6. WATER RESOURCES 6.1. Scope of Work the Project Aimed

Total Page:16

File Type:pdf, Size:1020Kb

6. WATER RESOURCES 6.1. Scope of Work the Project Aimed Environmental Scoping Report for the proposed establishment of a New Coal-Fired Power Station in the Lephalale Area, Limpopo Province 6. WATER RESOURCES 6.1. Scope of Work The project aimed at assessing the surface and groundwater resources within an area of ± 245 km2 study area, based on the location of the eight candidate sites and the existing Matimba Power Station and infrastructure. The scope of work for the Environmental Scoping Study included: • A status quo study, regarding quality and quantity of water resources. • A site suitability assessment from a groundwater and surface water perspective. • An evaluation of all monitoring data, hydrochemical trend identification, and contamination assessment (coal stockyard, ash dams, etc.). • Consideration of stormwater controls. • Surface water availability and supply, • Groundwater resources. 6.2. Methodology A desktop study and limited fieldwork were undertaken in order to collate sufficient information to compile the water resources and candidate site assessments report. These data were assessed in order to address the hydrogeological and surface water aspects of the proposed project. 6.2.1. Desktop Study and Data Sources All available geological, surface water, and hydrogeological data for the study area was compiled from various sources and analysed. All relevant hydrogeological data, such as water levels, abstraction, hydrochemistry, and drilling records, was available from either Eskom or the Grootegeluk mine. The following data sources were used during the study: • du Toit, W.H., 2003. The hydrogeological map Polokwane 2326. Department of Water Affairs and Forestry • Geological Survey, 1993. 1:250 000 Geological series 2326 Ellisras geological map. • Johnstone, A. C., 1989; A hydrogeological investigation of the Grootegeluk Mine, Unpublished M.Sc thesis, Rhodes University. Water Resources 53 18/11/2005 Environmental Scoping Report for the proposed establishment of a New Coal-Fired Power Station in the Lephalale Area, Limpopo Province • Hodgson, F. and Vermeulen, D. 2004. Extension of the groundwater monitoring system at Matimba Power Station. Unpublished report no. 2004/12/FDIH, Institute for Groundwater Studies (IGS), University of the Free State • The Internal Strategic Perspective (ISP) of the Limpopo Water Management Area, Department of Water Affairs and Forestry (Ref No. P WMA 01/000/00/0101, July 200) • Roux L., 2001. Grootegeluk Coal Mine Geohydrological perspective. Unpublished report, Grootegeluk Coal Mine Geology Department • Roux L., 2003. Revised numerical groundwater modelling at Grootegeluk Coal Mine. Unpublished report, Grootegeluk Geohydrology Kumba Resources • Steenkamp, G., 2001. Numerical groundwater modelling at Grootegeluk Coal Mine. Internal report, Kumba Resources • The groundwater harvest potential of the Republic of South Africa. Department of Water Affairs and Forestry, 1996 • The groundwater resources of the Republic of South Africa, sheets 1 and 2. Water Research Commission and Department of Water Affairs and Forestry, 1995 • The national groundwater database, Department of Water Affairs and Forestry, Pretoria Discussions, regarding the geology and hydrogeology, with the Grootegeluk mine’s geologist, Mr. Leon Roux, were also conducted. 