SIGACCESS FY'12 Annual Report July 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reducing Redundancy in Data Organization and Arithmetic Calculation for Stencil Computations
Reducing Redundancy in Data Organization and Arithmetic Calculation for Stencil Computations Kun Li Liang Yuan Yunquan Zhang Institute of Computing Technology, Institute of Computing Technology, Institute of Computing Technology, Chinese Academy of Sciences Chinese Academy of Sciences Chinese Academy of Sciences University of Chinese Academy of Beijing, China Beijing, China Sciences [email protected] [email protected] Beijing, China [email protected] Yue Yue Hang Cao Pengqi Lu Institute of Computing Technology, Institute of Computing Technology, Institute of Computing Technology, Chinese Academy of Sciences Chinese Academy of Sciences Chinese Academy of Sciences University of Chinese Academy of University of Chinese Academy of University of Chinese Academy of Sciences Sciences Sciences Beijing, China Beijing, China Beijing, China [email protected] [email protected] [email protected] Abstract ACM Reference Format: Stencil computation is one of the most important kernels Kun Li, Liang Yuan, Yunquan Zhang, Yue Yue, Hang Cao, and Pengqi in various scientific and engineering applications. A variety Lu. 2021. Reducing Redundancy in Data Organization and Arith- metic Calculation for Stencil Computations. In Proceedings of ACM of work has focused on vectorization techniques, aiming at Conference (Conference’21). ACM, Seoul, South Korea, 12 pages. exploiting the in-core data parallelism. Briefly, they either https://doi.org/10.1145/nnnnnnn.nnnnnnn incur data alignment conflicts or hurt the data locality when integrated with tiling. In this paper, a novel transpose lay- out is devised to preserve the data locality for tiling in the 1 Introduction data space and reduce the data reorganization overhead for Stencil is one of the most important kernels widely used vectorization simultaneously. -
Bridging the Data Charging Gap in the Cellular Edge
Bridging the Data Charging Gap in the Cellular Edge Yuanjie Li, Kyu-Han Kim, Christina Vlachou, Junqing Xie Hewlett Packard Labs {yuanjiel,kyu-han.kim,christina.vlachou,jun-qing.xie}@hpe.com ABSTRACT licensed spectrum and support carrier-grade QoS for low latency. The 4G/5G cellular edge promises low-latency experiences any- We have seen some early operational edge services via 4G/5G (x2.2). where, anytime. However, data charging gaps can arise between The cellular network data is not free. To enjoy the low-latency the cellular operators and edge application vendors, and cause services, the edge app vendors should pay the cellular operators by over-/under-billing. We find that such gap can come from data loss, traffic usage (similar to our mobile data plans). Even for the“un- selfish charging, or both. It can be amplified in the edge, duetoits limited” data plans, the edge app’s network speed will be throttled low-latency requirements. We devise TLC, a Trusted, Loss-tolerant (e.g., 128Kbps) if its usage exceeds pre-defined quota. This model Charging scheme for the cellular edge. In its core, TLC enables loss- inherits from 4G/5G [6, 7], and is standardized in the edge [8]. selfishness cancellation to bridge the gap, and constructs publicly However, the cellular operator and edge app vendor may not verifiable, cryptographic proof-of-charging for mutual trust. Weim- always agree on how much data should be paid. A data charging plement TLC with commodity edge nodes, OpenEPC and small cells. gap can arise, i.e., the data volume charged by the cellular opera- Our experiments in various edge scenarios validate TLC’s viability tor differs from what the edge sends/receives. -
[Front Matter]
