Getting Started In

Total Page:16

File Type:pdf, Size:1020Kb

Getting Started In [SOUTHERN HEMISPHERE VERSION] GETTING STARTEDASTRONOMY IN AN EASY GUIDE TO EXPLORING THE UNIVERSE INCLUDES A MOON MAP AND STAR CHARTS FROM THE EDITORS OF ® SkyandTelescope.com Your First Steps Southern Hemisphere Version ® in Astronomy SkyandTelescope.com Astronomy doesn’t deserve DID YOU KNOW THAT YOU can see a galaxy way around the sky. They also give you a 1 2 ⁄2 million light-years away with your view that’s right side up and straight in unaided eye? Or that you can see craters front of you, making it easy to see where its reputation as a tough, on the Moon with ordinary binoculars? you’re pointing. Binoculars are fairly inex- These and countless other wonders await pensive, widely available, and easy to carry expensive hobby to get your gaze every clear night. The first step and store. They’re also versatile; you can is simply to look up and ask, “What’s switch from terrestrial to celestial viewing into. You just need that?” And when you do, you’ll take the in an instant. And their performance is first step toward a lifetime of cosmic surprisingly respectable. Ordinary 7- to 10- to begin with the right exploration and enjoyment. What’s the power binoculars improve on the unaided best way to get started on this exciting eye about as much as a good amateur tele- advice. adventure? scope improves on binoculars — and at a far lower cost. For astronomy, the larger Read It and Reap the front lenses are, the better. High optical When It’s Time for a Telescope, The joy of astronomy comes from finding quality is important too. But any binocu- Plunge in Deep your way around the starry sky and lars already knocking around the back of Eventually you’ll be ready for your first tele- understanding what you see. A great place your closet are enough to launch your scope. This is no time to skimp on quality. to start is your local library or bookstore. amateur-astronomy career. The telescope you want has two essentials. Browse the astronomy shelf for beginner’s One is high-quality, “diffraction-limited” guides that will teach you about the Use Maps and Guidebooks optics. The other is a solid, steady, smooth- Moon, planets, and constellations. Check Once you’ve learned your way around the ly working mount. You may also want large the magazine rack for Sky & Telescope, the night sky, binoculars can keep you busy aperture (size), but don’t lose sight of port- hobby’s essential monthly magazine. It for years. With good maps and reference ability and convenience. Remember, the offers practical tips for observers as well as books, you can identify dozens of the best telescope for you is the one you’ll actu- articles on many fascinating astronomical Moon’s craters, plains, and mountains. ally use. topics. Binoculars will show you the ever-chang- Many telescopes have built-in comput- Another great resource is the World ing positions of Jupiter’s moons and the ers and motors that will point them to any Wide Web. Start at Sky & Telescope’s site, crescent phases of Venus. They’ll also of thousands of celestial objects at the SkyandTelescope.com, or you can use any reveal most of the 109 “M objects,” the star push of a few buttons. These are a lot of search utility to look up topics such as clusters, galaxies, and nebulae cataloged by fun to use and can help you locate sights “amateur astronomy” or “stargazing.” 18th-century astronomer Charles Messier. you might otherwise overlook. But it’s still Binoculars will let you split scores of col- helpful to know your way around the sky Let the Stars Get in Your Eyes orful double stars and allow you to follow — especially if your batteries run out! Go out on any clear, dark night and famil- the fadings and brightenings of numerous It’s true that telescopes can cost many iarize yourself with the star patterns over- variable stars. All this and more is possible thousands of dollars, but it’s also true that head, using the constellation maps on the — but only if you know where to look and some good ones can be had for only a few following pages. what to look for. Moreover, the skills you’ll hundred dollars. Can’t afford the scope If you live in a brightly lit city or town, develop using maps and guidebooks with you want? Save up until you can. Another find a place where there’s less light pollu- binoculars are exactly the skills you’ll need year of using binoculars while building a tion (or at least a spot free from the glare to put a telescope to good use. savings account will be time you’ll