The Entropy Universe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Entropy an Open Access Journal by MDPI
IMPACT Indexed in: FACTOR PubMed 2.524 entropy an Open Access Journal by MDPI International Society for the Study of Information (IS4SI), Academic Open Access Publishing Spanish Society of Biomedical Engineering (SEIB) are since 1996 affiliated with Entropy IMPACT Indexed in: FACTOR PubMed entropy 2.524 an Open Access Journal by MDPI Editor-in-Chief Message from the Editor-in-Chief Prof. Dr. Kevin H. Knuth The concept of entropy is traditionally a quantity in physics that has to do with temperature. However, it is now clear Section Editors-in-Chief Prof. Dr. Milivoje M. Kostic that entropy is deeply related to information theory and Dr. Antonio M. Scarfone the process of inference. As such, entropic techniques have Dr. Raúl Alcaraz found broad application in the sciences. Prof. Dr. Jay Lawrence Prof. Dr. Robert Niven Entropy is an online open access journal providing an Prof. Dr. José A. Tenreiro Machado Dr. Matteo Convertino advanced forum for the development and / or application Dr. Ernestina Menasalvas of entropic and information-theoretic studies in a wide Dr. Remo Garattini Prof. Dr. Gregg Jaeger variety of applications. Entropy is inviting innovative and Prof. Dr. Miguel Rubi insightful contributions. Please consider Entropy as an Prof. Dr. Lamberto Rondoni exceptional home for your manuscript. Author Benefits Open Access Unlimited and free access for readers High Speed 38 days from submission to publication Coverage by Leading Indexing Service Science Citation Index Expanded (Web of Science), MathSciNet (AMS), Scopus (Elsevier), PubMed Discounts on Article Processing Charges (APC) If you belong to an institute that participates with the MDPI Institutional Open Access Program No Copyright Constraints Retain copyright of your work and free use of your article No Space Constraints, No Extra Space or Color Charges No restriction on the length of the papers, number of figures or colors Aims and Scope Entropy (ISSN 1099-4300) is an international and interdisciplinary journal of entropy and information studies. -
Luis Gregorio Moyano
Luis Gregorio Moyano Rep´ublicadel L´ıbano 150, Mendoza, 5500 Mendoza, Argentina [email protected] Current position Facultad de Ciencias Exactas y Naturales Mendoza, Argentina Universidad Nacional de Cuyo Adjunt Professor May 2016 - Today CONICET Adjunt Researcher May 2016 - Today Education and training Universidad Carlos III de Madrid Madrid, Spain Postdoctoral Position at 2007 - 2008 Mathematics Department & GISC Centro Brasileiro de Pesquisas F´ısicas Rio de Janeiro, Brazil PhD in Physics 2001 - 2006 Supervisor: Prof. Constantino Tsallis. PhD Thesis: \Nonextensive statistical mechanics in complex systems: dynamical foundations and applications" Instituto Balseiro Bariloche, Argentina MSc in Physics 1997- 2000 Supervisors: Prof. Dami´anZanette and Prof. Guillermo Abramson. Msc. Thesis: \Learning in coupled dynamical systems" Research Interests • Machine Learning applications on networks, Natural Language Processing, Big Data applications. • Complex Networks, Social Networks, Complex Systems. • Statistical mechanics, applications to economical, social and biological systems. • Bayesian inference, Markovian systems, congestion and information transfer dynamics in networks. • Evolutionary game theory, emergence of cooperation in complex networks. • Nonlinear dynamics, coupled chaotic systems, synchronization. Luis G. Moyano - Curriculum Vitæ 1 Positions, fellowships and awards • IBM Research Brazil, Rio de Janeiro, Brazil - Staff Research Member December, 2013 - April, 2016 Staff Research Member at the Social Data Analytics -
Associating an Entropy with Power-Law Frequency of Events
