Lexington, KY 40502 Edited by Gregory A. Petsko, Weill Cornell Medical College, New York, NY, and approved October 22, 2018 (received for review June 16, 2018) Amyotrophic lateral sclerosis (ALS) is an incurable neurodegener- This study started with testing the hypothesis that the identi- ative disease characterized by preferential motor neuron death. fication of proteins associated with mutant FUS-dependent cy- Approximately 15% of ALS cases are familial, and mutations in the toplasmic granules is likely to provide critical insights into the fused in sarcoma (FUS) gene contribute to a subset of familial ALS toxic mechanism of mutant FUS. We developed a protocol to cases. FUS is a multifunctional protein participating in many RNA capture the dynamic mutant FUS-positive granules (3, 4) by metabolism pathways. ALS-linked mutations cause a liquid–liquid membrane filtration and identified protein components by pro- phase separation of FUS protein in vitro, inducing the formation of teomic approaches. The bioinformatics analysis of proteins cytoplasmic granules and inclusions. However, it remains elusive identified in wild-type (WT) and mutant FUS granules revealed what other proteins are sequestered into the inclusions and how multiple RNA metabolism pathways, among which protein such a process leads to neuronal dysfunction and degeneration. -
Quantitative Trait Loci Mapping of Macrophage Atherogenic Phenotypes
QUANTITATIVE TRAIT LOCI MAPPING OF MACROPHAGE ATHEROGENIC PHENOTYPES BRIAN RITCHEY Bachelor of Science Biochemistry John Carroll University May 2009 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY December 2017 We hereby approve this thesis/dissertation for Brian Ritchey Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for the Department of Chemistry and the CLEVELAND STATE UNIVERSITY College of Graduate Studies by ______________________________ Date: _________ Dissertation Chairperson, Johnathan D. Smith, PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, David J. Anderson, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Baochuan Guo, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Stanley L. Hazen, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Renliang Zhang, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Aimin Zhou, PhD Department of Chemistry, Cleveland State University Date of Defense: October 23, 2017 DEDICATION I dedicate this work to my entire family. In particular, my brother Greg Ritchey, and most especially my father Dr. Michael Ritchey, without whose support none of this work would be possible. I am forever grateful to you for your devotion to me and our family. You are an eternal inspiration that will fuel me for the remainder of my life. I am extraordinarily lucky to have grown up in the family I did, which I will never forget.