never of nearby lights) so you can see more regret. stars. The ability to look up and say, Seek Out Other Amateurs “There’s Alpha Centauri!” or “That’s There’s nothing like sharing an interest with Relax and Have Fun Saturn!” will provide pleasure — and a others. There are hundreds of astronomy Don’t get upset if you can’t find a particu- sense of your place in the cosmos — for clubs worldwide; Sky & Telescope’s Web site lar object or because the view in your tele- the rest of your life. includes a directory of them. Call a club scope is less than perfect. Learn to take near you to find out when it holds meetings pleasure in whatever your eyes, binoculars, Start with Binoculars or all-night observing sessions called “star or telescope can show you. The more you Binoculars are an ideal “first telescope” parties.” These events offer a wonderful look, the more you’ll see. Set your own for several reasons. They show you a wide opportunity to try out different telescopes, pace, and revel in the beauty and mystery field of view, making it easy to find your learn new skills, and make friends. of our amazing universe! 2003 Sky Publishing Corp. Finding Your Way Southern Hemisphere Version ® Among the Stars SkyandTelescope.com and the LMC is to the right and a little high- Looking Deeper Here’s how to use our bimonthly er — just the way they look in the southern Take the maps out often, and try to learn a and southwestern sky. Nearly overhead, as new constellation each night. You are estab- star charts to identify your you crane your neck up, are the bright stars lishing the landmarks you’ll need for find- evening stars and constellations. Alpha (α) and Beta (β) Centauri, with the ing your way when you start using binocu- little constellation Crux — the Southern lars or a telescope. CAN YOU SPOT THE SOUTHERN CROSS? Orion? Cross — to their right. Once you know at least some constella- The Large Magellanic Cloud? Your explo- tions fairly well, you can start exploring the ration of the universe begins with learning Tips for Success sky a lot more deeply with optical aid. For the stars in your evening sky. But different Find a dark viewing site and bring a dim this you’ll need larger star charts that show constellations are visible at different times of flashlight to read the map by. It’s best to use more close-up detail. year and hours of the night, depending on red light, which helps preserve your night The maps here show stars as faint as your latitude and which way the night side vision. magnitude 4.5. This is about as faint as you of our planet is facing. When you start out, look only for the can see with the naked eye through subur- The accompanying charts will help you brightest stars on the map, those depicted ban light pollution. Also plotted are some get oriented. They’re designed for skywatch- with the biggest dots. Mentally blank out the interesting objects for binoculars or small ers in midsouthern latitudes such as Aus- fainter ones if you are in a city or suburb (or telescopes: star clusters, nebulae, and galax- tralia, southern Africa, and parts of South in bright moonlight); they will be invisible or ies. When hunting for these faint sights America. Each represents the entire sky at nearly so through the “light pollution.” But you’ll have an easier time if you use larger the dates and times printed on it. Find a wherever you are, remember that there is a charts that show stars to at least as faint as chart appropriate for your date, and go out much bigger difference between bright and magnitude 6. (Higher magnitude numbers within an hour or so of the time listed. faint stars in the sky than is suggested on the mean fainter stars.) chart. People who get serious about using a tel- How the Charts Work Remember that the chart is a very escope will want even more detailed sky The round edge of each chart represents your reduced representation of the real sky. To charts — ones that show stars as faint as horizon, with compass directions labeled. see how reduced, hold your hand at arm’s magnitude 8 or so. Sky Atlas 2000.0 by Wil Turn the map around so the edge marked length with your fingers fully spread as Tirion and Roger W. Sinnott is the set most with the direction you’re facing (north, east, wide as you can. One of these “hand spans” widely used. The latest edition shows 81,000 or whatever) is right-side up. The stars above from thumbtip to little fingertip is about stars to magnitude 8.5 and 2,700 galaxies, this horizon on the map will now match the the separation between the LMC and SMC.