6.2.2. Fieldwork The fieldwork conducted during the study included a site visit to the power station and the Grootegeluk colliery. A visit to each of the four initial candidate sites was conducted. The scope of work was expanded to include an additional four candidate sites, however, due to the abundance of geological and hydrogeological data, no additional fieldwork was conducted. 6.3. Overview of the Geology of the Area Sediments and volcanics of the Waterberg Group and Karoo Supergroup underlie the study area. Table 6.1 presents the lithostratigraphy of the area. Water Resources 54 18/11/2005 Environmental Scoping Report for the proposed establishment of a New Coal-Fired Power Station in the Lephalale Area, Limpopo Province Table 6.1: Lithostratigraphy Age Supergroup / Formation Alternative Lithology Group Name Jurassic Karoo Letaba Letaba Formation Basalt Triassic Clarens Clarens Fine-grained Formation cream-coloured sandstone Triassic Lisbon* Elliot Formation Red mudstone and siltstone Triassic Greenwich* Molteno Red sandstone Formation and conglomerate Triassic Eendragtpan* Beaufort Group Variegated shale Permian Grootegeluk* Upper Ecca Group Mudstone, carbonaceous shale, coal Permian Goedgedacht* Middle Ecca Gritty mudstone, Group mudstone, sandstone, coal Permian Swartrant* Lower Ecca Group Sandstone, gritstone, mudstone, coal Permian / Karoo / Dwyka Wellington* Dwyka Group Mudstone, Carboniferous siltstone, minor grit Carboniferous Waterkloof* Dwyka Group Diamictite, mudstone Mokolian Waterberg Mogalakwena Mogalakwena Fm Coarse-grained purplish brown sandstone *Not yet approved by the South African Committee on Stratigraphy (SACS) A veneer of quaternary (2 Ma) sandy soil covers the Waterberg Group sediments to the south of the study area. Figure 6.1, a portion of the 1:250 000 geological map 2326 Ellisras, illustrates the study area geology. Figure 6.2 presents the structural geology within the study area, as provided by Mr. Leon Roux, Grootegeluk Coal Mine. Water Resources 55 18/11/2005 Environmental Scoping Report for the proposed establishment of a New Coal-Fired Power Station in the Lephalale Area, Limpopo Province Legend Qs Sandy soil NORTH Jl Letaba basalt Ђ c Clarens sandstone Ђ l Lisbon mud stone Ђ g Greenwich red sandstone Ђ e Een dragtpan variegated shale Pgr Grootegeluk mudstone, coal Pgo Goedgedacht gritty mudstone Ps Swartrant sandstone, coal C- Pwe Wellington mudstone Cwa Waterkloof diamictite Mm M ogalakwena sandstone f I Faults - Study area Figure No: 2 Portion of the 1:250 000 Geological Map Scale: Not to 23 26 Ellisras P.O. Box 2597 Tel.: (011) 803 -5726 Rivonia Fax.: (011) 803 -5745 2128 jhb@gcs -sa.biz Project No: 2004.11 .5 3 5 Figure 6.1: A portion of the 1:250 000 geological map 2326 Ellisras, illustrating the study area geology Water Resources 56 18/11/2005 Environmental Scoping Report for the proposed establishment of a New Coal-Fired Power Station in the Lephalale Area, Limpopo Province Figure 6.2 – Structural geology within the study area Water Resources 57 18/11/2005 g ev2qiyvyq2srsx2 h2eie PU°QH9HH4 PU°QH9QH4 PU°QI9HH4 PU°QI9QH4 PU°QP9HH4 PU°QP9QH4 PU°QQ9HH4 PU°QQ9QH4 