MDA Game Design for Video Game Development by Genre
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHECKLIST for the MINOR in NEW MEDIA and DIGITAL DESIGN 6 TOTAL COURSES
CHECKLIST for THE MINOR IN NEW MEDIA AND DIGITAL DESIGN 6 TOTAL COURSES CORE COURSES (MUST TAKE BOTH COURSES): _____ NMDD 1001: EXPLORATIONS IN DIGITAL DESIGN ______CISC 2500: INFORMATION AND DATA MANAGEMENT COURSEWORK: MUST TAKE 4 COURSES (THESE MAY BE IN A SINGLE CONCENTRATION, OR IN ANY COMBINATION FROM ACROSS CONCENTRATIONS) THE FOLLOWING COURSES COUNT IN ALL CONCENTRATIONS: ______CISC 2530: Computer GraphiCs ______CMBU 4471: The Business of New Media ______DTEM 3476: SoCial Media ______DTEM 2421: Digital ProduCtion for New Media ______NMDD 3880: Designing Smart Cities (ServiCe Learning Course) ______VART 2003: GraphiC Design and Digital Tools ______VART 2400: Fundamentals of Web Design A. New Media and Information ______DTEM 1401: IntroduCtion to Digital TeChnology and Emerging Media ______CISC 2350: Information and Web Programming ______CISC 2530: Digital Video and Multimedia ______CISC 2850: Computer and Data Analysis or INSY 4431: Web AnalytiCs ______CISC 3850: Information Retrieval Systems ______CISC 4001: Computers and Robots in Film (ICC) ______DTEM 1402: Digital Cultures ______DTEM 2417: Data Visualization ______DTEM: 3463: CiviC Media ______DTEM 2427: Digital Audio ProduCtion ______FITV 2621: Digital Video Design ______COMC 3340: Freedom of Expression ______COMC 3380 International CommuniCation (Globalism) ______COMC 3374: Media EffeCts ______COMC3350 or BLBU 4451: New Media and CommuniCation Law ______DTEM 2775: Writing for Online Media ______INSY 4431: Web AnalytiCs or CISC 2850: Computer and Data Analysis ______INSY 3442: -
Video Games: Changing the Way We Think of Home Entertainment
Rochester Institute of Technology RIT Scholar Works Theses 2005 Video games: Changing the way we think of home entertainment Eri Shulga Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Shulga, Eri, "Video games: Changing the way we think of home entertainment" (2005). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Video Games: Changing The Way We Think Of Home Entertainment by Eri Shulga Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Information Technology Rochester Institute of Technology B. Thomas Golisano College of Computing and Information Sciences Copyright 2005 Rochester Institute of Technology B. Thomas Golisano College of Computing and Information Sciences Master of Science in Information Technology Thesis Approval Form Student Name: _ __;E=.;r....;...i S=-h;....;..;u;;;..;..lg;;i..;:a;;...__ _____ Thesis Title: Video Games: Changing the Way We Think of Home Entertainment Thesis Committee Name Signature Date Evelyn Rozanski, Ph.D Evelyn Rozanski /o-/d-os- Chair Prof. Andy Phelps Andrew Phelps Committee Member Anne Haake, Ph.D Anne R. Haake Committee Member Thesis Reproduction Permission Form Rochester Institute of Technology B. Thomas Golisano College of Computing and Information Sciences Master of Science in Information Technology Video Games: Changing the Way We Think Of Home Entertainment L Eri Shulga. hereby grant permission to the Wallace Library of the Rochester Institute of Technofogy to reproduce my thesis in whole or in part. -
Arts, Audio Video Technology, and Communications Graphic Design and Multimedia Arts
',*,7$/ &20081,&$7,216 ARTS, AUDIO VIDEO TECHNOLOGY, AND COMMUNICATIONS GRAPHIC DESIGN AND MULTIMEDIA ARTS Local Implementation Considerations: Students completing two or more courses for two or more credits within a program of study earn concentrator status for Perkins V federal accountability reporting. Proposed Indicator: Students finishing three or more courses for four or more credits with one course from level 3 or 4 within a program of study earn completer status for federal accountability reporting. Texas Education Agency® COURSES Principles of Arts,A/V Technology, and Communications Professional Communications LEVEL 1 Web Communications Digital Communications in the 21st Century NS IO AT IC N U Audio/Video Production/Lab M Digital Audio Technology M O LEVEL 2 C D N A DIGITAL Y Y G COMMUNICATIONS Audio Video Production II/Lab O L Digital Audio Technology II O N LEVEL 3 H C E T V / A , S T Practicum of Audio/Video Production R A Practicum of Digital Audio (TBD) Practicum of Entrepreneurship (TBD) LEVEL 4 MASTERhS/ MEDIAN ANNUAL % HIGH SCHOOL/ OCCUPATIONS CERTIFICATE/ ASSOCIATEhS BACHELORhS DOCTORAL WAGE OPENINGS GROWTH INDUSTRY LICENSE* DEGREE DEGREE PROFESSIONAL CERTIFICATION DEGREE Sound Engineering $39,562 79 27% Technicians Apple Final Cut Certified Video Recording Arts Communications Camera Operators, $50,024 129 9% Pro X Engineer Technology/Technician Technology/ Television, Video Technician and Motion Picture Audio and Video $40,581 757 Apple Logic Commercial Cinematography and Film/ 29% Equipment Pro X Audio Technician -
Abstract the Goal of This Project Is Primarily to Establish a Collection of Video Games Developed by Companies Based Here In
