Hydrogen Release from Ammonia Borane

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogen Release from Ammonia Borane University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2010 Hydrogen Release From Ammonia Borane Daniel W. Himmelberger University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Inorganic Chemistry Commons, Oil, Gas, and Energy Commons, and the Sustainability Commons Recommended Citation Himmelberger, Daniel W., "Hydrogen Release From Ammonia Borane" (2010). Publicly Accessible Penn Dissertations. 158. https://repository.upenn.edu/edissertations/158 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/158 For more information, please contact [email protected]. Hydrogen Release From Ammonia Borane Abstract Development of a safe and efficient storage medium for hydrogen is integral to its use as an alternative energy source. The overall goal of the studies described in this dissertation was to investigate the use of a chemical hydride, ammonia borane (AB (19.6 wt% H2)), as a potentially efficient material for drhy ogen storage. The specific goals of this study were both to develop new efficient methods for increasing the rate and extent of H2-release from AB and to elucidate the important mechanistic pathways and intermediates in these reactions. Significant achievements that resulted from this work are that AB H2-release is activated in the presence of either ionic liquids or bases. For example, an AB H2-release reaction carried out at 110 °C in 50 wt% ionic liquid liberated over 2 equivalents H2 in 15 minutes. Reducing ionic liquid loading to 20 wt% at 110 oC yielded a higher materials weight percent (11.4 mat wt%), while still having fast release rates: 2 equivalents in ~2.5 hours. The addition of the strong nitrogen base 1,8-bis(dimethylamino)naphthalene, Proton Sponge™, to ionic liquid solutions of AB increased the AB H2release rate at 85 °C, with over 2 equivalents of H2 achieved within 3 h. Additional Proton Sponge increased the rate of release; however, the mat wt% of H2 decreased since the Proton Sponge added significant weight ot the system. Solid state and solution 11B NMR and DSC studies of reactions in progress allowed the identification of initial and final oductspr in the H2-release reactions and helped elucidate the overall reaction pathway. The initial formation of diammoniate of diborane, the key intermediate in dehydropolymerization of ammonia borane, was promoted by the addition of ionic liquids. Subsequent H2-release resulted in the formation of polyaminoborane then polyborazylene. Proton Sponge increased the release rate of the second equivalent of H2 by a newly proposed anionic polymerization mechanism. The final product was identified yb solid-state 11B NMR and proved to be a sp2-framework of polyborazylene which formed regardless of base additive or amount/type of ionic liquid. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Chemistry First Advisor Dr. Larry G. Sneddon Keywords ammonia borane, hydrogen, energy, fuel cell Subject Categories Inorganic Chemistry | Oil, Gas, and Energy | Sustainability This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/158 HYDROGEN RELEASE FROM AMMONIA BORANE Daniel W. Himmelberger A DISSERTATION in Chemistry Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2010 Supervisor of Dissertation _____________________ Professor Larry G. Sneddon, Blanchard Professor of Chemistry Graduate Group Chairperson _____________________ Professor Gary A. Molander, Hirschmann-Makineni Professor of Chemistry Dissertation Committee Professor Christopher B. Murray, Richard Perry University Professor of Chemistry Professor So-Jung Park, Assistant Professor of Chemistry Professor Bradford B. Wayland, Professor of Chemistry, Temple Univeristy ABSTRACT HYDROGEN RELEASE FROM AMMONIA BORANE Daniel W. Himmelberger Supervisor: Professor Larry G. Sneddon Development of a safe and efficient storage medium for hydrogen is integral to its use as an alternative energy source. The overall goal of the studies described in this dissertation was to investigate the use of a chemical hydride, ammonia borane (AB (19.6 wt% H 2)), as a potentially efficient material for hydrogen storage. The specific goals of this study were both to develop new efficient methods for