DOE Space Nuclear Power and Propulsion (SNPP) Activities

Total Page:16

File Type:pdf, Size:1020Kb

DOE Space Nuclear Power and Propulsion (SNPP) Activities DOE Space Nuclear Power and Propulsion Tracey Bishop, Deputy Assistant Secretary Office of Nuclear Infrastructure Programs (SNPP) Activities Office of Nuclear Energy March 10, 2021 U.S. Department of Energy History of DOE Space Nuclear Power and Propulsion Over the past 60 years, DOE has been instrumental in designing, developing and deploying space nuclear power and propulsion systems for the United States space initiatives Navy Transit Program w ith SNA P-3B (1961) SNA P-3 Radioisotope Pioneer 10 SNAP-19 (1972) Thermoelectric Generator Demonstration (1959) Ulysses GPHS-RTG (1990) MSL MMRTG (2011) NERVA Engine Reactor Program (1964-1969) Voyager MHW-RTG (1977) Mars 2020 MMRTG (2020) SNA P-27 Apollo 12 New Horizons GPHS-RTG (1969) (2006) SNA P-10A Reactor Nimbus III (1969) (Launched 1965) Galileo GPHS-RTG (1989) 2 energy.gov/ne DOE’s Role in U.S. Nuclear Space Power • Serves as technical design authority for Space Nuclear Power and Propulsion (SNPP) systems – Radioisotope Power Systems (RPS) – Nuclear Fission Power Systems • Enables through our national laboratory complex research and development in a wide array of technical areas required to advance SNPP technologies • Extends nuclear safety and business frameworks to other agencies to conduct SNPP activities DOE has a long-standing partnership with multiple agencies on space nuclear power and trusted relationships with our national laboratories 3 energy.gov/ne Radioisotope Power Systems (RPS) • Enables and enhances missions by providing electrical power to explore remote and challenging environments where solar power is unavailable – Spacecraft operation – Instrumentation • Converts heat from a radioisotope into electricity – Heat is the product of the natural General Purpose isotope decay process Heat Source • Plutonium (Pu)-238 is the isotope of choice due to its long half-life and high- Pu-238 Fuel energy alpha particle Pellet (Uncladded) Fueled Clad 4 energy.gov/ne Historical Radioisotope Power Systems SNAP-27 SNAP-19 Multi-Hundred Watt GPHS • ~70 We • ~40-45 We • ~150We • ~300We • 1969-1972 • 1970s • 1970s • 1980s-2000s • Apollo 12, 14, 15, • Viking 1 & 2, • Voyager 1 & 2 • Galileo, Ulysses, 16, & 17 Pioneer 10 & 11 Cassini, New Horizons 5 energy.gov/ne Current and Future RPS Technologies • Flight-certified technologies – Multi-mission Radioisotope Thermoelectric Generator (MMRTG) – General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) (Mod 0) – Radioisotope Heater Units • Technology Development Activities MMRTG – Next Generation Radioisotope Thermoelectric Generator, focused on GPHS-RTG (Mod 1) – Dynamic RPS GPHS-RTG Mod 0 Dynamic RPS Next Gen RTG 6 energy.gov/ne Radioisotope Power System Production Fuel Clad Component Heat Source Assembly, Pu-238 Isotope Manufacturing and RTG Fueling and Launch Support Production Encapsulation Testing • Oak Ridge • Oak Ridge • Idaho National •Kennedy Space National National Center Laboratory Laboratory Laboratory •Idaho National • Idaho • Los Alamos Laboratory National National Laboratory Laboratory 7 energy.gov/ne RPS Constant Rate Production • Leveraged DOE’s isotope campaign model with a proven track record to produce radioisotopes – Successfully re-established domestic production of Pu-238 with about 0.9 kg of heat-source oxide produced to date with an average production goal of 1.5 kg/year by 2026 – Increased number of isotope production campaigns and expanded production from one to two DOE research reactors – Accelerated automated target fabrication, equipment modernization, and material handling capabilities across DOE • Stabilized fuel manufacturing with predictable schedule – Demonstrated production rate of 10-15 fueled clads/year to meet customer needs – Integration and cost-sharing opportunities with national security customers to modernize equipment for increased production and worker safety – Modeling of isotope production and fuel manufacturing to support mission planning scenarios 8 energy.gov/ne Nuclear Fission Power Systems • Utilize fission reactions to generate power for space applications – US successfully launched space reactor (SNAP-10A) in 1960s and operated for ~50 days – Nuclear propulsion research and demonstration programs established in 1960s KIWI Test Facility – Modest efforts since the 1960s to evaluate designs • Natural synergy with DOE missions supporting commercial nuclear power industry SNAP-10A – Fuel qualification and development – Design and demonstration of Small Modular and Micro-Reactors – Modeling and simulation capabilities SP-100 NERVA Program 9 energy.gov/ne Current Nuclear Fission Power Technology Development • Fission Surface Power – Demonstrate sustainable power source on lunar surface by 2028 – Minimum power output of 10 kWe for one year, extensible to 40 kWe • Nuclear Thermal Propulsion – Establish technical foundations and Surface Fission Power capabilities to obtain ~ 900-1300s Isp Reactor Concept – Experimental programs underway for fuel development TREAT Fuel • Common fuel development for terrestrial Experiment and space use, including a coated particle fuel Nuclear Thermal Propulsion Concept 10 energy.gov/ne DOE Capabilities • Fuel and materials research, development and qualification critical for any nuclear technology endeavor to demonstrate performance and Advanced Test safety Reactor - Idaho • DOE has invested heavily in capabilities to support commercial nuclear industry – Irradiation capabilities – Post-irradiation examination tools – Fuel supplies – Modeling and simulation – Demonstration • Options to leverage existing user facilities to enhance technical collaborations between the agencies, industry, and universities Transient Reactor High Flux Isotope Test Facility - Reactor –Oak Ridge Idaho 11 energy.gov/ne Nuclear Safety Framework • DOE leverages its nuclear safety framework to support research and demonstration of SNPP technologies • US Space Policy, such as the National Security Presidential Memorandum (NSPM-20), aligns with DOE nuclear safety model to provide transparency for safety reviews – Establishes risk informed approval levels for nuclear launches – Establishes nuclear safety guidelines for government launches – Reduces regulatory burden and supports future commercialization goals by setting expectations rooted in existing US commercial nuclear policy Mars 2020 Launch 12 energy.gov/ne DOE-NASA Partnership Model Agencies utilize a structured framework for nuclear activities to leverage DOE self-regulation and indemnification authorities NASA-DOE Memorandum of Understanding Strategic (10yr.) (October 2016) Interagency Interagency Agreement - Agreement – Nuclear Radioisotope Power Fission Power Program (5yr.) S yste m s Systems (January (October 2018) 2020) Constant Rate Nuclear Thermal Surface Fission RPS Technologies Dragonfly Mission Production Propulsion Power (Multiple) (TBD – FY 2021) Project (1yr.) (November 2018) (April 2020) (TBD-2020) Strategic Partnership Plans (Multiple DOE laboratories/plants) 13 energy.gov/ne Summary • DOE is a key partner on SNPP activities within the US government with a long-proven track record • Recent interagency and industry collaborations enable future progress to develop SNPP technologies to support US space goals • Opportunities for collaboration with US agencies and commercial nuclear power research, development and deployment initiatives to reduce risks and build the domestic nuclear industry 14 energy.gov/ne.
