Wave Scattering in Chiral Parity-Time Symmetric Metamaterials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bending Back Light the Science of Negative Index Materials
Bending Back Light The Science of Negative Index Materials Costas M. Soukoulis Using the right type of man-made materials, light can be made to bend, or refract, backwards. After years of painstakingly developing and testing the necessary materials, hen light enters specially engineered materials scientists are now called metamaterials, it takes a sharp turn to the looking to translate W left—a negative turn—bending in the opposite direction of light going through natural materials. Scientists fre- negative refraction into quently refer to these unique synthetic materials as left-handed positive applications materials (LHMs) or negative index materials (NIMs). Since the first demonstration of an artificial negative refrac- such as sub-wavelength, tive index material in 2000, metamaterials have drawn consid- high-resolution erable attention from scientists because of their broad range of potential applications. For example, they may one day lead to imaging across the the development of a flat superlens that operates in the visible electromagnetic spectrum, which would offer superior resolution over conven- tional technology and provide images much smaller than one spectrum. wavelength of light. Photo by Timothy Finegan 16 | OPN June 2006 1047-6938/06/06/0016/6-$15.00 ©OSA Costas Soukoulis examines one of the photonic crystals that was construct- ed to observe negative refraction and superlensing in the microwave region of the electromagnetic spectrum. Photo by Dennis Sailsbury, Ames Lab They also have many promising applications for defense magnetic responses in materials naturally occur over different and security. Because NIMs can match the impedance, or the frequency ranges, making their overlap unlikely. -
A Policy for Success
bponline.amcham.gr MAY-JUNE 2014 Vol. XIII | No. 72 Thought Leaders Golden Bullets in Technolgy BUSINESS MATTERS— JIM DAVIS OF NEW BALANCE ▼ PANAGIOTIS G. MIHALOS, SECRETARY GENERAL, MFA ▼ GOOGLE, THE INTERNET, AND IMPACTING SOCIETY ▼ PLUS BIZ BUZZ TRENDS & TRADE MAKERS VIEWPOINT MetLife— AMERICAN-HELLENIC A Policy For Success CHAMBER OF COMMERCE www.amcham.gr Dimitris Mazarakis Vice Chairman BoD & Managing Director, MetLife Register Now Greek Investment June 11-12, 2014 Forum The Athens Exchange and the AEGEAN AIRLINES American-Hellenic Chamber of Commerce ALPHA BANK are pleased to invite you to this year’s ATTICA BANK Investment Forum: CORINTH PIPEWORKS ELLAKTOR Participants: GR for Growth EUROBANK EUROBANK PROPERTIES JUNE 11-12, 2014 FOLLI FOLLIE GROUP Harmonie Club, 4 East 60th St, GEK TERNA New York, NY 10022 GR. SARANTIS HELLENIC EXCHANGES The Forum will bring together HELLENIC PETROLEUM key government of cials and INTRALOT leading Greek and U.S. LAMDA DEVELOPMENT business leaders to explore Greece’s MARFIN INVESTMENT GROUP improving investment climate, METKA key privatization initiatives MOTOR OIL MYTILINEOS and investment opportunities. NATIONAL BANK of GREECE Institutional investors OPAP will also have the opportunity to meet PIRAEUS BANK with senior executives PLAISIO of Greece’s leading listed companies. TERNA ENERGY THRACE PLASTICS The Forum will take place on June 11. TITAN One-on-one investor meetings will take HELLENIC REPUBLIC ASSET place on June 11-12. DEVELOPMENT FUND Gold sponsors: Silver sponsors: Hellenic American -
NEMS-Based Infrared Metamaterial Via Tuning Nanocantilevers Within Complementary Split Ring Resonators Qiugu Wang, Depeng Mao, Peng Liu, Thomas Koschny, Costas M