increasing the rate and extent of H 2-release from AB and to elucidate the important mechanistic pathways and intermediates in these reactions. Significant achievements that resulted from this work are that AB H 2-release is activated in the presence of either ionic liquids or bases. For o example, an AB H 2-release reaction carried out at 110 C in 50 wt% ionic liquid liberated o over 2 equivalents H 2 in 15 minutes. Reducing ionic liquid loading to 20 wt% at 110 C yielded a higher materials weight percent (11.4 mat-wt%), while still having fast release rates: 2 equivalents in ~2.5 hours. The addition of the strong nitrogen base 1,8- bis(dimethylamino)naphthalene, Proton Sponge™, to ionic liquid solutions of AB increased the AB H 2-release rate at 85 °C, with over 2 equivalents of H 2 achieved within 3 h. Additional Proton Sponge increased the rate of release; however, the mat-wt% of H 2 decreased since the Proton Sponge added significant weight to the system. Solid state ii and solution 11 B NMR and DSC studies of reactions in progress allowed the identification of initial and final products in the H 2-release reactions and helped elucidate the overall reaction pathway. The initial formation of diammoniate of diborane, the key intermediate in dehydropolymerization of ammonia borane, was promoted by the addition of ionic liquids. Subsequent H 2-release resulted in the formation of polyaminoborane then polyborazylene. Proton Sponge increased the release rate of the second equivalent of H 2 by a newly proposed anionic polymerization mechanism. The final product was identified by solid-state 11 B NMR and proved to be a sp 2-framework of polyborazylene which formed regardless of base additive or amount/type of ionic liquid. iii Table of Contents Title Page i Abstract ii Table of Contents iv List of Tables ix List of Figures xi List of Equations xvi Chapter 1. The Hydrogen Economy: Benefits, Problems, and Possible Solutions Summary 1 1.1 We Use More than We Make! 2 1.2 Push for a Hydrogen Economy 4 1.2.1 Why Do We Need a Hydrogen Economy? 4 1.2.2 What are the Barriers to a Hydrogen Economy? 5 1.2.2.1 Hydrogen Production 6 1.2.2.2 Hydrogen Delivery 6 1.2.2.3 Hydrogen Storage 7 1.2.3 The Chemical Hydrogen Storage Center of Excellence 9 1.3 What is Ammonia Borane? 11 1.3.1 How to Release Hydrogen from Ammonia Borane? 17 1.3.1.1 Utilizing Hydrolysis to Release Hydrogen. 18 iv 1.3.1.2 The Better Hydrogen Release Method: Thermolysis. 18 1.3.2 Ammonia Borane Solid-State H 2-Release 19 1.3.3 Activated AB H 2-Release from AB 23 1.3.3.1 Mesoporous Scaffolds Aid in Solid-State H 2-Release 23 1.3.3.2 Acid Catalyzed Hydrogen Release Reactions 24 1.3.3.3 Using Transition-Metal Catalysis to Enhance 26 Release Rate and Extent. 1.3.3.3.1 Heterogeneous Transition-Metal Catalysts 26 1.3.3.3.2 Homogeneous Transition-Metal Catalysts 28 1.3.3.3.2.1 Iridium Pincer Catalyst 28 1.3.3.3.2.2 Nickel Carbene Catalyst 31 1.3.3.3.2.3 Titanocene Catalyst 35 1.3.3.3.2.4 Transition-Metal Catalysis in 37 Hydrolysis/Methanolysis 1.3.4 Large Scale Preparations of Ammonia Borane. 38 1.3.5 Recycling the AB Fuel Source. 39 1.3.6 Hybrid Materials Try to Bridge the Gap Between AB and 40 Metal Hydrides. 1.4 Conclusions 42 1.5 References 43 v Chapter 2. Ammonia Borane Hydrogen Release in Ionic Liquids Summary 51 2.1 Introduction 52 2.2 Experimental Section 53 2.2.1 Materials 53 2.2.2 Physical Measurements 53 2.2.2.1 H2-Release Measured On a Toepler Pump 53 2.2.2.2 H2-Release Measured On an Automated Gas Burette 54 2.2.2.3 Procedures for 11 B NMR Studies of Reaction 76 Products 2.3 Results and Discussion 77 2.3.1 Why Use Ionic Liquids? 77 2.3.2 Procedures for AB H 2-release reactions 80 2.3.3 Solid-State vs. Ionic Liquid H 2-Release 81 2.3.4 11 B NMR Characterization of Reaction Products and 93 Pathways 2.3.4.1 11 B NMR of Pyridine Extracts from Reaction 93 Products 2.3.4.2 Solid-State 11 B NMR Studies 96 2.3.4.3 In Situ 11 B NMR Studies in Ionic Liquids 96 2.3.6 Why do Ionic Liquids Accelerate AB H 2-release? What is the 103 Role of DADB? vi 2.3.7 H2-Release Reactions in Tetraglyme 108 2.4 Conclusions 111 2.5 References 112 Chapter 3. Base Promoted Ammonia Borane Hydrogen Release Summary 116 3.1 Introduction 117 3.2 Experimental Section 119 3.2.1 Materials 119 3.2.2 Physical