Recommended publications
  • Re-Examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix
    Re-examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix T. E. G. Nicholasa,∗, T. P. Davisb, F. Federicia, J. E. Lelandc, B. S. Patela, C. Vincentd, S. H. Warda a York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK b Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH c Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK d Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LS, UK Abstract Fusion energy is often regarded as a long-term solution to the world's energy needs. However, even after solving the critical research challenges, engineer- ing and materials science will still impose significant constraints on the char- acteristics of a fusion power plant. Meanwhile, the global energy grid must transition to low-carbon sources by 2050 to prevent the worst effects of climate change. We review three factors affecting fusion's future trajectory: (1) the sig- nificant drop in the price of renewable energy, (2) the intermittency of renewable sources and implications for future energy grids, and (3) the recent proposition of intermediate-level nuclear waste as a product of fusion. Within the scenario assumed by our premises, we find that while there remains a clear motivation to develop fusion power plants, this motivation is likely weakened by the time they become available. We also conclude that most current fusion reactor designs do not take these factors into account and, to increase market penetration, fu- sion research should consider relaxed nuclear waste design criteria, raw material availability constraints and load-following designs with pulsed operation.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • Uranium (Nuclear)
    Uranium (Nuclear) Uranium at a Glance, 2016 Classification: Major Uses: What Is Uranium? nonrenewable electricity Uranium is a naturally occurring radioactive element, that is very hard U.S. Energy Consumption: U.S. Energy Production: and heavy and is classified as a metal. It is also one of the few elements 8.427 Q 8.427 Q that is easily fissioned. It is the fuel used by nuclear power plants. 8.65% 10.01% Uranium was formed when the Earth was created and is found in rocks all over the world. Rocks that contain a lot of uranium are called uranium Lighter Atom Splits Element ore, or pitch-blende. Uranium, although abundant, is a nonrenewable energy source. Neutron Uranium Three isotopes of uranium are found in nature, uranium-234, 235 + Energy FISSION Neutron uranium-235, and uranium-238. These numbers refer to the number of Neutron neutrons and protons in each atom. Uranium-235 is the form commonly Lighter used for energy production because, unlike the other isotopes, the Element nucleus splits easily when bombarded by a neutron. During fission, the uranium-235 atom absorbs a bombarding neutron, causing its nucleus to split apart into two atoms of lighter mass. The first nuclear power plant came online in Shippingport, PA in 1957. At the same time, the fission reaction releases thermal and radiant Since then, the industry has experienced dramatic shifts in fortune. energy, as well as releasing more neutrons. The newly released neutrons Through the mid 1960s, government and industry experimented with go on to bombard other uranium atoms, and the process repeats itself demonstration and small commercial plants.
    [Show full text]
  • 600 Technology (Applied Sciences)
    600 600 Technology (Applied sciences) Class here inventions See also 303.48 for technology as a cause of cultural change; also 306.4 for sociology of technology; also 338.1–338.4 for economic aspects of industries based on specific technologies; also 338.9 for technology transfer, appropriate technology See Manual at 300 vs. 600; also at 363 vs. 302–307, 333.7, 570–590, 600; also at 363.1 vs. 600; also at 583–585 vs. 600 SUMMARY 601–609 Standard subdivisions and technical drawing, hazardous materials technology, patents 610 Medicine and health 620 Engineering and allied operations 630 Agriculture and related technologies 640 Home and family management 650 Management and auxiliary services 660 Chemical engineering and related technologies 670 Manufacturing 680 Manufacture of products for specific uses 690 Construction of buildings 601 Philosophy and theory 602 Miscellany Do not use for patents; class in 608 Class interdisciplinary works on trademarks and service marks in 929.9 Interdisciplinary collections of standards relocated to 389 .9 Commercial miscellany Class commercial miscellany of products and services used in individual and family living in 640.29; class commercial miscellany of manufactured products in 670.29; class interdisciplinary commercial miscellany in 381.029 603 Dictionaries, encyclopedias, concordances 604 Technical drawing, hazardous materials technology; groups of people 657 604 Dewey Decimal Classification 604 .2 Technical drawing Including arrangement and organization of drafting rooms, preservation and storage of drawings; specific drafting procedures and conventions (e.g., production illustration, dimensioning; lettering, titling; shades, shadows, projections); preparation and reading of copies Class here engineering graphics, mechanical drawing For architectural drawing, see 720.28.
    [Show full text]
  • Radioactive Decay
    North Berwick High School Department of Physics Higher Physics Unit 2 Particles and Waves Section 3 Fission and Fusion Section 3 Fission and Fusion Note Making Make a dictionary with the meanings of any new words. Einstein and nuclear energy 1. Write down Einstein’s famous equation along with units. 2. Explain the importance of this equation and its relevance to nuclear power. A basic model of the atom 1. Copy the components of the atom diagram and state the meanings of A and Z. 2. Copy the table on page 5 and state the difference between elements and isotopes. Radioactive decay 1. Explain what is meant by radioactive decay and copy the summary table for the three types of nuclear radiation. 2. Describe an alpha particle, including the reason for its short range and copy the panel showing Plutonium decay. 3. Describe a beta particle, including its range and copy the panel showing Tritium decay. 4. Describe a gamma ray, including its range. Fission: spontaneous decay and nuclear bombardment 1. Describe the differences between the two methods of decay and copy the equation on page 10. Nuclear fission and E = mc2 1. Explain what is meant by the terms ‘mass difference’ and ‘chain reaction’. 2. Copy the example showing the energy released during a fission reaction. 3. Briefly describe controlled fission in a nuclear reactor. Nuclear fusion: energy of the future? 1. Explain why nuclear fusion might be a preferred source of energy in the future. 2. Describe some of the difficulties associated with maintaining a controlled fusion reaction.
