Investigations Into the Perplexing Interrelationship of the Genus Takifugu Abe, 1949 (Tetraodontiformes, Tetraodontidae)

Total Page:16

File Type:pdf, Size:1020Kb

Investigations Into the Perplexing Interrelationship of the Genus Takifugu Abe, 1949 (Tetraodontiformes, Tetraodontidae) View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Hydrobiology, Chinese Academy Of Sciences Chinese Science Bulletin © 2008 SCIENCE IN CHINA PRESS ARTICLES Investigations into the perplexing interrelationship of the Genus Takifugu Abe, 1949 (Tetraodontiformes, Tetraodontidae) ZHANG YuBo1,2 & HE ShunPing1† 1 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China The phylogenetic relationships within the genus Takifugu Abe, 1949 (Tetraodontiformes, Tetraodonti- dae) remain unresolved. Because of the use of Takifugu as model organisms, the resolution of these relationships is crucial for the interpretation of evolutionary trends in biology. Pufferfishes of this ge- nus are comprised of a comparatively small number of species and are mainly distributed along the coastal region of the western part of the Sea of Japan and the coastline of China. Mitochondrial gene sequences were employed to test the phylogenetic hypotheses within the genus. Seventeen species of the genus were examined. Molecular phylogenetic trees were constructed using the maximum parsi- mony, neighbor-joining, maximum likelihood and Bayesian methods. Our hypothesis of internal relationships within the genus differs from previous hypotheses. Our results indicate that (1) the genus Takifugu is a monophyletic assemblage; (2) the genus is divided into 6 subgroups based on the mo- lecular data; and (3) there is low genetic diversity among the species within this genus. In addition, speciation within Takifugu appears to be driven by hybridization and isolation by distribution. Our re- sults also suggested that the taxonomy in the genus should be clarified based on both molecular and morphological data. phylogeny, cytochrome b gene, 12S rRNA gene, Takifugu Abe Pufferfishes of the genus Takifugu Abe, 1949 uted in marine regions of the Indian Ocean[2-4] (Figure (Tetraodontiformes, Tetraodontidae) occur in Southeast 1). Most of species can be found along coastal regions of Asia and the genus is composed of comparatively few the Yellow Sea, Bohai Sea, East China Sea and South species. There are 22 recognized species, and all of China Sea, with some species entering the estuaries of which have been recorded in China (including two pre- rivers in China[1,4,5]. viously unknown forms) according to the description in Due to patchy distribution, it is difficult to collect the Fauna Sinica[1] (cf. 23 Valid taxonomic names could be specimens of Takifugu. Few molecular phylogenetic found in records in fishbase: http://www.fishbase.org). It analyses have been conducted to date. The published consists of primarily brackish and freshwater species but phylogenetic studies were based on morphological[5], also includes species that are reef-dwelling, a few that cytogenetic[6] and isozyme variations[7]. Additionally, are entirely pelagic, and a small number of benthic some researchers have investigated the genus-level tax- slope-dwellers species. Members of this genus are onomy for the purpose of species identification[4,8―14]. mainly distributed along the coastal regions of the west- Received December 27, 2006; accepted September 25, 2007 GENETICS ern part of the Sea of Japan and the East China Sea from doi: 10.1007/s11434-008-0066-2 the Yellow Sea northward to Muroran, Hokkaido, Japan. †Corresponding author (email: [email protected]) Supported by the National Natural Science Foundation of China (Grant No. Additionally, a few species of the genus are also distrib- 30225008) www.scichina.com | csb.scichina.com | Chinese Science Bulletin | January 2008 | vol. 53 | no. 2 | 233-244 Figure 1 The sampling localities