Measurements 119 3.2.3 Procedures for AB H 2-Release Reactions 121 3.2.4 Computational Methods 122 3.3 Results and Discussion 126 3.3.1 H2-Release from AB/PS Solid-State Reactions 126 3.3.2 H2-Release from AB/PS Solution Reactions 132 3.3.2.1 Initial Reactions Measured with the Toepler Pump 132 3.3.2.2 H2-Release Reactions Measured with the Automated Gas Burette 136 3.3.3 11 B NMR Studies of Reaction Pathways and Intermediates 141 3.3.3.1 Solid-State 11 B NMR Studies 141 3.3.3.2 In Situ 11 B NMR Studies of Reaction Progress in 144 Ionic Liquids vii 3.3.4 Proton Sponge Reduces Foaming During AB Thermolysis 146 3.3.5 H2-Release in Other Ionic Liquids and Tetraglyme 147 3.3.6 Why Does Proton Sponge Induce H 2-Release from AB? 151 3.4 Conclusions 158 3.5 References 159 viii List of Tables Chapter 2 Table
Recommended publications
  • Densifying Metal Hydrides with High Temperature and Pressure
    3,784,682 United States Patent Office Patented Jan. 8, 1974 feet the true density. That is, by this method only theo- 3,784,682 retical or near theoretical densities can be obtained by DENSIFYING METAL HYDRIDES WITH HIGH making the material quite free from porosity (p. 354). TEMPERATURE AND PRESSURE The true density remains the same. Leonard M. NiebylsM, Birmingham, Mich., assignor to Ethyl Corporation, Richmond, Va. SUMMARY OF THE INVENTION No Drawing. Continuation-in-part of abandoned applica- tion Ser. No. 392,370, Aug. 24, 1964. This application The process of this invention provides a practical Apr. 9,1968, Ser. No. 721,135 method of increasing the true density of hydrides of Int. CI. COlb 6/00, 6/06 metals of Groups II-A, II-B, III-A and III-B of the U.S. CI. 423—645 8 Claims Periodic Table. More specifically, true densities of said 10 metal hydrides may be substantially increased by subject- ing a hydride to superatmospheric pressures at or above ABSTRACT OF THE DISCLOSURE fusion temperatures. When beryllium hydride is subjected A method of increasing the density of a hydride of a to this process, a material having a density of at least metal of Groups II-A, II-B, III-A and III-B of the 0.69 g./cc. is obtained. It may or may not be crystalline. Periodic Table which comprises subjecting a hydride to 15 a pressure of from about 50,000 p.s.i. to about 900,000 DESCRIPTION OF THE PREFERRED p.s.i. at or above the fusion temperature of the hydride; EMBODIMENT i.e., between about 65° C.
    [Show full text]
  • Phosphine and Ammonia Photochemistry in Jupiter's
    40th Lunar and Planetary Science Conference (2009) 1201.pdf PHOSPHINE AND AMMONIA PHOTOCHEMISTRY IN JUPITER’S TROPOSPHERE. C. Visscher1, A. D. Sperier2, J. I. Moses1, and T.C. Keane3. 1Lunar and Planetary Institute, USRA, 3600 Bay Area Blvd., Houston, TX 77058-1113 2Baylor University, Waco, TX 76798, 3Department of Chemistry and Physics, The Sage Colleges, Troy, NY 12180, ([email protected], [email protected]) Introduction: The last comprehensive photo- tions involving the amino radical (NH2) play a larger chemical model for Jupiter’s troposphere was pre- role. We note that this is the first photochemical sented by Edgington et al. [1,2], based upon the work model to include P2H as an intermediate species in PH3 of Atreya et al. [3] and Kaye and Strobel [4-6]. Since photolysis. The equivalent N2Hx species are believed these early studies, numerous laboratory experiments to be important in the combustion chemistry of nitro- have led to an improvement in our understanding of gen compounds [15]. PH3, NH3-PH3, and NH3-C2H2 photochemistry [7-13]. Furthermore, recent Galileo, Cassini, and Earth-based observations have better defined the abundance of key atmospheric constituents as a function of altitude and latitude in Jupiter’s troposphere. These new results provide an opportunity to test and improve theoretical models of Jovian atmospheric chemistry. We have therefore developed a photochemical model for Jupi- ter’s troposphere considering the updated experimental and observational constraints. Using the Caltech/JPL KINETICS code [14] for our photochemical models, our basic approach is two- fold. The validity of our selected chemical reaction list is first tested by simulating the laboratory experiments of PH3, NH3-PH3, and NH3-C2H2 photolysis with pho- tochemical “box” models.