1 NEMS-based Infrared Metamaterial via Tuning Nanocantilevers within Complementary Split Ring Resonators Qiugu Wang, Depeng Mao, Peng Liu, Thomas Koschny, Costas M. Soukoulis, and Liang Dong Abstract— Dynamic control of the electromagnetic properties of metamaterials requires wide modulation bandwidth. Tunable metamaterials with large tunability and fast speed are thus highly desirable. Due to the small dimensions, subwavelength meta- atoms or resonant elements that constitute a metamaterial in the mid-to-near-infrared (IR) wavelength range are often not easy to be tuned at a high rate of several tens of megahertz (MHz). Here, we report on a nanoelectromechanical systems (NEMS)- based tunable IR metamaterial realized by unique embedding of nanocantilevers into complementary split ring resonators (c- SRRs) suspended over individual wells. The optical field confined in the air gap of the c-SRR is strongly influenced by electro- statically induced mechanical deflection of the nanocantilever, thus modulating the reflection spectrum of the metamaterial. With the easy-to-implement tunable meta-atom design, the IR metamaterial with 800 nm-long cantilevers provides an ultrahigh mechanical modulation frequency of 32.26 MHz for optical signal modulation at a wavelength of 2.1 µm and is rather easy to manufacture and operate. We envision a compact, efficient, and high-speed electro-optic modulation platform in the IR region using this NEMS tunable metamaterial technology. Fig. 1. Schematic of the NEMS-enabled tunable metamaterial operating in the near-to-mid-IR wavelength region. Index Terms— NEMS, metamaterial, nanocantilever, electro- optic modulation. the complementary-metal-oxide-semiconductor (CMOS) fabri- cation process to enable flexible control with integrated circuits I. -
Negative-Index Materials: New Frontiers in Optics**
REVIEW DOI: 10.1002/adma.200600106 Negative-Index Materials: New Frontiers in Optics** By Costas M. Soukoulis,* Maria Kafesaki, and Eleftherios N. Economou A lot of recent interest has been focused on a new class of materials, the so-called left-handed materials (LHMs) or negative-index materials, which exhibit highly unusual electromagnetic properties and hold prom- ise for new device applications. These materials do not exist in nature and can only be fabricated artificially; for this reason, they are called meta- materials. Their unique properties are not determined by the fundamental physical properties of their constituents, but rather by the shape and distribution of the specific patterns included in them. Metamaterials can be designed to exhibit both electric and magnetic resonances that can be separately tuned to occur in frequency bands from megahertz to terahertz frequencies, and hope- fully to the visible region of the electromagnetic spectrum. This article presents a short history of the field, describes the underlying physics, and reviews the experimental and theoretical status of the field at present. Many interesting questions on how to fabricate more isotropic LHMs, on how to push the operational frequency to optical wavelengths, how to reduce the losses, and how to incorporate active or nonlinear materials in LHMs remain to be explored further. – 1. Introduction [*] Prof. C. M. Soukoulis Department of Physics and Ames Laboratory Iowa State University 1.1. History of Negative-Index Materials (or Left-Handed Ames, IA 50011(USA) E-mail: [email protected] Materials) Prof. C. M. Soukoulis, Dr. M. Kafesaki Foundation for Research and Technology, Hellas (FORTH) Electromagnetic metamaterials are artificially structured Institute of Electronic Structure and Laser (IESL) media with unique and distinct properties that are not ob- P.O. -
Union Radio-Scientifique Internationale
Appendix 2 – page 1 1. NAME OF CANDIDATE: Pendry, John, Brian Last, First, Middle PRESENT OCCUPATION: Chair in Theoretical Solid State Physics, Imperial College London Position, Organization BUSINESS ADDRESS: Room 808, Blackett, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom HOME ADDRESS: Metchley, Knipp Hill, Cobham, Surrey, KT11 2PE, United Kingdom BIRTHDATE: 4th July, 1943 NATIONALITY: UK SEX: male - female (Underline the appropriate) 2. EDUCATION (Honorary degrees denoted by H) Educational Institution Location Degrees Year University of Cambridge Cambridge, UK BA Physics 1965 University of Cambridge Cambridge, UK MA Physics 1969 University of Cambridge Cambridge, UK PhD Physics 1969 Universität Erlangen Nürnberg, Germany Doctorate H 2009 Duke University USA Doctor of Science H 2010 Hong Kong Baptist University Hong Kong Doctor of Science H 2010 3. PROPOSED CITATION (not more than thirty words) For work on electromagnetic and optical metamaterials, the perfect lens and transformation optics 4. NOMINATOR: Dr Constantinos Constantinou, Chair, UK URSI Panel ADDRESS: School of Electronic, Electrical and Computer Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom PHONE: +44-121-414-4303 FAX: +44-121-414-4291 E-MAIL : [email protected] Appendix 2 – page 2 5. PROFESSIONAL HISTORY - Present position first. Limit copy to this page. From (year) to (year) Name of Company/Institution Position and Responsibilities 1981 present Imperial College London, UK Professor -
