Ginkgo Biloba, Are Poorly Understood, in Large (Corystosperms), Although They Are Unique in Many Respects

Total Page:16

File Type:pdf, Size:1020Kb

Ginkgo Biloba, Are Poorly Understood, in Large (Corystosperms), Although They Are Unique in Many Respects The presumed ginkgophyte Umaltolepis has PNAS PLUS seed-bearing structures resembling those of Peltaspermales and Umkomasiales Fabiany Herreraa, Gongle Shib, Niiden Ichinnorovc, Masamichi Takahashid, Eugenia V. Bugdaevae, Patrick S. Herendeena, and Peter R. Cranef,g,1 aChicago Botanic Garden, Glencoe, IL 60022; bNanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China; cInstitute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbaatar-51, Mongolia; dDepartment of Environmental Sciences, Faculty of Sciences, Niigata University, Ikarashi, Nishi-ku, Niigata 950-2181, Japan; eInstitute of Biology and Soil Science, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia; fSchool of Forestry and Environmental Studies, Yale University, New Haven, CT 06511; and gOak Spring Garden Foundation, Oak Spring, Upperville, VA 20184 Contributed by Peter R. Crane, February 10, 2017 (sent for review December 29, 2016; reviewed by Jason M. Hilton and Stephen McLoughlin) The origins of the five groups of living seed plants, including the similar to those of certain Peltaspermales and Umkomasiales single relictual species Ginkgo biloba, are poorly understood, in large (corystosperms), although they are unique in many respects. part because of very imperfect knowledge of extinct seed plant di- The combination of Ginkgo-like leaves with peltasperm-like and versity. Here we describe well-preserved material from the Early corystosperm-like seed-bearing structures exhibited by the recon- Cretaceous of Mongolia of the previously enigmatic Mesozoic seed structed Umaltolepis plant is consistent with previous ideas that plant reproductive structure Umaltolepis, which has been presumed interpret extant G. biloba as the last survivor of a once highly to be a ginkgophyte. Abundant new material shows that Umaltole- diverse lineage that included not only extinct close relatives of pis is a seed-bearing cupule that was borne on a stalk at the tip of a living G. biloba, such as G. yimaensis and Yimaia, but also plants short shoot. Each cupule is umbrella-like with a central column that assigned to Peltaspermales, Umkomasiales, and perhaps other bears a thick, resinous, four-lobed outer covering, which opens from groups within a broadly defined Ginkgoopsida (7, 8). below. Four, pendulous, winged seeds are attached to the upper part of the column and are enclosed by the cupule. Evidence from mor- Results phology, anatomy, and field association suggests that the short The Early Cretaceous fossils described here consist of shoots shoots bore simple, elongate Pseudotorellia leaves that have similar with attached seed-bearing structures. They also include leaves venation and resin ducts to leaves of living Ginkgo. Umaltolepis (Pseudotorellia resinosa) (9) that are linked to the shoots by as- seed-bearing structures are very different from those of Ginkgo sociation evidence as well as by features of morphology and but very similar to fossils described previously as Vladimaria. Umal- anatomy. A detailed description of the fossils, illustrated by tolepis and Vladimaria do not closely resemble the seed-bearing additional light and scanning electron micrographs, is provided EVOLUTION structures of any living or extinct plant, but are comparable in some in SI Appendix. respects to those of certain Peltaspermales and Umkomasiales Order—Vladimariales Gordenko. (corystosperms). Vegetative similarities of the Umaltolepis plant to Ginkgo, and reproductive similarities to extinct peltasperms and Family—Umaltolepidaceae Zhou. corystosperms, support previous ideas that Ginkgo maybethelast Genus—Umaltolepis Krassilov, here emended. survivor of a once highly diverse group of extinct plants, several of which exhibited various degrees of ovule enclosure. Emended generic diagnosis—Woody plant with long and short shoots (Figs. 1C and 2 E and G). Short shoots with alternating Umaltolepis | Cretaceous | Mongolia | Ginkgo Significance he living species Ginkgo biloba, which today is native only to TChina (1), is the single remaining species of a group of plants Understanding the origins of the five groups of living seed plants that was once more widespread and more diverse. Fossil plants requires well-supported hypotheses of their relationships to ex- with characteristic Ginkgo-like leaves, or similar, more deeply tinct groups, many of which are poorly understood. New in- divided forms (e.g., Ginkgoites leaves