Recommended publications
  • Dorado & Bedout Sub-Basin Update
    Dorado & Bedout Sub-basin update 1 December 2020 Carnarvon Petroleum Limited (“Carnarvon” or “the Company”) is pleased to advise that its partner in the Dorado field development and Bedout sub-basin exploration permits has today provided the ASX with an update on the project. The material is available on the Santos website as part of their Investor Day presentation. The Dorado field is an important development in the Australia energy landscape with exciting upside potential in the surrounding exploration acreage that Carnarvon holds an interest in. At Carnarvon’s recent Annual General Meeting the Company made a number of key points on this project which have been reiterated by its partner today. These highlights include: • The Bedout sub-basin is a highly prospective, liquids rich region with very large volume potential; • A substantial amount of work is being undertaken in advancing the Dorado field development; • The initial Dorado liquids development is expected to deliver low cost production from late 2025; • A phased and disciplined development is planned to ensure optimised FPSO and infrastructure design is capable of realising the value potential from the discovered Dorado resource and importantly a number of nearby exploration targets; and • The material Pavo and Apus prospects, which are capable of being tied back to Dorado, are being advanced for drilling to commence in late 2021. Carnarvon holds interests in four exploration permits covering a substantial portion of the Bedout sub-basin. These interests include 20% in WA-435-P
    [Show full text]
  • NGC 1333 Plunkett Et
    Outflows in protostellar clusters: a multi-wavelength, multi-scale view Adele L. Plunkett1, H. G. Arce1, S. A. Corder2, M. M. Dunham1, D. Mardones3 1-Yale University; 2-ALMA; 3-Universidad de Chile Interferometer and Single Dish Overview Combination FCRAO-only v=-2 to 6 km/s FCRAO-only v=10 to 17 km/s K km s While protostellar outflows are generally understood as necessary components of isolated star formation, further observations are -1 needed to constrain parameters of outflows particularly within protostellar clusters. In protostellar clusters where most stars form, outflows impact the cluster environment by injecting momentum and energy into the cloud, dispersing the surrounding gas and feeding turbulent motions. Here we present several studies of very dense, active regions within low- to intermediate-mass Why: protostellar clusters. Our observations include interferometer (i.e. CARMA) and single dish (e.g. FCRAO, IRAM 30m, APEX) To recover flux over a range of spatial scales in the region observations, probing scales over several orders of magnitude. How: Based on these observations, we calculate the masses and kinematics of outflows in these regions, and provide constraints for Jy beam km s Joint deconvolution method (Stanimirovic 2002), CARMA-only v=-2 to 6 km/s CARMA-only v=10 to 17 km/s models of clustered star formation. These results are presented for NGC 1333 by Plunkett et al. (2013, ApJ accepted), and -1 comparisons among star-forming regions at different evolutionary stages are forthcoming. using the analysis package MIRIAD. -1 1212COCO Example: We mapped NGC 1333 using CARMA with a resolution of ~5’’ (or 0.006 pc, 1000 AU) in order to Our study focuses on Class 0 & I outflow-driving protostars found in clusters, and we seek to detect outflows and associate them with their driving sources.
    [Show full text]
  • Instruction Manual
    1 Contents 1. Constellation Watch Cosmo Sign.................................................. 4 2. Constellation Display of Entire Sky at 35° North Latitude ........ 5 3. Features ........................................................................................... 6 4. Setting the Time and Constellation Dial....................................... 8 5. Concerning the Constellation Dial Display ................................ 11 6. Abbreviations of Constellations and their Full Spellings.......... 12 7. Nebulae and Star Clusters on the Constellation Dial in Light Green.... 15 8. Diagram of the Constellation Dial............................................... 16 9. Precautions .................................................................................... 18 10. Specifications................................................................................. 24 3 1. Constellation Watch Cosmo Sign 2. Constellation Display of Entire Sky at 35° The Constellation Watch Cosmo Sign is a precisely designed analog quartz watch that North Latitude displays not only the current time but also the correct positions of the constellations as Right ascension scale Ecliptic Celestial equator they move across the celestial sphere. The Cosmo Sign Constellation Watch gives the Date scale -18° horizontal D azimuth and altitude of the major fixed stars, nebulae and star clusters, displays local i c r e o Constellation dial setting c n t s ( sidereal time, stellar spectral type, pole star hour angle, the hours for astronomical i o N t e n o l l r f
    [Show full text]
  • Apus Constellation Visible at Latitudes Between +5° and -90°
    Apus Constellation Visible at latitudes between +5° and -90°. Best visible at 21:00 (9 p.m.) during the month of July. Apus is a small constellation in the southern sky. It represents a bird-of-paradise, and its name means "without feet" in Greek because the bird-of-paradise was once wrongly believed to lack feet. First depicted on a celestial globe by Petrus Plancius in 1598, it was charted on a star atlas by Johann Bayer in his 1603 Uranometria. The French explorer and astronomer Nicolas Louis de Lacaille charted and gave the brighter stars their Bayer designations in 1756. The five brightest stars are all reddish in hue. Shading the others at apparent magnitude 3.8 is Alpha Apodis, an orange giant that has around 48 times the diameter and 928 times the luminosity of the Sun. Marginally fainter is Gamma Apodis, another ageing giant star. Delta Apodis is a double star, the two components of which are 103 arcseconds apart and visible with the naked eye. Two star systems have been found to have planets. Apus was one of twelve constellations published by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman who had sailed on the first Dutch trading expedition, known as the Eerste Schipvaart, to the East Indies. It first appeared on a 35-cm diameter celestial globe published in 1598 in Amsterdam by Plancius with Jodocus Hondius. De Houtman included it in his southern star catalogue in 1603 under the Dutch name De Paradijs Voghel, "The Bird of Paradise", and Plancius called the constellation Paradysvogel Apis Indica; the first word is Dutch for "bird of paradise".