    [Show full text]
  • Nuclear Reactors Fuelled with Uranium Inevitably Produce Plutonium As a By-Product
    The Secretary Joint Standing Committee on Treaties Inquiry into Nuclear Non-proliferation and Disarmament Dear Sir/Madam, I would like to submit the following submission to the Parliamentary Committee Inquiry into Nuclear Non- proliferation and Disarmament. Yours sincerely, Frank Barnaby. A submission to the Parliamentary Committee Inquiry into Nuclear Non- proliferation and Disarmament. Frank Barnaby Nuclear reactors fuelled with uranium inevitably produce plutonium as a by-product. This plutonium can be used by countries and by nuclear terrorists to fabricate nuclear weapons. The operation of nuclear-power reactors, therefore, has consequences for national, regional and global security. The more nuclear reactors there are the greater the security risks. Australia should recognise that these security risks outweigh the befits of producing electricity by nuclear power especially because the use of renewable sources of energy, combined with improvements in energy efficiency and the conservation of energy make the use of nuclear power unnecessary. As the world’s second largest exporter of uranium, Australia has a major responsibility to adopt policies to minimise the risks to security from nuclear proliferation and terrorism. To this end, Australia should use its influence to bring the Comprehensive Nuclear Test Ban Treaty (CTBT) into effect. It should not supply uranium to countries, like the USA and China, which have not yet ratified the CTBT. Moreover, Australia should promote the negotiation of a Comprehensive Fissile Material Cut-Off Treaty to prohibit the further production of fissile material usable for the production of nuclear weapons, prohibit the reprocessing of spent nuclear-power reactor fuel that has been produced by Australian uranium and should not support or encourage the use of Mixed Oxide (MOX) nuclear fuel or the use of Generation IV reactors, particularly fast breeder reactors.
    [Show full text]
  • July/August 2004 Newsletter
    Environmental Defense Institute News on Environmental Health and Safety Issues ")··..--~~~~~~~~~-,-~~~~~~--"--~~~ I July/August 2004 Volume 15 Number 3 Idaho Cancer Rates Continue to Rise at Record Levels According to the Cancer Data Registry ofldaho Dr. Thomas Pigford which was commissioned by the US there is a steady increase in Idaho cancer rates from the District Court hearing the Hanford Downwinders suit, beginning of data collection through 2002 (the latest both showed that causation for the high rate of cancer in report issued by the Registry). The 2000 report notes an the Northern Idaho Panhandle and Health District 3 increase of 3 59 cancer cases in recent years. "This was (Lewiston area) can be attributed to Hanford emissions one. of the largest single-year increases in cancer following wind patterns up the Columbia and Snake incidence in the history of the Cancer Data Registry of River drainage canyons. Idaho. Cancer sites with notable increases from 1999 to The Hanford· Downwinder litigation won two 2000 were lung, melanoma (in-situ), oral cavity and significant legal wins; 1.) the US 9th District Court of pharynx cancer counts increased over 1999 levels. The Appeals overruled the 1998 Spokane District Court number ofin-situ melanoma cases is 65% higher than for ruling by Judge McDonald that previously rejected the any previous year. The prostate cancer incidence rate is claims of most of the plaintiffs, and remanded the case the highest it has been since the spike in prostate cancer back to District Court for trial, based on Plaintiffs rates in 1990-1993 due to prostate-specific antigen scientific briefs showing significantly more particulate screening.