associated with Karkenia; formation from the Early Cretaceous of Mongolia on the enigmatic Baiera leaves associated with Yimaia), are recorded from the extinct plant Umaltolepis shows that its leaves are similar to those Early Permian (Cisuralian) onward, and the morphology of their of Ginkgo, but its seed-bearing structures are unique, and more seed-bearing structures, where known, has been compared with comparable to those of certain extinct Peltaspermales and that of extant Ginkgo (2). Two other extinct genera, Umaltolepis Umkomasiales. Umaltolepis provides new data for understanding and Toretzia, have also been interpreted as part of the Ginkgo relationships among living and fossil seed plants and supports lineage (2–5), but in both cases the morphology of their seed- previous ideas that Ginkgo biloba may be the sole surviving relict bearing structures is poorly understood, and the attribution to of a once very diverse group of Mesozoic seed plants. Ginkgoales is based mainly on the venation, resin bodies, and Author contributions: F.H., M.T., P.S.H., and P.R.C. designed research; F.H., G.S., N.I., E.V.B., stomata of associated simple, strap-shaped, parallel-veined and P.S.H. performed research; F.H. and P.R.C. analyzed data; and F.H., P.S.H., and P.R.C. leaves assigned to Pseudotorellia (e.g., 2, 6). wrote the paper. In this paper we provide information on Umaltolepis,basedon Reviewers: J.M.H., University of Birmingham; and S.M., Swedish Museum of Natural abundant and exceptionally well-preserved lignified material from History. the Early Cretaceous (Aptian–Albian; ∼100–125 Ma) of central The authors declare no conflict of interest. Mongolia. The Umaltolepis seed-bearing structure is umbrella-like, Freely available online through the PNAS open access option. quite different from how it was originally described and also very 1To whom correspondence should be addressed. Email: [email protected]. distinct from the seed-bearing structures of fossil and living This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Ginkgo. The seed-bearing structures of Umaltolepis are more 1073/pnas.1621409114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1621409114 PNAS | Published online March 6, 2017 | E2385–E2391 pseudowhorls of persistent bud scales and persistent leaf bases foliar pseudowhorl on the short shoots composed of five per- (Fig. 2 G and H). Short shoots generally branched, commonly sistent leaf bases. Leaf bases with two lateral flaps flanking a with a seed-bearing structure near the tip (Fig. 1C). Seed- broad cup-shaped leaf abscission scar (Fig. 2 G and H). Cuticle bearing structure a radially symmetrical cupule borne on a of leaf bases bearing deciduous to persistent, unicellular tri- short stalk that expands into a prominent flange just below chomes (Fig. 3E). Isolated four-lobed cupules ovate to ellipti- the cupule base (Fig. 1 B and H). Cupule consisting of a cal in outline (Fig. 1 B and D–F). Each lobe with a slender central column bearing an umbrella-like, four-lobed semicircular distal notch, which clasps the four-angled central covering at the apex (Fig. 1 B–F). Each cupule lobe thick, column (Fig. 1 E, G, and H). Outer cuticle of cupule lobes resinous, and with a thick outer cuticle (Fig. 1 B–F). Cupule thick, with scattered, more or less longitudinally oriented sto- lobes extending downward to clasp the central column just mata (Fig. 3 A and C). Six to eight resin ducts in each cupule above the level of the flange (Fig. 1 F and H). Near its tip, lobe. Seeds winged, each pendulous from near the apex of the just below where the cupule covering is attached, the column is column. Each seed elliptical to ovate in outline, composed four-angled and bears four winged seeds, one along each angle mainly of wing tissue with abundant resin bodies (Fig. 2 A– (Fig. 2 A–D). Each seed is pendulous and entirely covered by D). Seed body very small, wider than long, obovate to more one of the cupule lobes. The micropyle of each seed (Fig. 2 A–D)is or less triangular in outline, with a small apical micropyle. inside the cupule just above the level of the flange (SI Appendix). Detailed description—See SI Appendix. Species—Umaltolepis mongoliensis Herrera, Shi, Ichinnorov, Takahashi, Bugdaeva, Herendeen, et Crane sp. nov. Holotype—PP56446 (Figs. 1B and 2 A–C). Species diagnosis—Each pseudowhorl of persistent bud scales Other material—PP56332–PP56445, PP56447, PP56450–PP56464, on the short shoots consisting of about 8 to 10 scales. Each PP56470–PP56479. Fig. 1. Light and scanning electron micrographs (SEM) of seed-bearing structures of Umaltolepis vachrameevii (A) from the Late Jurassic of the Bureya