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Color Chap 2.Cdr
    Chapter 2 - Location and coordinates Updated 10 July 2006 -4 -3 -2 -1 0 +1 +2 +3 +4 Figure 2.1 A simple number line acts as a one-dimensional coordinate system. Each number describes the distance of a particular point-location from the origin, or zero. The unit of measure for the distance is arbitrary. 10 9 8 (4.5,7.5) 7 6 s i x a (3,5) - 5 y 4 3 (6,3) 2 1 0 0 1 2 3 4 5 6 7 8 9 10 x - axis Figure 2.2 Here is a simple x-y coordinate system with the coordinates of a few points shown as examples. Coordinates are given as an ordered pair of numbers, with the x-coordinate first. The origin is the lower left, at (0,0). The reference lines are the x and y axes. All grid lines are drawn parallel to the two reference lines. The purpose of the grid is to make it easier to make distance measurements between a location-point and the reference lines. 5 4 3 (2,3) 2 s 1 i x a (-2,0) - 0 y -1 -2 (1,-2) -3 -4 -5 -5 -4 -3 -2 -1 0 1 2 3 4 5 x - axis Figure 2.3 A more general coordinate grid places the origin (0,0) at the center of the grid. The coordinates may have either positive or negative values. The sign merely indicates whether the point is left or right (x), or above or below (y) the axis.
    [Show full text]
  • The Lore of the Stars, for Amateur Campfire Sages
    obscure. Various claims have been made about Babylonian innovations and the similarity between the Greek zodiac and the stories, dating from the third millennium BCE, of Gilgamesh, a legendary Sumerian hero who encountered animals and characters similar to those of the zodiac. Some of the Babylonian constellations may have been popularized in the Greek world through the conquest of The Lore of the Stars, Alexander in the fourth century BCE. Alexander himself sent captured Babylonian texts back For Amateur Campfire Sages to Greece for his tutor Aristotle to interpret. Even earlier than this, Babylonian astronomy by Anders Hove would have been familiar to the Persians, who July 2002 occupied Greece several centuries before Alexander’s day. Although we may properly credit the Greeks with completing the Babylonian work, it is clear that the Babylonians did develop some of the symbols and constellations later adopted by the Greeks for their zodiac. Contrary to the story of the star-counter in Le Petit Prince, there aren’t unnumerable stars Cuneiform tablets using symbols similar to in the night sky, at least so far as we can see those used later for constellations may have with our own eyes. Only about a thousand are some relationship to astronomy, or they may visible. Almost all have names or Greek letter not. Far more tantalizing are the various designations as part of constellations that any- cuneiform tablets outlining astronomical one can learn to recognize. observations used by the Babylonians for Modern astronomers have divided the sky tracking the moon and developing a calendar. into 88 constellations, many of them fictitious— One of these is the MUL.APIN, which describes that is, they cover sky area, but contain no vis- the stars along the paths of the moon and ible stars.
    [Show full text]
  • The Constellation Microscopium, the Microscope Microscopium Is A
    The Constellation Microscopium, the Microscope Microscopium is a small constellation in the southern sky, defined in the 18th century by Nicolas Louis de Lacaille in 1751–52 . Its name is Latin for microscope; it was invented by Lacaille to commemorate the compound microscope, i.e. one that uses more than one lens. The first microscope was invented by the two brothers, Hans and Zacharius Jensen, Dutch spectacle makers of Holland in 1590, who were also involved in the invention of the telescope (see below). Lacaille first showed it on his map of 1756 under the name le Microscope but Latinized this to Microscopium on the second edition published in 1763. He described it as consisting of "a tube above a square box". It contains sixty-nine stars, varying in magnitude from 4.8 to 7, the lucida being Gamma Microscopii of apparent magnitude 4.68. Two star systems have been found to have planets, while another has a debris disk. The stars that now comprise Microscopium may formerly have belonged to the hind feet of Sagittarius. However, this is uncertain as, while its stars seem to be referred to by Al-Sufi as having been seen by Ptolemy, Al-Sufi does not specify their exact positions. Microscopium is bordered Capricornus to the north, Piscis Austrinus and Grus to the west, Sagittarius to the east, Indus to the south, and touching on Telescopium to the southeast. The recommended three-letter abbreviation for the constellation, as adopted Seen in the 1824 star chart set Urania's Mirror (lower left) by the International Astronomical Union in 1922, is 'Mic'.