entropy Article Associating an Entropy with Power-Law Frequency of Events Evaldo M. F. Curado 1, Fernando D. Nobre 1,* and Angel Plastino 2 1 Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, Brazil; [email protected] 2 La Plata National University and Argentina’s National Research Council (IFLP-CCT-CONICET)-C. C. 727, La Plata 1900, Argentina; plastino@fisica.unlp.edu.ar * Correspondence: [email protected]; Tel.: +55-21-2141-7513 Received: 3 October 2018; Accepted: 23 November 2018; Published: 6 December 2018 Abstract: Events occurring with a frequency described by power laws, within a certain range of validity, are very common in natural systems. In many of them, it is possible to associate an energy spectrum and one can show that these types of phenomena are intimately related to Tsallis entropy Sq. The relevant parameters become: (i) The entropic index q, which is directly related to the power of the corresponding distribution; (ii) The ground-state energy #0, in terms of which all energies are rescaled. One verifies that the corresponding processes take place at a temperature Tq with kTq ∝ #0 (i.e., isothermal processes, for a given q), in analogy with those in the class of self-organized criticality, which are known to occur at fixed temperatures. Typical examples are analyzed, like earthquakes, avalanches, and forest fires, and in some of them, the entropic index q and value of Tq are estimated. The knowledge of the associated entropic form opens the possibility for a deeper understanding of such phenomena, particularly by using information theory and optimization procedures. -
Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals
International Journal of Environmental Research and Public Health Article Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals The-Hanh Pham 1, Jahmunah Vicnesh 1, Joel Koh En Wei 1, Shu Lih Oh 1, N. Arunkumar 2, Enas. W. Abdulhay 3, Edward J. Ciaccio 4 and U. Rajendra Acharya 1,5,6,* 1 School of Engineering, Ngee Ann Polytechnic, 535 Clementi Rd, Singapore 599489, Singapore; [email protected] (T.-H.P.); [email protected] (J.V.); [email protected] (J.K.E.W.); [email protected] (S.L.O.) 2 Department of Electronics and Instrumentation, SASTRA University, Thirumalaisamudram, Thanjavur 613401, India; [email protected] 3 Biomedical Engineering Department, Faculty of Engineering, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan; [email protected] 4 Department of Medicine – Columbia University New York, 630 W 168th St, New York, NY 10032, USA; [email protected] 5 Department of Bioinformatics and Medical Engineering, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan 6 International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-855, Japan * Correspondence: [email protected] Received: 25 December 2019; Accepted: 30 January 2020; Published: 4 February 2020 Abstract: Autistic individuals often have difficulties expressing or controlling emotions and have poor eye contact, among other symptoms. The prevalence of autism is increasing globally, posing a need to address this concern. Current diagnostic systems have particular limitations; hence, some individuals go undiagnosed or the diagnosis is delayed. In this study, an effective autism diagnostic system using electroencephalogram (EEG) signals, which are generated from electrical activity in the brain, was developed and characterized. -
Nonextensive Statistical Mechanics: a Brief Review of Its Present Status
Anais da Academia Brasileira de Ciências (2002) 74(3): 393–414 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Nonextensive statistical mechanics: a brief review of its present status CONSTANTINO TSALLIS* Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro, Brazil Centro de Fisica da Materia Condensada, Universidade de Lisboa P-1649-003 Lisboa, Portugal Manuscript received on May 25, 2002; accepted for publication on May 27, 2002. ABSTRACT We briefly review the present status of nonextensive statistical mechanics. We focus on (i) the cen- tral equations of the formalism, (ii) the most recent applications in physics and other sciences, (iii) the a priori determination (from microscopic dynamics) of the entropic index q for two important classes of physical systems, namely low-dimensional maps (both dissipative and conservative) and long-range interacting many-body hamiltonian classical systems. Key words: nonextensive statistical mechanics, entropy, complex systems. 1 CENTRAL EQUATIONS OF NONEXTENSIVE STATISTICAL MECHANICS Nonextensive statistical mechanics and thermodynamics were introduced in 1988 [1], and further developed in 1991 [2] and 1998 [3], with the aim of extending the domain of applicability of statistical mechanical procedures to systems where Boltzmann-Gibbs (BG) thermal statistics and standard thermodynamics present serious mathematical difficulties or just plainly fail. Indeed, a rapidly increasing number of systems are pointed out in the literature for which the usual functions appearing in BG statistics appear to be violated. Some of these cases are satisfactorily handled within the formalism we are here addressing (see [4] for reviews and [5] for a regularly updated bibliography which includes crucial contributions and clarifications that many scientists have given along the years). -