River Basin, Siberia, Russia, and U. mongoliensis sp. nov. from the Early Cretaceous of Mongolia (B–H). (A) U. vachrameevii [holotype: Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences (FSCEATB FEBRAS), Russia, specimen no. 515–271a] with line drawing showing two isolated seed-bearing structures. Specimen on the Left shows the impression of the stalk and cupule in the sediment. Specimen on Right shows the stalk and three of the four cupule lobes. (B) U. mongoliensis seed-bearing structure (holotype: PP56446) showing stalk and closed cupule. Dissection of this specimen revealed three seeds in situ (Fig. 2 A–C). (C) Branched short shoot with two incomplete seed-bearing structures each consisting of a stalk, flange, and a broken central column (PP56348). (D) Seed-bearing structure showing the stalk and three partially open lobes of the cupule (PP56425).
Recommended publications
  • Gymnosperm Foliage from the Upper Triassic of Lunz, Lower Austria: an Annotated Check List and Identification Key
    Geo.Alp, Vol. 7, S. 19–38, 2010 GYMNOSPERM FOLIAGE FROM THE UPPER TRIASSIC OF LUNZ, LOWER AUSTRIA: AN ANNOTATED CHECK LIST AND IDENTIFICATION KEY Christian Pott1 & Michael Krings2 With 7 figures and 1 table 1 Naturhistoriska riksmuseet, Sektionen för paleobotanik, Box 50007, SE-104 05 Stockholm, Sweden; [email protected] 2 Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, and Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany; [email protected] Abstract The famous Lunz flora from Lower Austria is one of the richest and most diverse Late Triassic floras of the Northern He- misphere. The historical outcrops (mainly coal mines) are no longer accessible, but showy fossils can still be collected from natural exposures around the town of Lunz-am-See and from several of the old spoil tips. This paper presents an annotated check list with characterisations of all currently recognised gymnosperm foliage taxa in the Lunz flora. The descriptions are exemplified by illustrations of typical specimens and diagnostic features of the leaf morphology and epidermal anatomy. Moreover, a simple identification key for the taxa based on macromorphological features is provided that facilitates identification of newly collected specimens. 1. Introduction The Carnian (Late Triassic) flora from Lunz in Lo- ments (i.e. reproductive structures) among the fossils wer Austria is one of only a few well-preserved flo- (see e.g., Krasser, 1917, 1919; Kräusel, 1948, 1949, ras from the Alpine Triassic (Cleal, 1993; Dobruskina, 1953; Pott et al., 2010), the most striking feature of 1998).
    [Show full text]
  • IGCP 632, the Jurassic–Cretaceous Transition In
    IGCP 79 IGCP 632, The Jurassic–Cretaceous transition in North Eastern China (western Liaoning and Inner Mongolia): An IGCP meeting and field excursion on the conti- nental Jurassic Jingeng Sha1, Yanhong Pan1, Enpu Gong2, and Vivi Vajda3* 1 LPS, Nanjing Institute of Geology & Paleontology, Nanjing 210008, China 2 Northeastern University, Shenyang 110004, China 3 Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden, *Corresponding author, E-mail: [email protected] Exposures of strata spanning the Jurassic–Cretaceous boundary been discovered. However, the correlation of the various lithostrati- occur within several basins in western Liaoning and adjacent Inner graphic units in this area is complicated due to patchy exposures and Mongolia. These continental successions host world-renowned plant the scarcity of radiometric constraints, which pose a challenge to researchers and animal fossils including feathered dinosaurs and the oldest flow- working on these deposits. ering plant, Archaeofructus. The first feathered dinosaurs from north- To understand the stratigraphy and context of the Jurassic–Creta- eastern China where found about 20 years ago and created a major ceous biota in Liaoning province, the second IGCP-632 symposium impact in science and the media. Since then, many new specimens have was organized in Liaoning, including a two-day presentation (Sep- Figure 1. (A) Sketch map over the field excursion area in north-eastern China. (B) enlargement of the field region showing the localities of the field stops. Episodes Vol. 40, no. 1 80 intracontinental orogenic system, the Yanshan Movement, and creating a new basin-range system in east Asia. Vivi Vajda presented new results (Peterffy et al., 2015; Vajda et al., 2016) where she compre- hensively analyzed the end-Triassic mass extinc- tion and aftermath and its causal mechanisms, particularly stressing the affects of Jurassic vol- canism in disrupting the major ecosystems but also its importance for fossilization.