Abstract The goal of this project is primarily to establish a collection of video games developed by companies based here in Massachusetts. In preparation for a proposal to the companies, information was collected from each company concerning how, when, where, and why they were founded. A proposal was then written and submitted to each company requesting copies of their games. With this special collection, both students and staff will be able to use them as tools for the IMGD program. 1 Introduction WPI has established relationships with Massachusetts game companies since the Interactive Media and Game Development (IMGD) program’s beginning in 2005. With the growing popularity of game development, and the ever increasing numbers of companies, it is difficult to establish and maintain solid relationships for each and every company. As part of this project, new relationships will be founded with a number of greater-Boston area companies in order to establish a repository of local video games. This project will not only bolster any previous relationships with companies, but establish new ones as well. With these donated materials, a special collection will be established at the WPI Library, and will include a number of retail video games. This collection should inspire more people to be interested in the IMGD program here at WPI. Knowing that there are many opportunities locally for graduates is an important part of deciding one’s major. I knew I wanted to do something with the library for this IQP, but I was not sure exactly what I wanted when I first went to establish a project. -
Using Video Game Design to Motivate Students
Using Video Game Design to Motivate Students Michael A. Evans, Brett D. Jones, and Sehmuz Akalin Because video games are so popular with young people, (Reiber, 2005) can be particularly useful in fostering in- formal science learning. researchers have explored ways to use game play to en- To add to the knowledge base, we studied how stu- dents used level-based video game development in an gage students in school subjects (Peppler & Kafai, 2007; out-of-school time (OST) setting to learn science con- tent. Building on prior efforts (Evans & Biedler, 2012; Rockwell & Kee, 2011; Small, 2011). Motivating students Evans, Norton, Chang, Deater-Deckard, & Balci, 2013; Evans, Pruett, Chang, & Nino, 2014), we explored how in science is especially important because of declines the project incorporated the video game to support learn- ers’ science motivation. This work with a commercial both in the number of young people who choose science careers and in the number of adults who have a sufficient MICHAEL A. EVANS is an associate professor in the Department of Teacher Education and Learning Sciences at NC State University. He grasp of science to make thoughtful decisions (Bell, Lew- researches the effects of video games and other popular digital me- dia on youth learning and engagement, with a focus on academic enstein, Shouse, & Feder, 2009). relevance. BRETT D. JONES is a professor in the Educational Psychology pro- gram in the School of Education at Virginia Tech. He researches stu- To counter these trends, informal science educators have dent motivation and examines strategies teachers can use to design adopted video games and simulations as teaching tools instruction to support students’ motivation and learning. -
Inside the Video Game Industry
Inside the Video Game Industry GameDevelopersTalkAbout theBusinessofPlay Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman Downloaded by [Pennsylvania State University] at 11:09 14 September 2017 First published by Routledge Th ird Avenue, New York, NY and by Routledge Park Square, Milton Park, Abingdon, Oxon OX RN Routledge is an imprint of the Taylor & Francis Group, an Informa business © Taylor & Francis Th e right of Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman to be identifi ed as authors of this work has been asserted by them in accordance with sections and of the Copyright, Designs and Patents Act . All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Trademark notice : Product or corporate names may be trademarks or registered trademarks, and are used only for identifi cation and explanation without intent to infringe. Library of Congress Cataloging in Publication Data Names: Ruggill, Judd Ethan, editor. | McAllister, Ken S., – editor. | Nichols, Randall K., editor. | Kaufman, Ryan, editor. Title: Inside the video game industry : game developers talk about the business of play / edited by Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman. Description: New York : Routledge is an imprint of the Taylor & Francis Group, an Informa Business, [] | Includes index. Identifi ers: LCCN | ISBN (hardback) | ISBN (pbk.) | ISBN (ebk) Subjects: LCSH: Video games industry. -
Creating an Interdisciplinary Game Development Minor