Future Technologies Conference (FTC) 2017 29-30 November 2017| Vancouver, Canada About the Conference IEEE Technically Sponsored Future Technologies Conference (FTC) 2017 is a second research conference in the series. This conference is a part of SAI conferences being held since 2013. The conference series has featured keynote talks, special sessions, poster presentation, tutorials, workshops, and contributed papers each year. The goal of the conference is to be a world's pre-eminent forum for reporting technological breakthroughs in the areas of Computing, Electronics, AI, Robotics, Security and Communications. FTC 2017 is held at Pan Pacific Hotel Vancouver. The Pan Pacific luxury Vancouver hotel in British Columbia, Canada is situated on the downtown waterfront of this vibrant metropolis, with some of the city’s top business venues and tourist attractions including Flyover Canada and Gastown, the Vancouver Convention Centre, Cruise Ship Terminal as well as popular shopping and entertainment districts just minutes away. Pan Pacific Hotel Vancouver has great meeting rooms with new designs. We chose it for the conference because it’s got plenty of space, serves great food and is 100% accessible. Venue Name: Pan Pacific Hotel Vancouver Address: Suite 300-999 Canada Place, Vancouver, British Columbia V6C 3B5, Canada Tel: +1 604-662-8111 3 | P a g e Future Technologies Conference (FTC) 2017 29-30 November 2017| Vancouver, Canada Preface FTC 2017 is a recognized event and provides a valuable platform for individuals to present their research findings, display their work in progress and discuss conceptual advances in areas of computer science and engineering, Electrical Engineering and IT related disciplines. -
On Invariant Synthesis for Parametric Systems
On Invariant Synthesis for Parametric Systems Dennis Peuter and Viorica Sofronie-Stokkermans Universit¨at Koblenz-Landau, Koblenz, Germany {dpeuter,sofronie}@uni-koblenz.de May 30, 2019 Abstract We study possibilities for automated invariant generation in parametric systems. We use (a refinement of) an algorithm for symbol elimination in theory extensions to devise a method for iteratively strengthening certain classes of safety properties to obtain invariants of the system. We identify conditions under which the method is correct and complete, and situations in which the method is guaranteed to terminate. We illustrate the ideas on various examples. 1 Introduction In the verification of parametric systems it is important to show that a certain property holds for all states reachable from the initial state. One way to solve such problems is to identify an inductive invariant which entails the property to be proved. Finding suitable inductive invariants is non-trivial – the problem is undecidable in general; solutions have been proposed for specific cases, as discussed in what follows. In [Kap06], Kapur proposes methods for invariant generation in theories such as Presburger arithmetic, real closed fields, and for polynomial equations and inequations with solutions in an algebraically closed field. The main idea is to use templates for the invariant (polynomials with undetermined coefficients), and solve constraints for all paths and initial values to determine the coefficients. A similar idea was used by Beyer et al. [BHMR07] for constraints in linear real or rational arithmetic; it is shown that if an invariant is expressible with a given template, then it will be computed. Symbol elimination has been used for interpolation and invariant generation in many papers. -
SIGOPS Annual Report 2012
SIGOPS Annual Report 2012 Fiscal Year July 2012-June 2013 Submitted by Jeanna Matthews, SIGOPS Chair Overview SIGOPS is a vibrant community of people with interests in “operatinG systems” in the broadest sense, includinG topics such as distributed computing, storaGe systems, security, concurrency, middleware, mobility, virtualization, networkinG, cloud computinG, datacenter software, and Internet services. We sponsor a number of top conferences, provide travel Grants to students, present yearly awards, disseminate information to members electronically, and collaborate with other SIGs on important programs for computing professionals. Officers It was the second year for officers: Jeanna Matthews (Clarkson University) as Chair, GeorGe Candea (EPFL) as Vice Chair, Dilma da Silva (Qualcomm) as Treasurer and Muli Ben-Yehuda (Technion) as Information Director. As has been typical, elected officers agreed to continue for a second and final two- year term beginning July 2013. Shan Lu (University of Wisconsin) will replace Muli Ben-Yehuda as Information Director as of AuGust 2013. Awards We have an excitinG new award to announce – the SIGOPS Dennis M. Ritchie Doctoral Dissertation Award. SIGOPS has lonG been lackinG a doctoral dissertation award, such as those offered by SIGCOMM, Eurosys, SIGPLAN, and SIGMOD. This new award fills this Gap and also honors the contributions to computer science that Dennis Ritchie made durinG his life. With this award, ACM SIGOPS will encouraGe the creativity that Ritchie embodied and provide a reminder of Ritchie's leGacy and what a difference a person can make in the field of software systems research. The award is funded by AT&T Research and Alcatel-Lucent Bell Labs, companies that both have a strong connection to AT&T Bell Laboratories where Dennis Ritchie did his seminal work. -