    [Show full text]
  • The Jurassic Fossil Wood Diversity from Western Liaoning, NE China
    Jiang et al. Journal of Palaeogeography (2019) 8:1 https://doi.org/10.1186/s42501-018-0018-y Journal of Palaeogeography RESEARCH Open Access The Jurassic fossil wood diversity from western Liaoning, NE China Zi-Kun Jiang1,2, Yong-Dong Wang2,3*, Ning Tian4,5, Ao-Wei Xie2,6, Wu Zhang7, Li-Qin Li2 and Min Huang1 Abstract Western Liaoning is a unique region in China that bears diverse types of Jurassic plants, including leaves, fern rhizomes, and wood, providing significant proxy for vegetation and palaeoenvironment reconstruction of the well-known Yanliao Flora in East Asia. In particular, the silicified wood is very abundant in the fossil Lagerstätte of the Jurassic Tiaojishan Formation in Beipiao, western Liaoning. Previous and recent systematic investigations documented a high diversity of the Jurassic wood assemblages. These assemblages are dominated by conifers, followed by cycads and ginkgoaleans. In total, about 30 species belonging to 21 genera of fossil wood have been recorded so far, which are represented by Cycadopsida, Ginkgopsida, Coniferopsida, and Gymnospermae incertae sedis. The evolutionary implications of several distinctive fossil wood taxa as well as palaeoclimate implications are summarized based on their anatomical structures and growth ring patterns. This work approaches the vegetation development and evolutionary significances of the wood taxa and their relatives, and provides clues for the further understanding of the diversity of the Jurassic Yanliao Flora in East Asia. Keywords: Fossil wood, Diversity, Evolution, Tiaojishan Formation, Jurassic 1 Introduction 2004;Wangetal.,2009). Among these localities, western Fossil floras are a significant record for the vegetation Liaoning is a well-known fossil Lagerstätte with diverse and for the palaeoenvironment reconstructions of the and well-preserved fossil plant foliages and wood (Zhang Mesozoic.
    [Show full text]
  • Lessons from 20 Years of Plant Genome Sequencing: an Unprecedented Resource in Need of More Diverse Representation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.446451; this version posted May 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lessons from 20 years of plant genome sequencing: an unprecedented resource in need of more diverse representation Authors: Rose A. Marks1,2,3, Scott Hotaling4, Paul B. Frandsen5,6, and Robert VanBuren1,2 1. Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA 2. Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA 3. Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa 4. School of Biological Sciences, Washington State University, Pullman, WA, USA 5. Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA 6. Data Science Lab, Smithsonian Institution, Washington, DC, USA Keywords: plants, embryophytes, genomics, colonialism, broadening participation Correspondence: Rose A. Marks, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Email: [email protected]; Phone: (603) 852-3190; ORCID iD: https://orcid.org/0000-0001-7102-5959 Abstract The field of plant genomics has grown rapidly in the past 20 years, leading to dramatic increases in both the quantity and quality of publicly available genomic resources. With an ever- expanding wealth of genomic data from an increasingly diverse set of taxa, unprecedented potential exists to better understand the evolution and genome biology of plants.