PU°QR9HH4 PU°QR9QH4 PU°QS9HH4 PU°QS9QH4 PU°QT9HH4 PU°QT9QH4 PU°QU9HH4 PU°QU9QH4 PU°QV9HH4 PU°QV9QH4 PU°QW9HH4 PU°QW9QH4 PU°RH9HH4 PU°RH9QH4 PU°RI9HH4 PQ°QT9HH4 viqixhX PQ°QT9HH4 PQ°QT9QH4 7 fQI PQPUheHHITT eI PQPUheHHITS PQ°QT9QH4 PQPUheHHITV PQPUheHHITU 7 PQPUheHHITW 55 5 5 55 5 PQ°QU9HH4 5 PQPUheHHITR PQPUheHHITQ PQPUheHHHPT PQ°QU9HH4 PQPUheHHITP PQPUheHHITI 7 uf PQ°QU9QH4 PQPUheHHIIR 7 fV PQ°QU9QH4 fW PQPUheHHIHQ 5 7 PQPUheHHIHR PQ°QV9HH4 5 PQPUheHHIIS PQPUheHHIHS 5 PQPUheHHIIU 5 fSI PQPUheHHIUV 5 PQPUheHHIIW 7 fIH fQ 7 ev PQ°QV9HH4 7 7 PQPUheHHQSH fIT 5 fTI 7 fPR PQ°QV9QH4 7 fTP fIRI 5 PQPUheHHISP fIS 75 fIRP 7 fR 7 fU 5 PQPUheHHIHP PQ°QV9QH4 fIRQ 7 fPS 75 7 fQP yfIH 7 7 PQ°QW9HH4 fIQ 7 yfQ 77 fPV pvI PQPUheHHHHU PQPUheHHHHV fSH 7 7 5 PQPUheHHQIP IR PQ°QW9HH4 fQR fQS ³5 7 IQ 7 fQQ 7 fRV fP fQV ³5 IS vIR fQT 7 75 fRU ³5 PQ°QW9QH4 7 fRW 7 vII 7 7 7 fPS ³5 PS ³5 W 7 ³5 V vIU 7 PQ°QW9QH4 7 yfP fQI 7 U 7 vIQ fIV fQV fSI T qruPT fIWf fRQ ³5 ³5 5 vIS 7 7 fIWI 7 fRS PQ°RH9HH4 775 7 S IU 7 5 5 7 7 7 iiTH fIWP 75 fRT ³5 qruIU 75 vIT vW 7 fQH IT ³5 75 fRH R II ³5 7 7 quUW 75 5 PQ°RH9HH4 7 ³5 PT ³ 5 IH 5 7 quWQ quWS 7 7 ³5 PU quUV fPT ³5 7 ³5 ³5 IW PQ°RH9QH4 7 7 fRI 7 IV fIU fRP fQT PV ³5 ³5 quWP quUS 7 PQ°RH9QH4 7 7 quQU fQW fPPP iTT quWI quUR 7 7 quVW fW iWH 7 quWR 7 7 7 PQ°RI9HH4 7 7 7 iVW 7 qrootegeluk2oreholes2 quVS 7 rPU 7 quVU quUP quTI iUH PQ°RI9HH4 7 7 75 7 quUI rQQ 7 7 7 rPT iVV 7 7 ³5 wtim2oreholes2 7 7 7 xxII rQP xxIQ PQ°RI9QH4 rRH 7 rRT rRR xxIP 7 5 xqhf2oreholes2on2V2frms2 rRU 7 7 7 7 fQR 7 fQS PQ°RI9QH4 7 Q rRI ³5 PQ°RP9HH4 pults2derived2from2oreholes2 fQU PH fQUe I ³5 5 ³5 PP PQPUheHHHIQ 7 eeromgnetis2vinements2 PQ°RP9HH4 PQPUheHHHIW PQPUheHHHIPPQPUheHHHII PQPUheHHHIR P PI ³5 PQPUheHHIPH PQPUheHHHIS ³5 ³5 PQPUheHHHIT PQ°RP9QH4 PQPUheHHIPI PQPUheHHHIU PQPUheHHIPP PQPUheHHHIV prm2oundries2@qA2 PQPUheHHHHW 5 PQPUheHHIPQ 55 5 555 PQPUheHHHIH PQ°RP9QH4 555 55 22smge gsPQPUdIWVIFtif PQ PQ°RQ9HH4 PQPUheHHHPW ³5 PQPUheHHHQH PQ°RQ9HH4 PQPUheHHHQI 5 PQPUheHHHQP PR PQPUheHHHRP PQPUheHHHQQ ³5 PQ°RQ9QH4 PQPUheHHHRQ PQPUheHHQHI PQPUheHHHQS 5 HFS H HFS I IFS P PFS uilometers PQPUheHHHRS PQPUheHHQHP 5 PQ°RQ9QH4 PQPUheHHHRU PQPUheHHQHQ PQ°RR9HH4 55 PQ°RR9HH4 PQ°RR9QH4 x qs el2@HIIA2VHQESUPT rojetX222PHHRFIIFSQS PQ°RR9QH4 imilX2 jhdgsEsFiz wtimf PQ°RS9HH4 wwwFgsEsFiz ©2gopyright2qgF hte2rintedX2222UGTGPHHS PQ°RS9HH4 PU°QH9HH4 PU°QH9QH4 PU°QI9HH4 PU°QI9QH4 PU°QP9HH4 PU°QP9QH4 PU°QQ9HH4 PU°QQ9QH4 PU°QR9HH4 PU°QR9QH4 PU°QS9HH4 PU°QS9QH4 PU°QT9HH4 PU°QT9QH4 PU°QU9HH4 PU°QU9QH4 PU°QV9HH4 PU°QV9QH4 PU°QW9HH4 PU°QW9QH4 PU°RH9HH4 PU°RH9QH4 PU°RI9HH4 pigure2Q Environmental Scoping Report for the proposed establishment of a New Coal-Fired Power Station in the Lephalale Area, Limpopo Province 6.3.1. Structural Geology The study area falls within the Waterberg Coalfield, which comprises a graben structure with the Eenzaamheid fault forming the southern boundary and the northern boundary is delineated by the Zoetfontein fault. Archaean granite rocks outcrop to the north of the Zoetfontein fault and sediments of the Waterberg Group outcrop to the south of the Eenzaamheid fault. The study area is further subdivided by the Daarby fault, a major northeast then northwest trending fault. The Daarby fault has a down throw of 360 m to the north, at an angle of 50° to 60°.
