Graphene Nanobubble: A New Optical Nonlinear Material Qiaoliang Bao1,2*, Jianqiang Chen3,4*, Yuanjiang Xiang1, Kai Zhang1, Shaojuan Li2, Xiaofang Jiang1, Qing-Hua Xu1, Kian Ping Loh1†, T. Venkatesan3,4,5† 1Department of Chemistry, and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, 117543, Singapore. 2Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China. 3Department of Electrical and Computer Engineering, National University of Singapore, 117576, Singapore. 4NUSNNI-NanoCore, National University of Singapore, 117576, Singapore. 5Department of Physics, National University of Singapore, 117576, Singapore. *These authors contributed equally to this work. †To whom correspondence should be addressed. E-mail:
[email protected] (K. P. L.);
[email protected] (T. V.) Abstract Graphene is a rising star in nonlinear optics due to its saturable absorption and giant Kerr nonlinearity, these properties are useful in digital optics based on optical nonlinear devices. However, practical applications require large optical nonlinearities and these are inherently limited by the interaction length of atomically thin graphene. Here, we demonstrate optical bistability in a Fabry–Perot cavity containing monolayer and bilayer graphene which have been restructured to form nanobubbles. We find that graphene nanobubble can act as a new type of optical nonlinear media due to its vertical side wall as well as added curvature, which enable strong non-linear dispersive effects leading to a large optically induced phase change. Unlike thermally induced bistability, the all-optical switching between two transmission states happens within a time scale of tens of nanoseconds. Nanobubble-based optical devices with intrinsic optical nonlinearity help to overcome the optical path length limitation of atomically thin two dimensional films and allow us to explore the promise of using such elements as the building block of digital all-optical circuitry.