    [Show full text]
  • A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E
    ISSN 0031-0301, Paleontological Journal, 2009, Vol. 43, No. 10, pp. 1262–1271. © Pleiades Publishing, Ltd., 2009. A New Genus Navipelta (Peltaspermales, Pteridospermae) from the Permian/Triassic Boundary Deposits of the Moscow Syneclise E. V. Karasev Borissiak Paleontological Institute of the Russian Academy of Sciences, 117997, Profsoyuznaya, 123, Moscow e-mail: [email protected] Received January 25, 2009 Abstract—A new genus of peltaspermalean ovuliferous organs Navipelta gen. nov. is described from the ter- restrial deposits of the Nedubrovo locality (village of Nedubrovo, Vologda Region, Russia), belonging to the base of Vetlugian Group (Upper Permian–Lower Triassic). Data on the anatomy of the peltate bilateral ovulif- erous organs are obtained for the first time. Vascular strands in the peltoid depart from that of a stalk and branch up to three times distally. Transfusion tissue around the vascular strands is well developed. The new genus had a system of radially arranged resin canals, broaden into large secretory cavities. Key words: Peltaspermaceae, ovuliferous organs, Peltaspermum, Autunia, Permian/Triassic boundary, Vetlu- gian Group, systematics. DOI: 10.1134/S0031030109100086 INTRODUCTION angium Zhao ex Gomankov et Meyen and Autuniopsis Poort et Kerp) or on the basis of their association with The family Peltaspermaceae attracts attention of different foliage (Peltaspermopsis buevichiae Goman- many researchers, because its members were the main kov et. Meyen and Meyenopteris, Poort et Kerp) component of the Late Permian Angaraland floras. (Gomankov and Meyen, 1986; Poort and Kerp, 1990). They escaped the global crisis on the Permian/Triassic boundary and transited in the Mesozoic, where domi- The morphology and epidermal structure of seed- nated during the Middle and Late Triassic of the North- bearing organs in the Peltaspermaceae were studied rel- ern as well as Southern hemispheres.
    [Show full text]
  • Triassic) in Barreal Depocenter, San Juan Province, Argentina
    Andean Geology ISSN: 0718-7092 ISSN: 0718-7106 [email protected] Servicio Nacional de Geología y Minería Chile Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Bodnar, Josefina; Iglesias, Ari; Colombi, Carina E.; Drovandi, Juan Martín Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Andean Geology, vol. 46, no. 3, 2019 Servicio Nacional de Geología y Minería, Chile Available in: https://www.redalyc.org/articulo.oa?id=173961656006 This work is licensed under Creative Commons Attribution 3.0 International. PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Josefina Bodnar, et al. Stratigraphical, sedimentological and palaeofloristic characterization of ... Research article Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Caracterización estratigráfica, sedimentológica y paleoflorística del Grupo Sorocayense (Triásico) en el área de Barreal, provincia de San Juan, Argentina Josefina Bodnar *12 Redalyc: https://www.redalyc.org/articulo.oa? Universidad Nacional de La Plata, Argentina id=173961656006 [email protected] Ari Iglesias 23 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Carina E. Colombi 24 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Juan Martín Drovandi 24 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Received: 30 November 2017 Accepted: 30 October 2018 Published: 04 February 2019 Abstract: e northern area of Cuyo Basin (west-central Argentina) corresponds to the Rincón Blanco half-graben, whose filling is arranged into the Rincón Blanco and Sorocayense groups.
    [Show full text]
  • Life in the End-Permian Dead Zone
    Life in the end-Permian dead zone Cindy V. Looy*†, Richard J. Twitchett‡, David L. Dilcher§, Johanna H. A. Van Konijnenburg-Van Cittert*, and Henk Visscher* *Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands; ‡Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740; and §Paleobotany Laboratory, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 Contributed by David L. Dilcher, May 1, 2001 The fossil record of land plants is an obvious source of information ecological crisis. On the basis of palynological data from a ‘‘dead on the dynamics of mass extinctions in the geological past. In zone’’ in a Permian–Triassic (P-Tr) transition sequence from conjunction with the end-Permian ecological crisis, Ϸ250 million East Greenland, in this paper we document evidence of non- years ago, palynological data from East Greenland reveal some equilibrium vegetation dynamics resulting in selective but time- unanticipated patterns. We document the significant time lag delayed extinctions among woody gymnosperms. between terrestrial ecosystem collapse and selective extinction among characteristic Late Permian plants. Furthermore, ecological The End-Permian ‘‘Dead Zone’’ crisis resulted in an initial increase in plant diversity, instead of a Latest Permian and earliest Triassic sediments in East Green- decrease. Paradoxically, these floral patterns correspond to a land (Fig. 1) are represented by the upper part of the Schuchert ‘‘dead zone’’ in the end-Permian faunal record, characterized by a Dal Formation and the overlying Wordie Creek Formation. The paucity of marine invertebrate megafossils. The time-delayed, predominantly fine-grained siliciclastic sediments of these for- end-Permian plant extinctions resemble modeled ‘‘extinction mations were deposited in a narrow, elongate, shallow-marine debt’’ responses of multispecies metapopulations to progressive basin.