Western Michigan University ScholarWorks at WMU Academic Leadership Academy Office ofaculty F Development Spring 4-16-2009 Creating an Interdisciplinary Game Development Minor Karlis Kaugars State University of New York Oneonta, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/acad_leadership Part of the Higher Education Administration Commons WMU ScholarWorks Citation Kaugars, Karlis, "Creating an Interdisciplinary Game Development Minor" (2009). Academic Leadership Academy. 23. https://scholarworks.wmich.edu/acad_leadership/23 This Poster is brought to you for free and open access by the Office ofaculty F Development at ScholarWorks at WMU. It has been accepted for inclusion in Academic Leadership Academy by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. Creating an Interdisciplinary Game Development Minor Karlis Kaugars Background Contributing Disciplines Current Courses A minor in game Development Though seen by some as a simple diversion, games are a There are currently two game-specific courses offered at A minor in game development would consist of six to eight Business critical form of play for current and future generations. WMU – “CS 5410, Game Programming” and “HNRS 2900 – introductory courses, each from a different department Public Relations Game Producer emphasizing core concepts of the discipline with a focus on how Where previous generations played tag and war, current Management 155, Video Game Design”. The former course focuses on the discipline topics relate to game design. youth engage in Bejeweled and Guitar Hero. The Marketing game engine programming and is targeted towards the senior experience is meaningful, engaging and often highly social level computer science student as a integrative, capstone Each participating department could use an existing course to in nature. -
Audience Feedback As an Influence on Graphic Design Problem Solving
Rochester Institute of Technology RIT Scholar Works Theses 2011 Audience feedback as an influence on graphic design problem solving Christopher Petrides Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Petrides, Christopher, "Audience feedback as an influence on graphic design problem solving" (2011). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Audience Feedback as an Influence on Graphic Design Problem Solving Christopher Petrides Graphic Design MFA Program School of Design College of Imaging Arts and Sciences Rochester Institute of Technology Rochester, New York Fall 2011 1 Abstract User-generated feedback is arguably the most efficient tool to evaluate a specific product or service. Even though it is widely used to evaluate and subsequently improve video game design, it is not commonly used for graphic design applications. The aim of this thesis is to demonstrate how user-generated feedback can be utilized to improve existing graphic design applications. Specifically, three types of feedback collection vehicles were selected for use in graphic design: personal observation, evaluation polls, and existing video game design feedback. In order to demonstrate the advantage of using user- generated feedback, information collected through the feedback collection -
Video Games and Architecture
Video games and architecture An extensive account on video game theory and the possible application of this theory in architectural design Graduation thesis - Master in Architecture, Urbanism and Building Sciences - TU Delft By Simon A. Tiemersma Bsc January 2014 Explorelab, Mentors: Leontien de Wit, Ype Cuperus and Arno Kamphuis 2 Abstract This research explores video game design elements that differ from the architectural design elements and could improve upon the latter due to new perspectives and digital possibilities. The research is based on an extensive literature review, a workshop and some interviews. The game design elements in this thesis are subdivided in the themes narrative, gameplay and level design and are selected to their potential relevance to architecture. As part of this thesis, they are compared with similar architectural topics on their relevance and novelty. The result of this research is a shortlist of methods, divided in several elements and techniques that describe how they could be of positive influence to architectural designs and the architectural design process. The methods are based on the conflicting nature of video game elements, which are either based on precreated experiences which offer some interaction, or based on free structures that provide improvisational play. Another method is based on playtesting, which offers architecture a new way of testing designs. This thesis offers new approaches to architectural design practices and could be a starting point for more in depth research in game design elements for architecture. 3 Foreword Video games are an hobby, but one I have larger aspirations with. That is why I wanted to combine my graduation in Architecture with video game theory. -
Practical Game Design Tool: State Explorer