of the pufferfishes used in this study (a), and the distribution of the Takifugu Abe (shaded, (b)). Before the 1950s, members of Takifugu Abe were as- the data set of RAPD analysis and sequences of mito- cribed to Sphoeroides. Based on their taxonomic work, chondrial 16S rRNA (572 bp). Up to now, little system- Fraser-Brunner[8], Abe[9,10] and Whitley[11] showed the atic effort has been put forth to generate a DNA-based morphological diversity of these fishes was distinct and complete phylogeny and species identification of the a new name Takifugu was given to discriminate them genus Takifugu. from Sphoeroides. Abe[9] also indicated that there were 6 Takifugu rubripes’s role has become more important subgenera comprised of 18 species, all of which oc- not only in commerce, but also in functional genome curred in marine habitats near China and Japan. Cheng studies as the model organism since the 1990s[15]. A draft et al.[5] examined the classification and interspecific re- sequence covering about 95% of the genome, using the lationships of 15 species (including 2 new species), “whole-genome shotgun” sequencing strategy, results of found in China using morphological characters. Wang et the assembly annotation, and a preliminary analysis of al.[7] examined interspecific differences among 13 spe- the genome was reported in Science[15], and later cies within Takifugu, using allozyme variation of myo- amended in July 2005 (http://www.fugu-sg.org/in- gen. Miyaki et al.[6] performed karyological analyses for dex.html). It has a uniquely compact genome with un- 6 species of Takifugu and revealed their remarkably usually small introns and lacks extensive repetitive se- similar chromosome complements. More recently, quences and pseudo-genes, making it a useful model for DNA-based analyses such as random amplified poly- gene discovery, annotating the human and other verte- morphic DNA (RAPD) have been used to analyze the brate genomes[4,16,17]. A reliable phylogeny of the group, phylogenetic relationships among: (1) T. pseudommus, T. which is crucial for a better interpretation of the evolu- obscurus, and two forms of T. rubripus (from Japan and tionary trends for speciation of the group, is still ab- China)[12]; (2) T. pseudommus, T. rubripus, T. xanthop- sent[18]. Although the phylogenetic relationships among terus, T. vermicularis and T. niphobles; and (3) the the genera of the family have been recently discussed by population structure of two species, T. pseudommus and Holcroft[19,20], in which the relationships of the order T. rubripus[4,13]. Song et al.[4] contributed topological Tetraodontiformes and the interrelationships of phylogenetic trees for T. pseudommus, T. rubripus, T. tetraodontiform fishes were laid out, it is essential to xanthopterus, T. vermicularis and T. niphobles, which determine the phylogenetic position of T. rubripes by were generated from neighbor-joining analysis based on identifying its sister species and to place Takifugu Abe 234 ZHANG YuBo et al. Chinese Science Bulletin | January 2008 | vol. 53 | no. 2 | 233-244 into a comparative context. T. guttulatus, T. plagiocellatus and T. reticularis were The purpose of this study is to infer the phylogenetic not included in this study. 17 spececies of Takifugu Abe, ARTICLES relationships of the species within the genus Takifugu, to about three fourths of all described species (according to evaluate the monophyly of the group, and to estimate the Su and Li[1]; Figure 1), were collected, including the validity of some of the currently recognized species Chinese coastal samples, in an effort to represent the within this genus. We used molecular data to infer the diversity of this genus as much as possible (Table 1). All phylogeny of Takifugu from mitochondrial cytochrome b samples were preserved in 95% ethanol, and deposited (Cyt b) and 12S rRNA genes. Cyt b gene has been