Recommended publications
  • Transactions of the Royal Society of South Africa The
    This article was downloaded by: On: 12 May 2010 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Transactions of the Royal Society of South Africa Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t917447442 The geomorphic provinces of South Africa, Lesotho and Swaziland: A physiographic subdivision for earth and environmental scientists T. C. Partridge a; E. S. J. Dollar b; J. Moolman c;L. H. Dollar b a Climatology Research Group, University of the Witwatersrand, WITS, South Africa b CSIR, Natural Resources and Environment, Stellenbosch, South Africa c Directorate: Resource Quality Services, Department of Water Affairs and Forestry, Pretoria, South Africa Online publication date: 23 March 2010 To cite this Article Partridge, T. C. , Dollar, E. S. J. , Moolman, J. andDollar, L. H.(2010) 'The geomorphic provinces of South Africa, Lesotho and Swaziland: A physiographic subdivision for earth and environmental scientists', Transactions of the Royal Society of South Africa, 65: 1, 1 — 47 To link to this Article: DOI: 10.1080/00359191003652033 URL: http://dx.doi.org/10.1080/00359191003652033 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • Shakati Private Game Reserve in Malaria-Free Waterberg/Vaalwater -Only 2 Hours from Pretoria
    Shakati Private Game Reserve in Malaria-free Waterberg/Vaalwater -only 2 hours from Pretoria Waterberg. There is so much to see and do…. Waterberg is the area of magnificent views, panoramic savannah and bush landscapes, spectacular mountains and cliffs, crystal clear streams and an unbelievable abundance of wild animals, trees and flowers. Game viewing in the Waterberg area is absolutely fantastic and recognised among the best in the country –hence the Waterberg is one of the preferred eco-tourism destination in South Africa. Furthermore Waterberg with its unspoilt nature has been designated as UNESCO “Savannah Biosphere Reserve” –the first in Southern Africa. And Waterberg is MALARIA-free… Marakele National Park Shakati Private Game Reserve is hidden away on the lush banks of the Mokolo river in the deep heart of the untamed Waterberg bushveld paradise. Near Vaalwater and only 2 hours drive from Pretoria. Time spent at Shakati Game Reserve is about getting away from city life, work, traffic and stress. It is about peace and tranquillity, clean fresh air and clear skies with the brightest stars you have probably ever seen. It is about being quiet and listen to the jackal calling at night, to the paradise flycatcher singing in the morning. It is about seeing and walking with the animals, touching the fruits of the bush willow -and wonder about nature. It is about quietly sitting at the water hole watching game and taking life easy Its time to leave the city sounds, the hustle, the bustle and find some place that speaks to you who you really are inside.
    [Show full text]
  • Limpopo Water Management Area
    LIMPOPO WATER MANAGEMENT AREA WATER RESOURCES SITUATION ASSESSMENT MAIN REPORT OVERVIEW The water resources of South Africa are vital to the health and prosperity of its people, the sustenance of its natural heritage and to its economic development. Water is a national resource that belongs to all the people who should therefore have equal access to it, and although the resource is renewable, it is finite and distributed unevenly both spatially and temporally. The water also occurs in many forms that are all part of a unitary and inter-dependent cycle. The National Government has overall responsibility for and authority over the nation’s water resources and their use, including the equitable allocation of water for beneficial and sustainable use, the redistribution of water and international water matters. The protection of the quality of water resources is also necessary to ensure sustainability of the nation’s water resources in the interests of all water users. This requires integrated management of all aspects of water resources and, where appropriate, the delegation of management functions to a regional or catchment level where all persons can have representative participation. This report is based on a desktop or reconnaissance level assessment of the available water resources and quality and also patterns of water requirements that existed during 1995 in the Limpopo Water Management Area, which occupies a portion of the Northern Province. The report does not address the water requirements beyond 1995 but does provide estimates of the utilisable potential of the water resources after so-called full development of these resources, as this can be envisaged at present.