    [Show full text]
  • Nomenclatural Notes on Some Ginkgoalean Fossil Plants from China
    植 物 分 类 学 报 45 (6): 880–883(2007) doi:10.1360/aps07015 Acta Phytotaxonomica Sinica http://www.plantsystematics.com Nomenclatural notes on some ginkgoalean fossil plants from China WU Xiang-Wu ZHOU Zhi-Yan* WANG Yong-Dong (Nanjing Institute of Geology and Palaeontology, the Chinese Academy of Sciences, Nanjing 210008, China) Abstract Two morphotaxa of ginkgoalean fossil plants from China bear illegitimate specific names, viz. Sphenobaiera biloba S. N. Feng (1977) and S. rugata Z. Q. Wang (Dec. 1984), that are heterotypic later homonyms of S. biloba Prynada (1938) and S.? rugata Z. Y. Zhou (Mar. 1984) respectively. Under Art. 53.1 and 7.3 of the Vienna Code, new specific names are proposed to supersede these illegitimate names. Two other names, viz. Baiera ziguiensis F. S. Meng (1987) and Ginkgoites elegans S. Yang, B. N. Sun & G. L. Shen (1988), were not validly published, because no nomenclatural type was definitely indicated. New species are instituted for the two morphotaxa here. Although the specific name Ginkgoites elegans Cao (1992) was antedated by Ginkgoites elegans S. Yang, B. N. Sun & G. L. Shen (1988), it still remains available for use, as the latter name has no status under the Vienna Code (Art. 12, 37) and thus no priority over Ginkgoites elegans Z. Y. Cao. Key words Ginkgoales, Ginkgoites, Baiera, Sphenobaiera, morphospecies, nomenclature. In compiling the Chinese record of fossil plants described since 1865, several illegitimate and/or not validly published names of ginkgoalean morphotaxa were found. They are either later homonyms or were published without a definite indication of the type (Art.
    [Show full text]
  • Palaeogeograph Y, Palaeoclimatology, Palaeoecology , 17(1975): 157--172 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in the Netherlands
    Palaeogeograph y, Palaeoclimatology, Palaeoecology , 17(1975): 157--172 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands CLIMATIC CHANGES IN EASTERN ASIA AS INDICATED BY FOSSIL FLORAS. II. LATE CRETACEOUS AND DANIAN V. A. KRASSILOV Institute of Biology and Pedology, Far-Eastern Scientific Centre, U.S.S.R. Academy of Sciences, Vladivostok (U.S.S.R.) (Received June 17, 1974; accepted for publication November 11, 1974) ABSTRACT Krassilov, V. A., 1975. Climatic changes in Eastern Asia as indicated by fossil floras. II. Late Cretaceous and Danian. Palaeogeogr., Palaeoclimatol., Palaeoecol., 17:157--172. Four Late Cretaceous phytoclimatic zones -- subtropical, warm--temperate, temperate and boreal -- are recognized in the Northern Hemisphere. Warm--temperate vegetation terminates at North Sakhalin and Vancouver Island. Floras of various phytoclimatic zones display parallel evolution in response to climatic changes, i.e., a temperature rise up to the Campanian interrupted by minor Coniacian cooling, and subsequent deterioration of cli- mate culminating in the Late Danian. Cooling episodes were accompanied by expansions of dicotyledons with platanoid leaves, whereas the entire-margined leaf proportion increased during climatic optima. The floristic succession was also influenced by tectonic events, such as orogenic and volcanic activity which commenced in Late Cenomanian--Turonian times. Major replacements of ecological dominants occurred at the Maastrichtian/Danian and Early/Late Danian boundaries. INTRODUCTION The principal approaches to the climatic interpretation of fossil floras have been outlined in my preceding paper (Krassilov, 1973a). So far as Late Creta- ceous floras are concerned, extrapolation (i.e. inferences from tolerance ranges of allied modern taxa) is gaining in importance and the entire/non-entire leaf type ratio is no less expressive than it is in Tertiary floras.