    [Show full text]
  • Thermodynamic Hydricity of Small Borane Clusters and Polyhedral Closo-Boranes
    molecules Article Thermodynamic Hydricity of Small Borane Clusters y and Polyhedral closo-Boranes Igor E. Golub 1,* , Oleg A. Filippov 1 , Vasilisa A. Kulikova 1,2, Natalia V. Belkova 1 , Lina M. Epstein 1 and Elena S. Shubina 1,* 1 A. N. Nesmeyanov Institute of Organoelement Compounds and Russian Academy of Sciences (INEOS RAS), 28 Vavilova St, 119991 Moscow, Russia; [email protected] (O.A.F.); [email protected] (V.A.K.); [email protected] (N.V.B.); [email protected] (L.M.E.) 2 Faculty of Chemistry, M.V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, 119991 Moscow, Russia * Correspondence: [email protected] (I.E.G.); [email protected] (E.S.S.) Dedicated to Professor Bohumil Štibr (1940-2020), who unfortunately passed away before he could reach the y age of 80, in the recognition of his outstanding contributions to boron chemistry. Academic Editors: Igor B. Sivaev, Narayan S. Hosmane and Bohumír Gr˝uner Received: 6 June 2020; Accepted: 23 June 2020; Published: 25 June 2020 MeCN Abstract: Thermodynamic hydricity (HDA ) determined as Gibbs free energy (DG◦[H]−) of the H− detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up 2 to 5 boron atoms), polyhedral closo-boranes dianions [BnHn] −, and their lithium salts Li2[BnHn] (n = 5–17) by DFT method [M06/6-311++G(d,p)] taking into account non-specific solvent effect (SMD MeCN model). Thermodynamic hydricity values of diborane B2H6 (HDA = 82.1 kcal/mol) and its 2 MeCN dianion [B2H6] − (HDA = 40.9 kcal/mol for Li2[B2H6]) can be selected as border points for the range of borane clusters’ reactivity.
    [Show full text]
  • Herbert Charles Brown, a Biographical Memoir
    NATIONAL ACADEMY OF SCIENCES H E R B E R T Ch ARLES BROWN 1 9 1 2 — 2 0 0 4 A Biographical Memoir by E I-I CH I N EGIS HI Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph Credit Here. HERBERT CHARLES BROWN May 22, 1912–December 19, 2004 BY EI -ICH I NEGISHI ERBERT CHARLES BROWN, R. B. Wetherill Research Profes- Hsor Emeritus of Purdue University and one of the truly pioneering giants in the field of organic-organometallic chemistry, died of a heart attack on December 19, 2004, at age 92. As it so happened, this author visited him at his home to discuss with him an urgent chemistry-related matter only about 10 hours before his death. For his age he appeared well, showing no sign of his sudden death the next morn- ing. His wife, Sarah Baylen Brown, 89, followed him on May 29, 2005. They were survived by their only child, Charles A. Brown of Hitachi Ltd. and his family. H. C. Brown shared the Nobel Prize in Chemistry in 1979 with G. Wittig of Heidelberg, Germany. Their pioneering explorations of boron chemistry and phosphorus chemistry, respectively, were recognized. Aside from several biochemists, including V. du Vigneaud in 1955, H. C. Brown was only the second American organic chemist to win a Nobel Prize behind R. B. Woodward, in 1965. His several most significant contribu- tions in the area of boron chemistry include (1) codiscovery of sodium borohyride (1972[1], pp.