    [Show full text]
  • Chiloglanis) with Emphasis on the Limpopo River System and Implications for Water Management Practices
    SYSTEMATICS AND PHYLOGEOGRAPHY OF SUCKERMOUTH SPECIES (CHILOGLANIS) WITH EMPHASIS ON THE LIMPOPO RIVER SYSTEM AND IMPLICATIONS FOR WATER MANAGEMENT PRACTICES. Report to the Water Research Commission by MJ Matlala, IR Bills, CJ Kleynhans & P Bloomer Department of Genetics University of Pretoria WRC Report No. KV 235/10 AUGUST 2010 Obtainable from Water Research Commission Publications Private Bag X03 Gezina, Pretoria 0031 SOUTH AFRICA [email protected] This report emanates from a project titled: Systematics and phylogeography of suckermouth species (Chiloglanis) with emphasis on the Limpopo River System and implications of water management practices (WRC Project No K8/788) DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute endorsement or recommendation for use ISBN 978-1-77005-940-5 Printed in the Republic of South Africa ii EXECUTIVE SUMMARY The genus Chiloglanis includes 45 species of which eight are described from southern Africa. The genus is characterized by jaws and lips that are modified into a sucker or oral disc used for attachment to a variety of substrates and feeding in lotic systems. The suckermouths are typically found in fast flowing waters but over varied substrates and water depths. This project focuses on three species, namely Chiloglanis pretoriae van der Horst 1931, C. swierstrai van der Horst 1931 and C. paratus Crass 1960, all of which occur in the Limpopo River System. The suckermouth catfishes have been extensively used in aquatic surveys as indicators of impacts from anthropogenic activities and the health of the river systems.
    [Show full text]
  • Water Resources
    CHAPTER 5: WATER RESOURCES CHAPTER 5 Water Resources CHAPTER 5: WATER RESOURCES CHAPTER 5: WATER RESOURCES Integrating Authors P. Hobbs1 and E. Day2 Contributing Authors P. Rosewarne3 S. Esterhuyse4, R. Schulze5, J. Day6, J. Ewart-Smith2,M. Kemp4, N. Rivers-Moore7, H. Coetzee8, D. Hohne9, A. Maherry1 Corresponding Authors M. Mosetsho8 1 Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Pretoria, 0001 2 Freshwater Consulting Group, Cape Town, 7800 3 Independent Consultant, Cape Town 4 Centre for Environmental Management, University of the Free State, Bloemfontein, 9300 5 Centre for Water Resources Research, University of KwaZulu-Natal, Scottsville, 3209 6 Institute for Water Studies, University of Western Cape, Bellville, 7535 7 Rivers-Moore Aquatics, Pietermaritzburg 8 Council for Geoscience, Pretoria, 0184 9 Department of Water and Sanitation, Northern Cape Regional Office, Upington, 8800 Recommended citation: Hobbs, P., Day, E., Rosewarne, P., Esterhuyse, S., Schulze, R., Day, J., Ewart-Smith, J., Kemp, M., Rivers-Moore, N., Coetzee, H., Hohne, D., Maherry, A. and Mosetsho, M. 2016. Water Resources. In Scholes, R., Lochner, P., Schreiner, G., Snyman-Van der Walt, L. and de Jager, M. (eds.). 2016. Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks. CSIR/IU/021MH/EXP/2016/003/A, ISBN 978-0-7988-5631-7, Pretoria: CSIR. Available at http://seasgd.csir.co.za/scientific-assessment-chapters/ Page 5-1 CHAPTER 5: WATER RESOURCES CONTENTS CHAPTER
    [Show full text]
  • 5. General Description of the Study Area Environment 5.1