I. Personal Information (1/11/2021) I.A. UID, Last Name, First Name, Middle Name, Contact Information UID: 101001302 Last
I. Personal Information (1/11/2021) I.A. UID, Last Name, First Name, Middle Name, Contact Information UID: 101001302 Last Name: Shneiderman First Name: Ben Mailing Address: Brendan Iribe Building, Dept. of Computer Science, University of Maryland, College Park, MD 20742 Email: [email protected] Personal URL: http://www.cs.umd.edu/~ben HCIL URL: http://www.cs.umd.edu/hcil Wikipedia: https://en.wikipedia.org/wiki/Ben_Shneiderman Google Scholar: https://scholar.google.com/citations?user=h4i4fh8AAAAJ&hl=en ORCID: orcid.org/0000-0002-8298-1097 I.B. Academic Appointments at UMD 2017- Emeritus Distinguished University Professor 2013- Distinguished University Professor 2013- Affiliate Professor, Glenn L. Martin Professor of Engineering 2005- Affiliate Professor, College of Information Studies 2005- Affiliate Professor, College of Engineering 1991- 2005 Member, Institute for Systems Research 1989- Professor, Department of Computer Science 1987- Member, Institute for Advanced Computer Studies 1980- 1989 Associate Professor, Department of Computer Science 1976- 1980 Assistant Professor, Department of Information Systems Management I.C. Administrative Appointments at UMD 1983- 2000 Founding Director, Human-Computer Interaction Lab, Institute for Advanced Computer Studies I.D. Other Employment 1973- 1976 Indiana University Assistant Professor, Department of Computer Science 1972- 1973 State University of NY Instructor, Department of Computer Science at Stony Brook 1968- 1972 State University of NY Instructor, Department of Data Processing at Farmingdale -
Toward Memory-Based Reasoning
SPECIAL ISSUE Articles TOWARD MEMORY-BASED REASONING The intensive use of memory to recall specific episodes from the past rather than rules-should be the foundation of machine reasoning. CRAIG STANFILL and DAVID WALTZ The traditional assumption in artificial intelligence reasoning warrants further experimentation. Two (AI) is that most expert knowledge ·is encoded in the bodies of evidence have led us to support this form of rules. We consider the phenomenon of rea hypothesis. The first is the study of cognition: It is soning from memories of specific episodes, however, difficult to conceive of thought without memory. to be the foundation of an intelligent system, rather The second is the inability of AI to achieve success than an adj unct to some other reasoning method. in any broad domain or to effectively capture the This theory contrasts with much of the current notion of "common sense," much of which, we be work in similarity-based learning, which tacitly lieve, is based on essentially undigested memories of assumes that learning is equivalent to the automatic past experience. generation of rules, and differs from work on We will primarily discuss the application of our "explanation-based" and "case-based" reasoning in hypothesis to the limited case of similarity-based in that it does not depend on having a strong domain duction. The goal of similarity-based induction is to model. make decisions by looking for patterns in data. This With the development of new parallel architec .approach has been studied extensively in the con tures, specifically the Connection Machine@ system, text of "similarity-based learning," which uses ob the operations necessary to implement this approach served patterns in the data to create classification . -
Jonathan Corley University of West Georgia 1601 Maple Street Carrollton, GA 30118 Jcorley[At]Westga.Edu