SPPM2021 Online International Conference
ONLINE INTERNATIONAL CONFERENCE ORGANISERS On behalf of the Organising Committee we take great pleasure in welcoming you for the 1st edition of the “SPPM2021” Online Conference (Spintronics, Photonics, Phononics & Magneto- Optics): June 10, 2021. The SPPM2021 Online conference will present the most recent advances in fundamental research and related applications in Photonics, Phononics, Spintronics or Magneto-Optics. This online event aim is to bring together top researchers and future leaders encouraging interactions between students, young speakers, and senior figures in the field. The topics will cover the experimental and theoretical aspects of light interaction with nanoscale objects and nanostructured materials. SPPM2021 will also explore different cutting edge research topics where phonons play a central role such as quantum photonics, nanoscale thermal transport, topological phononics, nanophononics and optomechanics. We are indebted to IFIMAC/UAM (Spain) for their help and financial support. We also would like to thank all the speakers and participants that join us this year. Hope to see you in-person in Bilbao (Spain) for the 3PM2021 International Conference organised within Imaginenano2021 (www.imaginenano.com/2021/PPM2021.php). rganising ommittee 2021 International Online Conference 2 Organising Committee Antonio Correia (Phantoms Foundation, Spain) - Chairperson Francisco José García Vidal (UAM / IFIMAC, Spain) Alejandro Martinez (Nanophotonics Technology Center, Spain) Lluis F. Marsal (Universitat Rovira i Virgili, Spain) -
LASER-FOCUSED Grant Luhmann Laura Millsaps Breehan Gerlemanlucchesi Kerry Gibson Steve Karsjen Educating Andtrainingtomorrow’S Scientifictalent
Science & Technology at the Ames Laboratory 2014 Issue 2 NEW MATERIALS VIA 3D PRINTING Boosting NMR sensitivity with microwaves Ionic liquids for rare-earth recovery Shielding sensitive instruments LASER-FOCUSED CMI, Year One Listening to Industry PA8GE 4 Awards Schwartz 10 Reflects SIF NEARING COMPLETION 6 Learning the 12 Language of Cell Life Anja Mudring Ionic Liquids, High Hopes 14 Ames Laboratory’s16 3D Printing Technology Education Contents 19 Steve Karsjen: Public Affairs Director Copyright 2014 by the Ames Laboratory. All rights Editor, Inquiry Kerry Gibson: Editor reserved. For additional information about the Ames Ames Laboratory Laboratory or topics covered in this publication, 111 TASF Breehan Gerleman Lucchesi: Contributing Editor please contact: Ames, Iowa 50011-3020 Laura Millsaps: Contributing Editor 515-294-9557 Grant Luhmann: Art Director www.ameslab.gov The Ames Laboratory is a U.S. Department of Energy national laboratory seeking solutions to energy-related Inquiry is published biannually by the Ames problems through the exploration of chemical, engineering, materials and mathematical sciences, and physics. Laboratory Office of Public Affairs. Iowa Established in the 1940s with the successful development of the most efficient process to produce high-purity State University operates the Laboratory uranium metal for atomic energy, Ames Lab now pursues much broader priorities than the materials research that for the U.S. Department of Energy under has given the Lab international credibility. Responding to issues of national concern, Ames Laboratory scientists contract DE AC02 07CH11358. are actively involved in innovative research, science education programs, the development of applied technologies and the quick transfer of such technologies to industry. -