    [Show full text]
  • Ammonia As a Refrigerant
    1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on Ammonia as a Refrigerant Approved by ASHRAE Board of Directors February 1, 2017 Expires February 1, 2020 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on “Ammonia as a Refrigerant” was developed by the Society’s Refrigeration Committee. Position Document Committee formed on January 8, 2016 with Dave Rule as its chair. Dave Rule, Chair Georgi Kazachki IIAR Dayton Phoenix Group Alexandria, VA, USA Dayton, OH, USA Ray Cole Richard Royal Axiom Engineers, Inc. Walmart Monterey, CA, USA Bentonville, Arkansas, USA Dan Dettmers Greg Scrivener IRC, University of Wisconsin Cold Dynamics Madison, WI, USA Meadow Lake, SK, Canada Derek Hamilton Azane Inc. San Francisco, CA, USA Other contributors: M. Kent Anderson Caleb Nelson Consultant Azane, Inc. Bethesda, MD, USA Missoula, MT, USA Cognizant Committees The chairperson of Refrigerant Committee also served as ex-officio members: Karim Amrane REF Committee AHRI Bethesda, MD, USA i © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL
    [Show full text]
  • Safer Cocktail for an Ethanol/Water/Ammonia Solvent
    L A S C P LSC in Practice C P O C L Safer Cocktail for an Ethanol/Water/ K T I A I C Ammonia Solvent Mixture L S A Problem T A laboratory had been under pressure to move towards Using this mixture, the sample uptake capacity of I the newer generation of safer liquid scintillation ULTIMA-Flo AP, ULTIMA-Flo M and ULTIMA Gold O cocktails. Unfortunately, the sample composition of LLT (PerkinElmer 6013599, 6013579 and 6013377, one of their targets kept giving the researchers problems. respectively) at 20 °C was determined and N Before the lead researcher contacted PerkinElmer, the results were: they had tried PerkinElmer’s Opti-Fluor®, ULTIMA ULTIMA-Flo AP 4.00 mL in 10 mL cocktail N Gold LLT, and ULTIMA Gold XR. All of the safer O ™ ULTIMA-Flo M 4.25 mL in 10 mL cocktail cocktails could incorporate each of the constituents T as indicated by their sample capacity graphs. ULTIMA Gold LLT 4.25 mL in 10 mL cocktail E The problematic sample was an extraction solvent From these results, we observed that it was possible consisting of 900 mL ethanol, 50 mL ammonium to get 4.0 mL of the sample into all of these cocktails. hydroxide, 500 mL water and an enzyme containing In addition, we determined that it was not possible to 14C. The mixture had a pH in the range of 10 to 11. get 4 mL sample into 7 mL of any of these cocktails. To complete this work, we also checked for lumines- Discussion cence using 4 mL of sample in 10 mL of each cocktail.
    [Show full text]
  • Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents
    ACS Symposium Series 885, Activation and Functionalization of C-H Bonds, Karen I. Goldberg and Alan S. Goldman, eds. 2004. CHAP TER 8 Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents John F. Hartwig Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107 Work in the author’s group that has led to a regioselective catalytic borylation of alkanes at the terminal position is summarized. Early findings on the photochemical, stoichiometric functionalization of arenes and alkanes and the successful extension of this work to a catalytic functionalization of alkanes under photochemical conditions is presented first. The discovery of complexes that catalyze the functionalization of alkanes to terminal alkylboronate esters is then presented, along with mechanistic studies on these system and computational work on the stoichiometric reactions of isolated metal-boryl compounds with alkanes. Parallel results on the development of catalysts and a mechanistic understanding of the borylation of arenes under mild conditions to form arylboronate esters are also presented. © 2004 American Chemical Society 136 137 1. Introduction Although alkanes are considered among the least reactive organic molecules, alkanes do react with simple elemental reagents such as halogens and oxygen.1,2) Thus, the conversion of alkanes to functionalized molecules at low temperatures with control of selectivity and at low temperatures is a focus for development of catalytic processes.(3) In particular the conversion of an alkane to a product with a functional group at the terminal position has been a longstanding goal (eq. 1). Terminal alcohols such as n-butanol and terminal amines, such as hexamethylene diamine, are major commodity chemicals(4) that are produced from reactants several steps downstream from alkane feedstocks.