Jonathan Corley University of West Georgia 1601 Maple Street Carrollton, GA 30118 jcorley[at]westga.edu Research Interests CS Education and Outreach, Software Engineering Education Ph.D. in Computer Science, August 2016 University of Alabama, Tuscaloosa, AL, USA Advisor: Dr. Jeff Gray Committee: Dr. Jeffrey Carver, Dr. Randy Smith, Dr. Susan Vrbsky, Dr. Eugene Syriani M.S. in Computer Science, May 2012 University of Alabama, Tuscaloosa, AL, USA Advisor: Dr. Nicholas Kraft B.S. in Computer Science, May 2009 University of Alabama, Tuscaloosa, AL, USA Honors & Awards Outstanding Graduate Researcher, University of Alabama Department of CS, 2016 President of the University of Alabama chapter of Upsilon Pi Epsilon (UPE), 2015 and 2014 UPE is an international honor society for the computing and information disciplines. 1st place, MODELS ACM Student Research Competition Graduate, 2014. Valencia, Spain University of Alabama College of Engineering Outstanding Service by a Graduate Student, 2014 Outstanding ACM Graduate Award, University of Alabama Department of CS, 2013 Vice-President of the University of Alabama chapter of Upsilon Pi Epsilon, 2013 Inducted into the University of Alabama chapter of Upsilon Pi Epsilon, 2011 Publications Refereed Journal and Book Chapter Jonathan Corley, Brian Eddy, Eugene Syriani, and Jeff Gray “Efficient and Scalable Omniscient Debugging for Model Transformations” In Ghosh, S., Li, J. (Eds.) Software Quality Journal Special Issue on Program Debugging: Research, Practice and Challenges. No. 1, January 2017, pp. 7-48 Jonathan Corley, Eugene Syriani, Huseyin Ergin, and Simon Van Mierlo “Cloud-based Multi- View Modeling Environments” In Cruz, A.M., Paiva, S. (Eds.) Modern Software Engineering Methodologies for Mobile and Cloud Environments, IGI Global. -
Origins of the American Association for Artificial Intelligence
AI Magazine Volume 26 Number 4 (2006)(2005) (© AAAI) 25th Anniversary Issue The Origins of the American Association for Artificial Intelligence (AAAI) Raj Reddy ■ This article provides a historical background on how AAAI came into existence. It provides a ratio- nale for why we needed our own society. It pro- vides a list of the founding members of the com- munity that came together to establish AAAI. Starting a new society comes with a whole range of issues and problems: What will it be called? How will it be financed? Who will run the society? What kind of activities will it engage in? and so on. This article provides a brief description of the consider- ations that went into making the final choices. It also provides a description of the historic first AAAI conference and the people that made it happen. The Background and the Context hile the 1950s and 1960s were an ac- tive period for research in AI, there Wwere no organized mechanisms for the members of the community to get together and share ideas and accomplishments. By the early 1960s there were several active research groups in AI, including those at Carnegie Mel- lon University (CMU), the Massachusetts Insti- tute of Technology (MIT), Stanford University, Stanford Research Institute (later SRI Interna- tional), and a little later the University of Southern California Information Sciences Insti- tute (USC-ISI). My own involvement in AI began in 1963, when I joined Stanford as a graduate student working with John McCarthy. After completing my Ph.D. in 1966, I joined the faculty at Stan- ford as an assistant professor and stayed there until 1969 when I left to join Allen Newell and Herb Simon at Carnegie Mellon University Raj Reddy. -
ACM JOURNALS S.No. TITLE PUBLICATION RANGE :STARTS PUBLICATION RANGE: LATEST URL 1. ACM Computing Surveys Volume 1 Issue 1
ACM JOURNALS S.No. TITLE PUBLICATION RANGE :STARTS PUBLICATION RANGE: LATEST URL 1. ACM Computing Surveys Volume 1 Issue 1 (March 1969) Volume 49 Issue 3 (October 2016) http://dl.acm.org/citation.cfm?id=J204 Volume 24 Issue 1 (Feb. 1, 2. ACM Journal of Computer Documentation Volume 26 Issue 4 (November 2002) http://dl.acm.org/citation.cfm?id=J24 2000) ACM Journal on Emerging Technologies in 3. Volume 1 Issue 1 (April 2005) Volume 13 Issue 2 (October 2016) http://dl.acm.org/citation.cfm?id=J967 Computing Systems 4. Journal of Data and Information Quality Volume 1 Issue 1 (June 2009) Volume 8 Issue 1 (October 2016) http://dl.acm.org/citation.cfm?id=J1191 Journal on Educational Resources in Volume 1 Issue 1es (March 5. Volume 16 Issue 2 (March 2016) http://dl.acm.org/citation.cfm?id=J814 Computing 2001) 6. Journal of Experimental Algorithmics Volume 1 (1996) Volume 21 (2016) http://dl.acm.org/citation.cfm?id=J430 7. Journal of the ACM Volume 1 Issue 1 (Jan. 1954) Volume 63 Issue 4 (October 2016) http://dl.acm.org/citation.cfm?id=J401 8. Journal on Computing and Cultural Heritage Volume 1 Issue 1 (June 2008) Volume 9 Issue 3 (October 2016) http://dl.acm.org/citation.cfm?id=J1157 ACM Letters on Programming Languages Volume 2 Issue 1-4 9. Volume 1 Issue 1 (March 1992) http://dl.acm.org/citation.cfm?id=J513 and Systems (March–Dec. 1993) 10. ACM Transactions on Accessible Computing Volume 1 Issue 1 (May 2008) Volume 9 Issue 1 (October 2016) http://dl.acm.org/citation.cfm?id=J1156 11. -