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • Seed Plant Phylogeny: Demise of the Anthophyte Hypothesis? Michael J
    bb10c06.qxd 02/29/2000 04:18 Page R106 R106 Dispatch Seed plant phylogeny: Demise of the anthophyte hypothesis? Michael J. Donoghue* and James A. Doyle† Recent molecular phylogenetic studies indicate, The first suggestions that Gnetales are related to surprisingly, that Gnetales are related to conifers, or angiosperms were based on several obvious morphological even derived from them, and that no other extant seed similarities — vessels in the wood, net-veined leaves in plants are closely related to angiosperms. Are these Gnetum, and reproductive organs made up of simple, results believable? Is this a clash between molecules unisexual, flower-like structures, which some considered and morphology? evolutionary precursors of the flowers of wind-pollinated Amentiferae, but others viewed as being reduced from Addresses: *Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138, USA. †Section of Evolution and more complex flowers in the common ancestor of Ecology, University of California, Davis, California 95616, USA. angiosperms, Gnetales and Mesozoic Bennettitales [1]. E-mail: [email protected] These ideas went into eclipse with evidence that simple [email protected] flowers really are a derived, rather than primitive, feature Current Biology 2000, 10:R106–R109 of the Amentiferae, and that vessels arose independently in angiosperms and Gnetales. Vessels in angiosperms 0960-9822/00/$ – see front matter seem derived from tracheids with scalariform pits, whereas © 2000 Elsevier Science Ltd. All rights reserved. in Gnetales they resemble tracheids with circular bor- dered pits, as in conifers. Gnetales are also like conifers in These are exciting times for those interested in plant lacking scalariform pitting in the primary xylem, and in evolution.
    [Show full text]
  • Dr. Sahanaj Jamil Associate Professor of Botany M.L.S.M. College, Darbhanga
    Subject BOTANY Paper No V Paper Code BOT521 Topic Taxonomy and Diversity of Seed Plant: Gymnosperms & Angiosperms Dr. Sahanaj Jamil Associate Professor of Botany M.L.S.M. College, Darbhanga BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants UNIT- I BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants Classification of Gymnosperms. # Robert Brown (1827) for the first time recognized Gymnosperm as a group distinct from angiosperm due to the presence of naked ovules. BENTHAM and HOOKSER (1862-1883) consider them equivalent to dicotyledons and monocotyledons and placed between these two groups of angiosperm. They recognized three classes of gymnosperm, Cyacadaceae, coniferac and gnetaceae. Later ENGLER (1889) created a group Gnikgoales to accommodate the genus giankgo. Van Tieghem (1898) treated Gymnosperm as one of the two subdivision of spermatophyte. To accommodate the fossil members three more classes- Pteridospermae, Cordaitales, and Bennettitales where created. Coulter and chamberlain (1919), Engler and Prantl (1926), Rendle (1926) and other considered Gymnosperm as a division of spermatophyta, Phanerogamia or Embryoptyta and they further divided them into seven orders: - i) Cycadofilicales ii) Cycadales iii) Bennettitales iv) Ginkgoales v) Coniferales vi) Corditales vii) Gnetales On the basis of wood structure steward (1919) divided Gymnosperm into two classes: - i) Manoxylic ii) Pycnoxylic The various classification of Gymnosperm proposed by various workers are as follows: - i) Sahni (1920): - He recognized two sub-divison in gymnosperm: - a) Phylospermae b) Stachyospermae BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants ii) Classification proposed by chamber lain (1934): - He divided Gymnosperm into two divisions: - a) Cycadophyta b) Coniterophyta iii) Classification proposed by Tippo (1942):- He considered Gymnosperm as a class of the sub- phylum pteropsida and divided them into two sub classes:- a) Cycadophyta b) Coniferophyta iv) D.
    [Show full text]