    [Show full text]
  • Nuclear Propulsion
    16 Nuclear Propulsion Claudio Bruno DIMA, University of Rome (La Sapienza), Roma Italy 1. Introduction Nuclear propulsion (NP) concepts go back to the very end of WW II. Scientists informed about the effects of the US atomic bomb thought of exploiting its energy release for applications like commercial electric power generation, but also rockets and space flight [Shepherd and Cleaver, 1948, 1949; Bussard and DeLauer, 1958]. However, space flight was still considered science fiction, and the military had to deal with more concrete things, like the Cold War. Thus, besides power generation, second stages of ICBM, submarine propulsion, long range and long duration airplanes and missiles became the focus of nuclear energy applications. It was the second-stage and airplane application that drove R&D in nuclear propulsion. With the advent of reliable ICBM (the Atlas missile) and lighter fission and thermonuclear warheads, a nuclear-powered second stage became no longer necessary. Airplane applications were found impractical: the Convair NB-36 required such a heavy lead shield for the crew that testing and operation were much restricted. Nuclear-powered missiles were easier to design, e.g., project PLUTO, but still far more complicated compared to conventional. The Soviets investigated airplanes and rockets powered by nuclear power as well, and discarded them too. The history of NP can be found in [Czysz and Bruno, 2009, Chapter 7; Lawrence, 2008; Lawrence et al, 1995; Gunn and Ehresman, 2003; Dewar, 2004] and will not be reported here. Basic technology is also discussed in the references above, in particular reactor design is in [Lawrence et al, 1995].
    [Show full text]
  • Fact Sheet on U.S. Nuclear Powered Warship (NPW) Safety
    Fact Sheet on U.S. Nuclear Powered Warship (NPW) Safety 1. Commitments of the U.S. Government about the Safety of U.S. NPWs U.S. Nuclear Powered Warships (NPWs) have safely operated for more than 50 years without experiencing any reactor accident or any release of radioactivity that hurt human health or had an adverse effect on marine life. Naval reactors have an outstanding record of over 134 million miles safely steamed on nuclear power, and they have amassed over 5700 reactor-years of safe operation. Currently, the U.S. has 83 nuclear-powered ships: 72 submarines, 10 aircraft carriers and one research vessel. These NPWs make up about forty percent of major U.S. naval combatants, and they visit over 150 ports in over 50 countries, including approximately 70 ports in the U.S. and three in Japan. Regarding the safety of NPWs visiting Japanese ports, the U.S. Government has made firm commitments including those in the Aide-Memoire of 1964; the Statement by the U.S. Government on Operation of Nuclear Powered Warships in Foreign Ports of 1964; the Aide-Memoire of 1967; and the Memorandum of Conversation of 1968. Since 1964 U.S. NPWs have visited Japanese ports (i.e., Yokosuka, Sasebo and White Beach) more than 1200 times. The results of monitoring in these ports conducted by the Government of Japan and the U.S. Government, respectively, demonstrate that the operation of U.S. NPWs does not result in any increase in the general background radioactivity of the environment. The U.S. Government states that every single aspect of these commitments continues to be firmly in place.
    [Show full text]
  • Highly Enriched Uranium: Striking a Balance
    OFFICIAL USE ONLY - DRAFT GLOSSARY OF TERMS APPENDIX F GLOSSARY OF TERMS Accountability: That part of the safeguards and security program that encompasses the measurement and inventory verification systems, records, and reports to account for nuclear materials. Assay: Measurement that establishes the total quantity of the isotope of an element and the total quantity of that element. Atom: The basic component of all matter. Atoms are the smallest part of an element that have all of the chemical properties of that element. Atoms consist of a nucleus of protons and neutrons surrounded by electrons. Atomic energy: All forms of energy released in the course of nuclear fission or nuclear transformation. Atomic weapon: Any device utilizing atomic energy, exclusive of the means for transportation or propelling the device (where such means is a separable and divisible part of the device), the principal purpose of which is for use as, or for development of, a weapon, a weapon prototype, or a weapon test device. Blending: The intentional mixing of two different assays of the same material in order to achieve a desired third assay. Book inventory: The quantity of nuclear material present at a given time as reflected by accounting records. Burnup: A measure of consumption of fissionable material in reactor fuel. Burnup can be expressed as (a) the percentage of fissionable atoms that have undergone fission or capture, or (b) the amount of energy produced per unit weight of fuel in the reactor. Chain reaction: A self-sustaining series of nuclear fission reactions. Neutrons produced by fission cause more fission. Chain reactions are essential to the functioning of nuclear reactors and weapons.