    [Show full text]
  • Boranes in Organic Chemistry 2. Β-Aminoalkyl- and Β-Sulfanylalkylboranes in Organic Synthesis V.M
    Eurasian ChemTech Journal 4 (2002) 153-167 Boranes in Organic Chemistry 2. β-Aminoalkyl- and β-sulfanylalkylboranes in organic synthesis V.M. Dembitsky1, G.A. Tolstikov2*, M. Srebnik1 1Department of Pharmaceutical Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel 2Novosibirsk Institute of Organic Chemistry SB RAS, 9, Lavrentieva Ave., Novosibirsk, 630090, Russia Abstract Problems on using of β-aminoalkyl- and β-sulfanylalkylboranes in organic synthesis are considered in this review. The synthesis of boron containing α-aminoacids by Curtius rearrangement draws attention. The use of β-aminoalkylboranes available by enamine hydroboration are described. Examples of enamine desamination with the formation of alkenes, aminoalcohols and their transfor- mations into allylic alcohol are presented. These conversions have been carried out on steroids and nitro- gen containing heterocyclic compounds. The dihydroboration of N-vinyl-carbamate and N-vinyl-urea have been described. Examples using nitrogen and oxygen containing boron derivatives for introduction of boron functions were presented. The route to borylhydrazones by hydroboration of enehydrazones was envisaged. The possibility of trialkylamine hydroboration was shown on indole alkaloids and 11-azatricyclo- [6.2.11,802,7]2,4,6,9-undecatetraene examples. The synthesis of β-sulfanyl-alkylboranes by various routes was described. The synthesis of boronic thioaminoacids was carried out by free radical thiilation of dialkyl-vinyl- boronates. Ethoxyacetylene has been shown smoothly added 1-ethylthioboracyclopentane. Derivatives of 1,4-thiaborinane were readily obtained by divinylboronate hydroboration. Dialkylvinylboronates react with mercaptoethanol with the formation of 1,5,2-oxathioborepane derivatives. Stereochemistry of thiavinyl esters hydroboration leading to stereoisomeric β-sulfanylalkylboranes are discussed.
    [Show full text]
  • Electroless Nickel, Alloy, Composite and Nano Coatings - a Critical Review
    Electroless nickel, alloy, composite and nano coatings - A critical review Sudagar, J., Lian, J., & Sha, W. (2013). Electroless nickel, alloy, composite and nano coatings - A critical review. Journal of Alloys and Compounds, 571, 183–204. https://doi.org/10.1016/j.jallcom.2013.03.107 Published in: Journal of Alloys and Compounds Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2013 Elsevier. This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 ELECTROLESS NICKEL, ALLOY, COMPOSITE AND NANO COATINGS - A CRITICAL REVIEW Jothi Sudagar Department of Metallurgical and Materials Engineering, Indian Institute of Technology- Madras (IIT-M), Chennai - 600 036, India Jianshe Lian College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
    [Show full text]
  • Catalysis and Chemical Engineering February 19-21, 2018
    Scientific UNITED Group 2nd International Conference on Catalysis and Chemical Engineering February 19-21, 2018 Venue Paris Marriott Charles de Gaulle Airport Hotel 5 Allee du Verger, Zone Hoteliere Roissy en France, 95700 France Exhibitors Supporting Sponsor Publishing Partner Supporter Index Keynote Presentations .......06 - 13 Speaker Presentations .......14 - 100 Poster Presentations .......102 - 123 About Organizer .......124 - 125 Key Concepts → Catalytic Materials & Mechanisms → Catalysis for Chemical Synthesis → Catalysis and Energy → Nanocatalysis → Material Sciences → Electrocatalysis → Environmental Catalysis → Chemical Kinetics → Reaction Engineering → Surface and Colloidal Phenomena → Enzymes and Biocatalysts → Photocatalysis → Nanochemistry → Polymer Engineering → Fluid Dynamics & its Phenomena → Simulation & Modeling → Catalysis for Renewable Sources → Organometallics Chemistry → Catalysis and Zeolites → Catalysis in Industry → Catalysis and Pyrolysis February 19 1Monday Keynote Presentations The Development of Phosphorus- and Carbon-Based Photocatalysts Jimmy C Yu The Chinese University of Hong Kong, Hong Kong Abstract This presentation describes the recent progress in the design and fabrication of phosphorus- and carbon-based photocatalysts. Phosphorus is one of the most abundant elements on earth. My research group discovered in 2012 that elemental red phosphorus could be used for the generation of hydrogen from photocatalytic water splitting. Subsequent studies show that the activity of red-P can be greatly improved by structural modification. Among the phosphorus compounds, the most stable form is phosphate. Its photocatalytic property was reported decades ago. Phosphides have also attracted attention as they can replace platinum as an effective co-catalyst. In terms of environmental friendliness, carbon is even more attractive than phosphorus. In 2017, we found that carbohydrates in biomass can be converted to semi conductive hydrothermal carbonation carbon (HTCC).