    [Show full text]
  • The Sky Tonight
    MARCH POUTŪ-TE-RANGI HIGHLIGHTS Conjunction of Saturn and the Moon A conjunction is when two astronomical objects appear close in the sky as seen THE- SKY TONIGHT- - from Earth. The planets, along with the TE AHUA O TE RAKI I TENEI PO Sun and the Moon, appear to travel across Brightest Stars our sky roughly following a path called the At this time of the year, we can see the ecliptic. Each body travels at its own speed, three brightest stars in the night sky. sometimes entering ‘retrograde’ where they The brightness of a star, as seen from seem to move backwards for a period of time Earth, is measured as its apparent (though the backwards motion is only from magnitude. Pictured on the cover is our vantage point, and in fact the planets Sirius, the brightest star in our night sky, are still orbiting the Sun normally). which is 8.6 light-years away. Sometimes these celestial bodies will cross With an apparent magnitude of −1.46, paths along the ecliptic line and occupy the this star can be found in the constellation same space in our sky, though they are still Canis Major, high in the northern sky. millions of kilometres away from each other. Sirius is actually a binary star system, consisting of Sirius A which is twice the On March 19, the Moon and Saturn will be size of the Sun, and a faint white dwarf in conjunction. While the unaided eye will companion named Sirius B. only see Saturn as a bright star-like object (Saturn is the eighth brightest object in our Sirius is almost twice as bright as the night sky), a telescope can offer a spectacular second brightest star in the night sky, view of the ringed planet close to our Moon.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • In This Exercise, You Will Learn Some of the Stars That Make up Patterns in the Sky
    PHYS 1830 - Perspectives on the Universe Winter 2015 PLANETARIUM EXERCISE In this exercise, you will learn some of the stars that make up patterns in the sky. These are properly known as asterisms. Constellations, on the other hand, are defined as 88 regions or patches of sky that are officially designated by the International Astronomical Union (IAU). Constellations often contain the familiar patterns of stars that are the asterisms, but constellations are usually identified by their Latin name. For example, the asterism of the Big Dipper is contained within the constellation of Ursa Major, the Greater Bear. You will also be introduced to the astronomical coordinate system that is most commonly used to describe positions of objects in the sky: the equatorial coordinate system. Part 1: Sketching You will sketch several asterisms on a single page. Draw a line across the bottom of the page to indicate the position of the horizon. Label this line with the cardinal points. Draw a cross near the top of your sketch to represent the position of the zenith. Label this point. Lightly draw in the position of the meridian and label it. For each sketch, label the time for which the planetarium is set and record your location within the dome. Use circles to mark the relative positions of the stars. The size of the circle should reflect the relative brightness with larger circles indicating brighter stars. Use straight lines to connect the relevant stars to draw the asterism shape. Sketch #1: Big Dipper, Little Dipper, and Cassiopeia Label the asterism/constellation name.
    [Show full text]
  • The Photosphere and Circumstellar Environment of the Be Star Achernar
    New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry Proceedings IAU Symposium No. 307, 2014 c International Astronomical Union 2015 G.Meynet,C.Georgy,J.H.Groh&Ph.Stee,eds. doi:10.1017/S1743921314006905 The photosphere and circumstellar environment of the Be star Achernar Daniel M. Faes1,2, Armando Domiciano de Souza2,AlexC.Carciofi1 and Philippe Bendjoya2 1 Instituto de Astronomia, Geof´ısica e Ciˆencias Atmosf´ericas, Universidade de S˜ao Paulo, Rua do Mat˜ao 1226, Cidade Universit´aria, 05508-900, S˜ao Paulo, SP, Brazil email: [email protected] 2 Lab. J.-L. Lagrange, UMR 7293 - Observatoire de la Cˆote d’Azur (OCA), Univ. de Nice-Sophia Antipolis (UNS), CNRS, Valrose, 06108 Nice, France Abstract. Achernar is a key target to investigate high stellar rotation and the Be phenonemon. It is also the hottest star for which detailed photospheric information is available. Here we report our results to determine the photospheric parameters of Achernar and evaluate how the emission of a Viscous Decretion Disk (VDD) around it would be observable. The analysis is based on interferometric data (PIONIER and AMBER at ESO-VLTI), complemented by spectroscopy and polarimetry for the circumstellar emission. For the first time fundamental parameters of a Be photosphere were determined. The presence of a residual disk at the quiescent phase and some characteristics of the new formed disk (2013 activity) are also discussed. This is rare opportunity to precisely determine the stellar brightness distribution and evaluate the evolution of a just formed Be disk. Keywords. stars: individual (Achernar), stars: fundamental parameters, techniques: interfero- metric, circumstellar matter, stars: emission-line, Be 1.
    [Show full text]