Entropy Analysis of Financial Time Series Arxiv:1807.09423V1 [Q-Fin.ST]
Entropy Analysis of Financial Time Series A thesis submitted to The University of Manchester for the degree of Doctor in Business Administration. 2015 arXiv:1807.09423v1 [q-fin.ST] 25 Jul 2018 Stephan Schwill Manchester Business School Contents 1 Introduction 11 1.1 Bivariate Analysis of Drawdowns . 12 1.2 Information Flows between FX Volatility Regimes . 14 1.3 Volatility Timing of Hedge Funds and Entropy . 16 2 Entropy Measure and Information Theory 19 2.1 Introduction . 20 2.2 Entropy . 20 2.3 Mutual Information and Transfer Entropy . 23 2.3.1 Definition . 23 2.3.2 Entropy Estimation, Statistical Features . 26 2.3.3 Process Entropy . 31 2.3.4 Entropy Magnitude . 32 2.4 Approximate Entropy (ApEn) . 33 2.4.1 ApEn Definition . 33 2.4.2 ApEn Estimation . 36 3 Bivariate Analysis of Drawdowns 38 3.1 Introduction . 39 3.2 Related Literature . 41 3.2.1 Drawdowns Literature . 41 3.2.2 Entropy Econometric Literature . 46 3.3 Data . 48 3.4 Information Theoretic Method . 51 3.4.1 Entropy Measures . 51 3.5 Empirical Results . 57 3.5.1 Dependency between Draws in EUR/USD and GBP/USD . 57 3.5.2 Information Flows between Draws in EUR/USD and GBP/USD 61 3.6 Conclusion . 66 4 Information Flows between FX Volatility Regimes 69 4.1 Introduction . 70 4.2 Hidden Markov Models . 72 4.2.1 Foundations . 72 4.2.2 HMM Estimation . 74 4.3 Data . 77 4.4 HMM Estimation Results . 79 4.5 Dependence between Hidden States . 82 4.5.1 Hidden State Dependence . -
Q-Gaussian Approximants Mimic Non-Extensive Statistical-Mechanical Expectation for Many-Body Probabilistic Model with Long-Range Correlations
Cent. Eur. J. Phys. • 7(3) • 2009 • 387-394 DOI: 10.2478/s11534-009-0054-4 Central European Journal of Physics q-Gaussian approximants mimic non-extensive statistical-mechanical expectation for many-body probabilistic model with long-range correlations Research Article William J. Thistleton1∗, John A. Marsh2† , Kenric P. Nelson3‡ , Constantino Tsallis45§ 1 Department of Mathematics, SUNY Institute of Technology, Utica NY 13504, USA 2 Department of Computer and Information Sciences, SUNY Institute of Technology, Utica NY 13504, USA 3 Raytheon Integrated Defense Systems, Principal Systems Engineer 4 Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro - RJ, Brazil 5 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA Received 3 November 2008; accepted 25 March 2009 Abstract: We study a strictly scale-invariant probabilistic N-body model with symmetric, uniform, identically distributed random variables. Correlations are induced through a transformation of a multivariate Gaussian distribution with covariance matrix decaying out from the unit diagonal, as ρ/rα for r =1, 2, …, N-1, where r indicates displacement from the diagonal and where 0 6 ρ 6 1 and α > 0. We show numerically that the sum of the N dependent random variables is well modeled by a compact support q-Gaussian distribution. In the particular case of α = 0 we obtain q = (1-5/3 ρ) / (1- ρ), a result validated analytically in a recent paper by Hilhorst and Schehr. Our present results with these q-Gaussian approximants precisely mimic the behavior expected in the frame of non-extensive statistical mechanics. -
Entropy-Based Disciplinarity Indicator: Role Taxonomy of Journals in Scientific Communication Systems and Isolation Degree