Practical Game Design Tool: State Explorer Rokas Volkovas Michael Fairbank John R. Woodward Simon Lucas QMUL University of Essex QMUL QMUL London, UK Colchester, UK London, UK London, UK [email protected] [email protected] [email protected] [email protected] Abstract—This paper introduces a computer-game design tool B. Problem Scope which enables game designers to explore and develop game mechanics for arbitrary game systems. The tool is implemented To approach solving the problem of shortening the iteration as a plugin for the Godot game engine. It allows the designer to cycle of designing and building systems for games, we first view an abstraction of a game’s states while in active development narrow down its domain and define the scope of the problem and to quickly view and explore which states are navigable from in question. which other states. This information is used to rapidly explore, Our idealized set of features to address the problem of slow validate and improve the design of the game. The tool is most practical for game systems which are computer-explorable within video-game design iteration speed were identified. Conceptu- roughly 2000 states. The tool is demonstrated by presenting how ally, these were the ability to: it was used to create a small, yet complete, commercial game. • navigate game states manually • navigate game states automatically I. INTRODUCTION • to identify states of interest A. Video Game Design is Tedious • examine the explored states At their very core, games are systems built for human Given a tool with these features, a video game designer can interaction. -
Extracurricular Videogame Development Clubs How They Complement the Classroom Experience
Extracurricular Videogame Development Clubs How They Complement the Classroom Experience Chris DeLeon Developer & Instructor, HobbyGameDev.com What I’m Talking About ● How clubs differ from the classroom ● Regarding faculty involvement ● Practical tips to grow more gamedev clubs ● Notes from other student-led clubs Clubs established by my process ● Carnegie Mellon, Game Creation Society (2004) ● Georgia Tech, VGDev (2010) Both groups: ~30-50 developers/semester Each completing 5-8 games/semester since Both clubs are mostly undergraduates Very few members from ETC or DM program The process -> over 100 games Addl. reference clubs (interviews) 1. Ithaca College: Game Developers Club 2. Southern Alabama: Video Game Development Club 3. Bloomfield: Game Dev Club 4. Georgia State: Game Development Club 5. Champlain: Extracurricular Game Developers 6. Princeton: Game Developers Group 7. Tennessee State: Game Programming Club 8. SCAD: Game Development Network 9. Carnegie Mellon: Game Creation Society (2009-2013) We all want the same things ● We want students happy ● We want students creating ● We want students learning ● We want students networking ● We want students on a good track But we do it very different ways Classes (generally, not all!): Clubs (esp. CMU/GT): • Often artistic, conceptual • Mostly conventional genres • Focus on process • Focus on finished result • Failing is literally failing • Safety and freedom to fail • Compel full participation • Variable involvement (‘varsity’) • People need the hours • People can quit, be fired • Teaching -
Understanding Game Playing Preferences
CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 9, DECEMBER 2014 Understanding Game Playing Preferences Cecilia M. Curlango Rosas, Jorge Eduardo Ibarra Esquer, Gloria Etelbina Chávez Valenzuela, María Luisa González Ramírez, Linda Eugenia Arredondo Acosta and Marcela D. Rodríguez Universidad Autonoma de Baja California, Facultad de Ingeniería Mexicali, Mexico 21280 {curlango, jorge.ibarra}@uabc.edu.mx {gloria_chavez, maria.gonzalez, linda_arredondo, marcerod}@uabc.edu.mx Abstract This paper presents the results of a study made with university students to determine the types of video games that they play, the platforms they use to play, and what motivates them to play or stop playing games. The study results distinguish among genders in order to be able to design appropriate teaching strategies which appeal to both genders. This work was done as part of a larger study whose aim is to both attract and retain students to the computer-engineering program. Keywords: computer science education, engineering students, video game preferences 1 Introduction In 2010, The United Nations Educational, Scientific and Cultural Organization (UNESCO) released a report where global challenges and opportunities for engineering were presented. The report stresses the importance of the various engineering fields in development of society, but also warns about the decreasing public awareness and understanding of engineering, and the declining interest and enrollment of young people in engineering courses [1]. This is a trend that during the first decade of the 21st Century was seen as something critical for the Computing Engineering field [2], being until recent years that some countries have started to show a slight reversal in enrollment [3].