con- in the Freshwater Fish Museum of the Institute of sidered one of the most useful genes for phylogenetic Hydrobiology, the Chinese Academy of Sciences. reconstruction, and is probably the best-known mito- 1.2 DNA extraction, PCR amplification and se- chondrial gene with respect to structure and function of quencing its protein product[21]. Cyt b gene contains both slowly and rapidly evolving codon positions, as well as more Total DNA was extracted from fins following phe- [26] conservative and more variable regions or domains nol/chloroform extraction procedure . Target regions overall[22―24]. Moreover, in order to add more informa- of the mitochondrial DNA were amplified from the total tive sites, complete sequences of the 12S rRNA gene DNA extracts using the polymerase chain reaction from 16 species were added to the Cyt b gene sequences (PCR). The primers for both Cyt b and 12S rRNA, Cyt b to generate a robust phylogeny of the genus Takifugu. F (5′-GGCGTGAAAAACCATCGTTG-3′) and Cyt b R Two species, Tetraodon nigroviridis and Lagocephalus (5′-CCCCGACATTCGGTTTACAAGAC-3′), and 12sF gloveri, were included as outgroups. They are the puta- (5′-GCAGAGTACTGAAGATGCTAAG-3′) and 12sR tive closest relatives to Takifugu according to recent (5′-CGTCAACTCGGTGTAAGG-3′) were adapted studies[19,20]. from Xiao et al.[27] and Liu[28], modified with the mito- chondrial sequence of T. rubripes[16] (GenBank Acces- 1 Materials and methods sion No. AJ421455). The PCR contained approximately 100 ng of template DNA, 1.5 µL of each primer, 6 µL of 1.1 Species examined and sample collection 10× reaction buffer, 1.5 µL dNTPs (each 2.5 mmol/L), Due to recent over-fishing, wild stocks of Takifugu have and 1.5 U Taq DNA polymerase in total 60 µL in a total been decreasing rapidly[25], which increased the difficul- volume. The reaction conditions were conducted as the ties of sampling; therefore, T. porphyreus, T. pardalis, following: an initial 94℃ denaturation for 4 min; fol- Table 1 Pairwise p-distance of the complete of Cyt b gene data matrix of 19 taxa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 T. rubripes T. pseudommus 0.003 T. stictonotus 0.005 0.003 T. flavidus 0.034 0.037 0.04 T.
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Tetraodontiformes: Tetraodontidae) and Some Related Species, Including a New Species from Hawaii!
    Pacific Science (1983), vol. 37, no. 1 © 1983 by the University of Hawaii Press. All rights reserved The Status of Torquigener hypselogeneion (Bleeker) (Tetraodontiformes: Tetraodontidae) and Some Related Species, including a New Species from Hawaii! GRAHAM S. H ARDy 2 ABSTl~ACT: Torquigener .hypselogeneion (Bleeker) and T.jiorealis (Cope) are redescnbed, and a neotype IS proposed for the former. That species differs from T. jiorealis in having smaller eye ~iameter , shorter caudal peduncle length, usuall!, lower.fin ray counts, and different color pattern. Torquigener randalli n:s~. IS descnbed .from six specimens from Oahu, Hawaii, differing from the similar T.jiorealis In shape ofdorsal and anal fins, a usually lower dorsal and anal fin ray count, and in color pattern. 1:'1 MARCH 1852 Bleeker published the descrip­ METHODS tion of a small pufferfish, which he called Measurements (taken to 2 significant Tetraodon hypselogeneion, based on speci­ figures) were by dial caliper, in a manner mens from Amboina (Ambon) (Bleeker similar to that outlined by Dekkers (1975). 1852a). In subsequent descriptions, he ex­ All measurements are from preserved speci­ tended the known distribution to cover much mens . Fin ray counts include all visible rays, ?f the D~tch Ea st Indies (Indonesia), and both branched and unbranched, and fin ray In 1865 Included examples, considered as lengths were determined from the embedded hypselogeneion, reported from the Red Sea as base. One example each of T. jiorealis and Tetrodon honckenii (not ofBloch), by Riippell T. randalli was cleared and stained and (1828). A central Pacific species, described as all others x-rayed, for examination of their ! etrodon .f!Nealis by Cope (1871), was later osteology.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families