    [Show full text]
  • The Nuclear Non-Proliferation Treaty's Obligation to Transfer Peaceful Nuclear Energy Technology: One Proposal of a Technology
    Fordham International Law Journal Volume 19, Issue 5 1995 Article 11 The Nuclear Non-Proliferation Treaty’s Obligation to Transfer Peaceful Nuclear Energy Technology: One Proposal of a Technology Seth Grae∗ ∗ Copyright c 1995 by the authors. Fordham International Law Journal is produced by The Berke- ley Electronic Press (bepress). http://ir.lawnet.fordham.edu/ilj The Nuclear Non-Proliferation Treaty’s Obligation to Transfer Peaceful Nuclear Energy Technology: One Proposal of a Technology Seth Grae Abstract This Essay discusses the technology transfer provisions of the Treaty on the Non-Proliferation of Nuclear Weapons (“NPT”) and describes the Radkowsky Thorium Reactor, which is being developed as a peaceful nuclear energy technology. THE NUCLEAR NON-PROLIFERATION TREATY'S OBLIGATION TO TRANSFER PEACEFUL NUCLEAR ENERGY TECHNOLOGY: ONE PROPOSAL OF A TECHNOLOGY Seth Grae* INTRODUCTION The Treaty on the Non-Proliferaticn of Nuclear Weapons ("NPT")1 is the main document in the international effort to stop the proliferation of nuclear weapons. As stated in the pre- amble of the NPT, "proliferation of nuclear weapons would seri- ously enhance the danger of nuclear war," and devastation "would be visited upon all mankind by a nuclear war."' The NPT calls for a halt to proliferation of nuclear weapons and tech- nology and also calls for the transfer of "peaceful" nuclear en- ergy technology. This Essay discusses the technology transfer provisions of the NPT and describes the Radkowsky Thorium Re- actor, which is being developed as a peaceful nuclear energy technology. I. BACKGROUND TO THE RADKOWSKY THORIUM REACTOR A. The Treaty on the Non-Proliferationof Nuclear Weapons Obligation to Transfer Peaceful Nuclear Energy Technology Article IV(1) of the NPT asserts that parties to the NPT have an "inalienable right" to develop, research, produce, and use nu- clear energy for peaceful purposes.
    [Show full text]
  • X-Ray and Neutron Sources
    Chapter 1: Radioactivity Radioactivity from Direct Excitation X‐ray Emission 147 NPRE 441, Principles of Radiation Protection An Overview of Radiation Exposure to US Population 148 NPRE 441, Principles of Radiation Protection Chapter 1: Radioactivity Clinical X‐ray CT System The Siemens SOMATOM X clinical CT system 149 Chapter 1: Radioactivity X‐ray Imaging Examples 150 NPRE 441, Principles of Radiation Protection Chapter 1: Radioactivity X‐ray Generation –X‐ray Tube Andrew Webb, Introduction to Biomedical Imaging, 2003, Wiley‐ Interscience. Motor, Why? Filament Rotating target Electron beam? How are electrons generated? 151 NPRE 441, Principles of Radiation Protection Chapter 1: Radioactivity X‐ray Generation – Bremsstrahlung • Target nucleus positive charge (Z∙p+) attracts incident e‐ • Deceleration of an incident e‐ occurs in the proximity of the target atom nucleus • Energylostbye‐ is gained by the EM photon (x‐ray) generated • The impact parameter distance, the closest approach to the nucleus by the e‐ determines the amount of E loss • The Coulomb force of attraction varies strongly with distance ( 1/r2); ↓ distance →↑deceleration and E loss →↑photon E • Direct impact on the nucleus determines the maximum x‐ray E (Emax) 152 NPRE 441, Principles of Radiation Protection Chapter 1: Radioactivity X‐ray Generation – Bremsstrahlung Interestingly, this process creates a relatively uniform spectrum. Intensity = nh 0 Photon energy spectrum 153 NPRE 441, Principles of Radiation Protection Chapter 1: Radioactivity The Unfiltered Bremsstrahlung Spectrum Thick Target X‐ray Formation We can model target as a series of thin targets. Electrons successively loses energy as they moves deeper into the target. Electrons X‐rays Relative Intensity 0 Each layer produces a flat energy spectrum with decreasing peak energy level.
    [Show full text]