Entropy-based disciplinarity indicator: role taxonomy of journals in scientific communication systems and isolation degree. Knowledge importation/exportation profiles from journals and disciplines. Jorge Mañana-Rodríguez* Abstract In this research, a new indicator of disciplinarity-multidisciplinarity is developed, discussed and applied. EBDI is based on the combination of the frequency distribution of subject categories of journals citing or cited by the analysis unit and the spread and diversity of the citations among subject categories measured with Shannon-Wiener entropy. Its reproducibility, robustness and consistence are discussed. Four of the combinations of its values when applied to the cited and citing dimensions lead to a suggested taxonomy of the role that the studied unit might have in terms of the transformation of knowledge from different disciplines in the scientific communication system and its position respect a hypothetical thematic core of the discipline in which it has been classified. The indicator is applied to the journals belonging to the first quartile of JCR-SSCI 2011 Library and Information Science and an indicator-based taxonomy is applied and discussed, pointing to differential thematic roles of the journals analyzed. * Centre for Human and Social Sciences, CSIC. [email protected] /[email protected] Introduction In recent decades, the study of multidisciplinarity / disciplinarity has emerged as a core topic in science and technology studies and information & library science. IDR, Inter Disciplinary Research (Wagner et al. 2011), is a key aspect both for policymakers and researchers (National Academies, 2005). The increase in the number of journals has been observed, yet not exponentially (Mabe & Amin, 2001), having as one of the possible factors, as Ziman (1980) puts it The impression of excessive proliferation arises mainly from the differentiation of journals to accommodate rapid expansion in specialized fields of research. -
Some Comments on Boltzmann-Gibbs Statistical Mechanics
CBPF-NF-001/94 Some Comments on Boltzmann-Gibbs Statistical Mechanics Constantino TSALLIS Centro Brasileiro de Pesquisas Fsicas Rua Dr. Xavier Sigaud, 150 22290-180 { Rio de Janeiro { RJ, Brazil Abstract A nonexhaustive review is presented of the limits of the impressive and vastly known success of Boltzmann-Gibbs statistics and normal thermo dynamics. These limits naturally op en the do or for the research of generalized formalisms that could enlarge the domain of validity of standard statistical mechanics and thermo dynam- ics. A p ossible such generalization (recently prop osed by the author) is commented along this p ersp ective. CBPF-NF-001/94 1 1 Limitations of Boltzmann-Gibbs Statistics 1.1 Intro duction The qualitative and quantitative success of Boltzmann-Gibbs (BG) Statistical Mechan- ics (and, naturally, of its particular cases, the Fermi-Dirac and Bose-Einstein quantum statistics, with their common high temp erature asymptotic limit, the classical Maxwell- Boltzmann statistics) is so ubiquitous, persistent and delicate that not few physicists and chemists have a kind of strong (not necessarily rationalized) feeling that this brilliant for- malism is, in practical terms, universal, eternal and in nitely precise. A more balanced analysis reveals some of its sp eci c limitations and inadequacies, and consequently the fragility or nonuniversality of some of the basic hyp othesis of its foundations. Among these foundation stones, a privileged p osition is detained by the entropy S ,asintro duced R and used by Boltzmann and Gibbs (S = k dxf (x)lnf (x) for classical distribution B laws f (x) de ned in phase space), further generalized byvon Neumann (S = k Tr ln , B b eing the density op erator de ned in Hilb ert or Fock spaces), with its diagonal form W (S = k p ln p , p b eing the probability of the i-th among W microstates, and its B i i i i=1 famous equal-probability particular form S = k ln W ) as nely discussed, in the context B of Information Theory,by Shannon. -
Curriculum Vitae
CURRICULUM VITAE Nome e sobrenome / Name: CONSTANTINO TSALLIS Nascimento / Birth: 05/11/1943, Atenas - Grecia Nacionalidade / Citizenship: Brasileira / Grega Familia / Family: 3 filhos Endere¸coprofissional / Office address: Centro Brasileiro de Pesquisas Fisicas / MCTI Rua Xavier Sigaud 150 - Urca 22290-180 Rio de Janeiro - Brasil Tel.: (55)(21) 2141 7190 / 2141 7213 Fax: (55)(21) 2141 7515 / 2141 7400 E-mail: [email protected] Internet: http://tsallis.cat.cbpf.br Endere¸coresidencial / Home address: Av. Epitacio Pessoa 4344 - Apto. 502 - Bl.B - Lagoa 22471-001 Rio de Janeiro - Brasil Tel.: (55)(21) 2286 9503 / 98152 5051 Carteira de