    ISSN 0032-9452, Journal of Ichthyology, 2018, Vol. 58, No. 5, pp. 633–661. © Pleiades Publishing, Ltd., 2018. An Annotated List of the Marine and Brackish-Water Ichthyofauna of Aniva Bay (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families Yu. V. Dyldina, *, A. M. Orlova, b, c, d, A. Ya. Velikanove, S. S. Makeevf, V. I. Romanova, and L. Hanel’g aTomsk State University (TSU), Tomsk, Russia bRussian Federal Research Institute of Fishery and Oceanography (VNIRO), Moscow, Russia cInstitute of Ecology and Evolution, Russian Academy of Sciences (IPEE), Moscow, Russia d Dagestan State University (DSU), Makhachkala, Russia eSakhalin Research Institute of Fisheries and Oceanography (SakhNIRO), Yuzhno-Sakhalinsk, Russia fSakhalin Basin Administration for Fisheries and Conservation of Aquatic Biological Resources—Sakhalinrybvod, Aniva, Yuzhno-Sakhalinsk, Russia gCharles University in Prague, Prague, Czech Republic *e-mail: [email protected] Received March 1, 2018 Abstract—The second, final part of the work contains a continuation of the annotated list of fish species found in the marine and brackish waters of Aniva Bay (southern part of the Sea of Okhotsk, southern part of Sakhalin Island): 137 species belonging to three orders (Perciformes, Pleuronectiformes, Tetraodon- tiformes), 31 family, and 124 genera. The general characteristics of ichthyofauna and a review of the commer- cial fishery of the bay fish, as well as the final systematic essay, are presented. Keywords: ichthyofauna, annotated list, conservation status, commercial importance, marine and brackish waters, Aniva Bay, southern part of the Sea of Okhotsk, Sakhalin Island DOI: 10.1134/S0032945218050053 INTRODUCTION ANNOTATED LIST OF FISHES OF ANIVA BAY The second part concludes the publication on the 19.
    [Show full text]
  • Genomics and Mapping of Teleostei (Bony fish)
    Comparative and Functional Genomics Comp Funct Genom 2003; 4: 182–193. Published online 1 April 2003 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.259 Featured Organism Genomics and mapping of Teleostei (bony fish) Melody S. Clark* HGMP Resource Centre, Genome Campus, Hinxton, Cambridge CB2 4PP, UK *Correspondence to: Abstract Melody S. Clark, HGMP Resource Centre, Genome Until recently, the Human Genome Project held centre stage in the press releases Campus, Hinxton, Cambridge concerning sequencing programmes. However, in October 2001, it was announced CB2 4PP, UK. that the Japanese puffer fish (Takifugu rubripes, Fugu) was the second vertebrate E-mail: [email protected] organism to be sequenced to draft quality. Briefly, the spotlight was on fish genomes. There are currently two other fish species undergoing intensive sequencing, the green spotted puffer fish (Tetraodon nigroviridis) and the zebrafish (Danio rerio). But this trio are, in many ways, atypical representations of the current state of fish genomic research. The aim of this brief review is to demonstrate the complexity of fish as a Received: 10 November 2002 group of vertebrates and to publicize the ‘lesser-known’ species, all of which have Revised: 5 December 2002 something to offer. Copyright 2003 John Wiley & Sons, Ltd. Accepted: 28 January 2003 Keywords: Teleostei; fish; genomics; BACs; sequencing; aquaculture Background the wild-caught fisheries production figures. The equivalents within the EU are trout, Atlantic Fish have the potential to be immensely useful salmon and sea bass/bream for aquaculture; model organisms in medical research, as evidenced with herring, mackerel and sprat for wild-caught by the genomic sequencing programmes mentioned fisheries.