Cv Shinohara.Pdf
Kristen Shinohara School of Information B. Thomas Golisano College of Computing and Information Sciences Rochester Institute of Technology 20 Lomb Memorial Drive, Rochester, NY 14623 [email protected] | www.kristenshinohara.com ACADEMIC POSITION Assistant Professor, School of Information, B. Thomas Golisano College of Computing and Information Sciences, Rochester Institute of Technology (2017 – present). EDUCATION Ph.D., Information Science, University of Washington - Seattle, WA, Spring 2017 Emphasis on Human-Computer Interaction and Accessibility Thesis: Design for Social Accessibility: Incorporating Social Factors in the Design of Accessible Technologies Committee: Jacob O. Wobbrock (advisor), Wanda Pratt (co-advisor), Clayton Lewis, David Hendry, Richard Ladner M.S., Computing and Software Systems, University of Washington - Tacoma, WA, June 2006 Final project focused on Human-Centered Design and Accessibility Advisor: Josh Tenenberg B.S., Computer Science, University of Puget Sound - Tacoma, WA, May 2002 Minors in Mathematics and Physics FUNDING Kristen Shinohara (PI). Aug 2019 – Jul 2022. “Ethical Approaches to Empower Disabled Graduate Students in STEM.” National Science Foundation Cultivating Cultures of Ethical STEM. Award No. 1926209, Funding total: $281,900. Matt Huenerfauth (PI), Kristen Shinohara (Joined as Co-PI in 2018). Dec 2015 – Nov 2019. “Ethical Inclusion of People with Disabilities through Undergraduate Computing Education.” National Science Foundation Cultivating Cultures of Ethical STEM. Award No. SES-1540396, Funding total: $449,987. Kristen Shinohara (PI). Aug 2018 – Aug 2019. “Method Cards for User Centered Design.” RIT Provost’s Learning Innovation Grant (PLIG), Funding total: $1000. Kristen Shinohara (PI). May 2018 – Aug 2019. “Academic Success for Blind Graduate Students in Computing and Information Sciences.” RIT Grant Writer’s Boot Camp, Funding Total: $5000. -
Jacob O. Wobbrock, Ph.D. Curriculum Vitae Professor, the Information School [email protected] by Courtesy, Paul G
20-Sept-2021 1 of 29 Jacob O. Wobbrock, Ph.D. Curriculum Vitae Professor, The Information School [email protected] By Courtesy, Paul G. Allen School of Computer Science & Engineering Homepage Director, ACE Lab Google Scholar Founding Co-Director, CREATE Center University of Washington Box 352840 Seattle, WA, USA 98195-2840 BIOGRAPHY______________________________________________________________________________________________ Jacob O. Wobbrock is a Professor of human-computer interaction (HCI) in The Information School, and, by courtesy, in the Paul G. Allen School of Computer Science & Engineering at the University of Washington, which U.S. News ranked the 8th best global university for 2021. Prof. Wobbrock’s work seeks to scientifically understand people’s experiences of computers and information, and to improve those experiences by inventing new interactive technologies, especially for people with disabilities. His specific research topics include input & interaction techniques, human performance measurement & modeling, HCI research & design methods, mobile computing, and accessible computing. Prof. Wobbrock has co-authored ~200 publications and 19 patents, receiving 25 paper awards, including 7 best papers and 8 honorable mentions from ACM CHI, the flagship conference in HCI. For his work in accessible computing, he received the 2017 SIGCHI Social Impact Award and the 2019 SIGACCESS ASSETS Paper Impact Award. He was named the #1 Most Influential Scholar in HCI by the citation-ranking system AMiner in 2018 and 2021, and was runner-up in 2020. He was also inducted into the prestigious CHI Academy in 2019. His work has been covered in The New York Times, The Washington Post, The Huffington Post, USA Today, and other outlets. He is the recipient of an NSF CAREER award and 7 other National Science Foundation grants.