Identidade / Identity card: RG 5.173.806-0 (expedida em 04/01/85 - Instituto Felix Pacheco-RJ) C.P.F./ Social Security: 119.361.181-49 Cargo atual / Present position (CBPF): Pesquisador Emerito / Emeritus Professor 1 DISTINCOES~ / HONORS AND DISTINCTIONS • Chefias Departamento / CBPF [Head of Department] Fisica Teorica (1979 - 1980) Fisica da Materia Condensada (1981 - 1983) Fisica da Materia Condensada e Fisica Estatistica (1991 - 1993) Fisica da Materia Condensada e Fisica Estatistica (1999 - 2000) Fisica Teorica (2009 - 2013) • Guggenheim Fellow (USA, l982) • Pesquisador do CNPq N´ıvel 1 A (1984 - ...) [CNPq highest granting level] • "Distinguished Scientist of the Greek Diaspora", Governo da Gr´ecia(1985) • Membro do "International Advisory Committee " STATPHYS 16 / IUPAP (USA, 1986) STATPHYS 17 / IUPAP (Brasil, 1989) [Conference Chairman] STATPHYS 18 / IUPAP (Alemanha, 1992) STATPHYS 19 / IUPAP (China, 1995) -
Tsallis Entropy, Likelihood, and the Robust Seismic Inversion
entropy Article Tsallis Entropy, Likelihood, and the Robust Seismic Inversion Igo Pedro de Lima 1,†, Sérgio Luiz E. F. da Silva 2,*,† , Gilberto Corso 1,3,† and João M. de Araújo 1,2,† 1 Programa de Pós-Graduação em Ciência e Engenharia de Petróleo - Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil; [email protected] (I.P.d.L.); [email protected] (G.C.); joaomedeiros@fisica.ufrn.br (J.M.d.A.) 2 Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil 3 Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil * Correspondence: [email protected] † These authors contributed equally to this work. Received: 2 April 2020; Accepted: 17 April 2020; Published: 19 April 2020 Abstract: The nonextensive statistical mechanics proposed by Tsallis have been successfully used to model and analyze many complex phenomena. Here, we study the role of the generalized Tsallis statistics on the inverse problem theory. Most inverse problems are formulated as an optimisation problem that aims to estimate the physical parameters of a system from indirect and partial observations. In the conventional approach, the misfit function that is to be minimized is based on the least-squares distance between the observed data and the modelled data (residuals or errors), in which the residuals are assumed to follow a Gaussian distribution. However, in many real situations, the error is typically non-Gaussian, and therefore this technique tends to fail. This problem has motivated us to study misfit functions based on non-Gaussian statistics. -
Instruction to Editors of Entropy by Peter Harremoës, Editor-In-Chief
Instruction to editors of Entropy By Peter Harremoës, Editor-in-Chief Although the editorial office takes care of most of the administration of the publication process as editor you need to know what your role is. In this instruction will write editor as short for associated editor, guest editor or editor-in-chief. The assistant editors should also read this instruction but are mainly instructed by the editorial office. MDPI Multidisciplinary Digital Publishing Institute is an organization that now has publication of scientific journals as main activity. MDPI publishes 45 journals and the overall editorial procedures are the same for all journals. MDPI decides editorial procedures, price policy, and questions about style. You are welcome to give your suggestions, but the decisions are up to the publisher. As scientist your job is to make scientific decisions, and the publisher will normally not interfere with your decisions. The editorial offices MDPI has two offices. The main office is in Basel, Switzerland. The other office is in Beijing, China. The editorial staff consists of assistant editors, proof readers etc. They are employed by MDPI and work at the offices. The editors are typically employed at academic institutions located all over the world. Your contact with the editorial staff will mainly be by e-mail. The members of the editorial staff normally work for several journals. Price policy The Entropy journal is published as open access so the publisher has no income from the readers. The editorial office is entirely financed by publication charges paid by the authors. The production cost per article is low compared with other publishers due to efficient editorial procedures.