    [Show full text]
  • Canestro 06Evodev Retinoic Acid Machinery in Non-Chordates.Pdf
    EVOLUTION & DEVELOPMENT 8:5, 394–406 (2006) Is retinoic acid genetic machinery a chordate innovation? Cristian Can˜estro,a John H. Postlethwait,a Roser Gonza`lez-Duarte,b and Ricard Albalatb,Ã aInstitute of Neuroscience, University of Oregon, Eugene, OR 97403, USA bDepartament de Gene`tica, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain ÃAuthor for correspondence (email: [email protected]) SUMMARY Development of many chordate features and showed for the first time that RA genetic machineryF depends on retinoic acid (RA). Because the action of RA that is Aldh1a, Cyp26, and Rar orthologsFis present in during development seems to be restricted to chordates, it had nonchordate deuterostomes. This finding implies that RA been previously proposed that the ‘‘invention’’ of RA genetic genetic machinery was already present during early machinery, including RA-binding nuclear hormone receptors deuterostome evolution, and therefore, is not a chordate (Rars), and the RA-synthesizing and RA-degrading enzymes innovation. This new evolutionary viewpoint argues against Aldh1a (Raldh) and Cyp26, respectively, was an important the hypothesis that the acquisition of gene families under- step for the origin of developmental mechanisms leading lying RA metabolism and signaling was a key event for to the chordate body plan. We tested this hypothesis the origin of chordates. We propose a new hypothesis in by conducting an exhaustive survey of the RA machinery which lineage-specific duplication and loss of RA machinery in genomic databases for twelve deuterostomes. We genes could be related to the morphological radiation of reconstructed the evolution of these genes in deuterostomes deuterostomes. INTRODUCTION which appears to be the sister group of chordates (Cameron et al.
    [Show full text]
  • Takifugu Niphobles
    Joseph Fratello Marine Biology Professor Tudge 10/16/17 Takifugu niphobles Introduction: The Takifugu niphobles or ​ ​ ​ the Grass Puffer is a small fish that resides in the shallow waters of the Northwest Pacific Ocean. The scientific name of the fish comes from the japanese words of taki meaning waterfall and fugu meaning venomous fish (Torres, Armi G., et al). The Takifugu niphobles is part of the ​ ​ family Tetraodontidae which encompasses all puffer fish and are known for their ability to inflate like a balloon. The fish do this by quickly sucking water into their stomachs causing them to inflate and causing the flat lying spines which cover their bodies to become erect. Their diets consist of a wide array of small crustaceans and mollusks (Practical Fishkeeping, 2010). Takifugu ​ niphobles are one of the two most common fish in the Northwest Pacific Ocean and are ​ often accidently caught by fishermen who employ the bottom longline technique (Shao K, et al., 2014). The sale of these fish, including other puffers, are banned in japanese markets due to their highly toxic nature. Yet, puffer fish are considered a japanese delicacy despite the fact that a wrong cut of meat can kill a fully grown man. Upwards of thirty to fifty people are affected by the toxin every year and chefs must undergo two years of training before they can legally sell the fish (Dan Bloom 2015). These fish have a very unique means of reproduction, in which they swim towards the shore and lay their eggs on the beach. The fish then, with the help of the waves, beach themselves and fertilize these eggs.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Acceptability Evaluation by Vietnamese About Non-Toxic Cultured Pufferfish in Comparison with Grouper and Mackerel
    Asian Journal of Dietetics 2019 ORIGINAL Acceptability Evaluation by Vietnamese about Non-toxic Cultured Pufferfish in Comparison with Grouper and Mackerel Linh Vu Thuy1, Tuyen Le Danh3, Hien Vu Thi Thu3, Bat Nguyen Khac4, Ngoc Vuong Thi Ho3, Nghia Nguyen Viet4, Hien Bui Thi Thu4, Fumio Shimura1, Sumiko Kamoshita1, Yoshinari Ito2, Shigeru Yamamoto1 1 International Nutrition, Graduate School of Human Life Sciences, Jumonji University,Saitama 352-8510, Japan 2Mitsui Marine Products Inc, Miyazaki 889-0511, Japan 3 Vietnam National Institute of Nutrition, Hanoi, Vietnam 4 Vietnam Marine Fisheries Research Institute, Hai Phong, Vietnam (Recived June 4,2019) ABSTRACT Background and purpose. World-wide there are few countries in which pufferfish (fugu) is eaten as in Japan. In Vietnam, pufferfish has been banned since it’s toxic ocurred due to lack of knowledge about distinguish non-toxic species. Consequently, there is a huge amount of pufferfish inhabiting in Vietnamese water, but whenever accidentally catching it, we have to throw or use as fertilizer. To develop culinary culture of non-toxic pufferfish in Vietnam, it is very important and essential to recognize safe species and culture them in good condition, then apply proper method to process that become safety foods. In order to initial setting up for such purpose, we carried out a sensory study in Vietnamese to test whether they can accept foods made from fugu by method of Japanese. Methods. We compared the sensory reaction to Japanese cultured Takifugu rubripes and fish from Vietnamese waters: grouper and mackerel. The 107 panelists were Vietnamese volunteers working in the field of nutrition, employees of marine companies, or government officials who could influence the relevant laws.