    [Show full text]
  • Boron-Based (Nano-)Materials: Fundamentals and Applications
    crystals Editorial Boron-Based (Nano-)Materials: Fundamentals and Applications Umit B. Demirci 1,*, Philippe Miele 1 and Pascal G. Yot 2 1 Institut Européen des Membranes (IEM), UMR 5635, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, CC047, F-34095 Montpellier, France; [email protected] 2 Institut Charles Gerhardt Montpellier (ICGM), UMR 5253 (UM-CNRS-ENSCM), Université de Montpellier, CC 15005, Place Eugène Bataillon, 34095 Montpellier cedex 05, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)4-6714-9160 Academic Editor: Helmut Cölfen Received: 6 September 2016; Accepted: 13 September 2016; Published: 19 September 2016 Abstract: The boron (Z = 5) element is unique. Boron-based (nano-)materials are equally unique. Accordingly, the present special issue is dedicated to crystalline boron-based (nano-)materials and gathers a series of nine review and research articles dealing with different boron-based compounds. Boranes, borohydrides, polyhedral boranes and carboranes, boronate anions/ligands, boron nitride (hexagonal structure), and elemental boron are considered. Importantly, large sections are dedicated to fundamentals, with a special focus on crystal structures. The application potentials are widely discussed on the basis of the materials’ physical and chemical properties. It stands out that crystalline boron-based (nano-)materials have many technological opportunities in fields such as energy storage, gas sorption (depollution), medicine, and optical and electronic devices. The present special issue is further evidence of the wealth of boron science, especially in terms of crystalline (nano-)materials. Keywords: benzoxaboronate; borane; borohydride; boron-based material; boron-treat steel; boron nitride; boronate; carborane; metallacarborane; polyborate 1. Introduction Boron (Z = 5) is one of the lightest elements of the periodic table, coming just before carbon (Z = 6).
    [Show full text]
  • Efficient Synthesis of Alkali Borohydrides From
    metals Article Efficient Synthesis of Alkali Borohydrides from Mechanochemical Reduction of Borates Using Magnesium–Aluminum-Based Waste Thi Thu Le 1, Claudio Pistidda 1,* , Julián Puszkiel 1,2 , Chiara Milanese 3 , Sebastiano Garroni 4 , Thomas Emmler 1, Giovanni Capurso 1 , Gökhan Gizer 1 , Thomas Klassen 1,5 and Martin Dornheim 1 1 Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Strasse 1, Geesthacht D-21502, Schleswig-Holstein, Germany; [email protected] (T.T.L.); [email protected] (J.P.); [email protected] (T.E.); [email protected] (G.C.); [email protected] (G.G.); [email protected] (T.K.); [email protected] (M.D.) 2 Department of Physical chemistry of Materials, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche, Av. Bustillo km 9500 S.C. de Beriloche, Argentina 3 Pavia H2 Lab, C.S.G.I. & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; [email protected] 4 Department of Chemistry and Pharmacy and INSTM, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; [email protected] 5 Helmut Schmidt University, University of the Federal Armed Forces Hamburg, D-22043 Hamburg, Germany * Correspondence: [email protected]; Tel.: +49-4152-87-2644 Received: 23 August 2019; Accepted: 24 September 2019; Published: 29 September 2019 Abstract: Lithium borohydride (LiBH4) and sodium borohydride (NaBH4) were synthesized via mechanical milling of LiBO2, and NaBO2 with Mg–Al-based waste under controlled gaseous atmosphere conditions. Following this approach, the results herein presented indicate that LiBH4 and NaBH4 can be formed with a high conversion yield starting from the anhydrous borates under 70 bar H .
    [Show full text]