    [Show full text]
  • Adaptive Evolution of Low Salinity Tolerance and Hypoosmotic Regulation in a Euryhaline Teleost, Takifugu Obscurus
    Adaptive evolution of low salinity tolerance and hypoosmotic regulation in a euryhaline teleost, Takifugu obscurus Hanyuan Zhang Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Fengtai, Beijing, China Jilun Hou Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, China Haijin Liu Breeding Laboratory, Dalian Tianzheng Industry Co. Ltd., Dalian, Liaoning, China Haoyong Zhu Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China Gangchun Xu Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Wuxi, China Jian Xu ( [email protected] ) Chinese Academy of Fishery Sciences https://orcid.org/0000-0003-0274-4268 Research article Keywords: Takifugu, low salt-tolerance, hypoosmotic regulation, population genomics, genome re- sequencing Posted Date: October 30th, 2019 DOI: https://doi.org/10.21203/rs.2.16620/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Marine Biology on June 3rd, 2020. See the published version at https://doi.org/10.1007/s00227-020-03705-x. Page 1/20 Abstract Background The mechanism of osmoregulation is crucial for maintaining growth, development, and life activities in teleosts. Takifugu obscurus, the only euryhaline species in the genus Takifugu, is a proper model organism for studying the mechanism of low salt-tolerance and hypoosmotic regulation. Results In this study, whole genome sequencing data were obtained from 90 puffersh representing ve species within this genus, T. rubripes, T. obscurus, T.
    [Show full text]
  • Four New Records of Fish Species (Cypriniformes: Nemacheilidae
    Zoological Research 35 (1): 51−58 DOI:10.11813/j.issn.0254-5853.2014.1.051 Four new records of fish species (Cypriniformes: Nemacheilidae, Balitoridae; Characiformes: Prochilodontidae) and corrections of two misidentified fish species (Tetraodontiformes: Tetraodontidae; Beloniformes: Belonidae) in Yunnan, China Marco Endruweit* Qingshan Road 601, Qingdao, China Abstract: In this study, six fish species of five families are reported for the first time from Yunnan Province, China. The nemacheilid Schistura amplizona Kottelat, 2000 is reported from the Luosuojiang River and Nanlahe River subbasins, Mekong basin; the prochilodontid Prochilodus lineatus (Valenciennes, 1837), the balitorid Vanmanenia serrilineata Kottelat, 2000, and the tetraodontid Monotrete turgidus Kottelat, 2000, from Nanlahe River subbasin, Mekong basin; the balitorid Beaufortia daon (Mai, 1978), and the belonid Xenentodon canciloides (Bleeker, 1854), both, from Black River subbasin, Red River basin. The freshwater puffer M. turgidus and the needlefish X. canciloides have been previously misidentified as Tetraodon leiurus (Bleeker, 1950) and Tylosurus strongylurus (van Hasselt, 1823), respectively. Keywords: New record; Misidentification; Mekong basin; Red River; Yunnan Yunnan Province is located in the Southwest within Chen et al in 1989, respectively 1990 for the second the People’s Republic of China. Its name refers to its volume, giving 226 species and subspecies accounts in location south of the Yunling Mountain range. It shares the first volume plus an additional 173 in the second. international border with Myanmar in the West and Through extensive fieldwork and re-evaluation of Southwest, with Laos and Vietnam in the South; national institutionally stored lots the number of Yunnanese fish borders with Xizang Autonomous Region to the species is growing (for e.g.
    [Show full text]