    Environmental Impact Report for the proposed establishment of a New Coal-Fired Power Station in the Lephalale Area, Limpopo Province 5. GENERAL DESCRIPTION OF THE STUDY AREA ENVIRONMENT 5.1. Locality The study area is located approximately 10 km east of Lephalale in the Limpopo Province. Within the study area eight farms were nominated, for investigation during the Environmental Scoping Study, for the establishment of a new power station and ancillary infrastructure. The location of these farms is shown in Figure 5.1. General GPS locations for the respective farms are as follows: • Appelvlakte S23.63134° & E27.58245° • Nelsonskop S23.65201° & E27.59873° • Naauwontkomen S23.70193° & E27.56574° • Eenzaamheid S23.70941° & E27.52924° • Droogeheuvel S23.61485° & E27.62578° • Zongesien S23.63706° & E27.64183° • Kuipersbult S23.72414° & E27.56310° • Kromdraai S23.73624° & E27.52594° Through the Environmental Scoping study’s site selection process, the farms Naauwontkomen 509 LQ and Eenzaamheid 687 LQ were nominated as preferred for the development of the proposed new power station and the ancillary infrastructure respectively. 5.2. Climate The climatic regime of the study area is characterised by hot, moist summers and mild, dry winters. The long-term annual average rainfall is 485 mm, of which 420 mm (86,5%) falls between October and March. The area experiences high temperatures, especially in the summer months, where daily maxima of >40oC are common. The annual evaporation in the area is approximately 2 281 mm. Frost is rare, but occurs occasionally in most years, though usually not severely. General Description of the Study 49 23/03/2006 Area Environment Environmental Impact Report for the proposed establishment of a New Coal-Fired Power Station in the Lephalale Area, Limpopo Province Figure 5.1: Regional location of the farms studied during the Environmental Scoping Study.
    [Show full text]
  • Final IDP 2014/2016
    LEPHALALE MUNICIPALITY INTEGRATED DEVELOPMENT PLAN 2014-2016 OFFICE CONTACT DETAILS Physical address: Civic Centre C/O Joe Slovo and Douwater Road Overwacht Postal Address: Lephalale Municipality Private Bag x136 Lephalale Telephone Number: 014 763 2193 Facsimile Number: 014 763 5662 Website: www.lephalale.gov.za Email: [email protected] 0 TABLE OF CONTENTS Abbreviations 3 A.1. Vision Statement 6 A. 1.2. Executive Summary 8 1.3.1 Policies and Legislative Framework 13 1.4. Powers and Functions 21 1.4.1 Lephalale Municipality Priority issues 23 B.2. Demographic Profile 29 2.2. National Development Plan Focus Area 32 C.3. Spatial Economy and Development Rationale 38 3.3. Environmental 60 3.4. Climate Change and Global warming 65 3.4.1 Waste Management 68 D. Service Delivery and Infrastructure Development 74 4. Water 74 4.2. Sanitation 87 4.3. Electricity 92 4.4. Roads and Storm Water 101 1 4.5. Public Transport 106 5. Social Services 118 5.1. Integrated Human Settlement 118 5.2. Education and Training 125 5.3. Health and Social Services 127 5.4. Fire and Rescue Services and Disaster and Risk Management 131 5.5. Sports, Arts and Culture 137 5.6 Safety Security and Liaison 138 6. Local Economic Development 139 7. Financial Management and Viability 154 8. Good Governance and Public Participation 168 8.2 Institutional Development and Transformation 173 9. SWOT Analysis 184 D. Strategic Alignment 191 E. Sector Plans 225 F. Development Strategies Programmes and Projects 227 10. Approval 270 2 ABBREVIATIONS AND ACRONYMS IDP Integrated development
    [Show full text]
  • Limpopo Water Management Area North Reconciliation Strategy
    P WMA 01/000/00/02914/11A Limpopo Water Management Area North Reconciliation Strategy DRAFT RECONCILIATION STRATEGY Limpopo Water Management Area North Reconciliation Strategy i Project Name: Limpopo Water Management Area North Reconciliation Strategy Report Title: Draft Reconciliation Strategy Authors: J Lombaard DWS Report No.: P WMA 01/000/00/02914/11A DWSContract No. WP 10768 PSP Project Reference No.: 60326619 Status of Report: Draft Date: September 2016 CONSULTANTS: AECOM in association with Hydrosol, Jones & Wagener and VSA Rebotile Metsi Consulting. Approved for AECOM: FGB de Jager JD Rossouw Task Leader Study Leader DEPARTMENT OF WATER AND SANITATION (DWS): Directorate: National Water Resources Planning Approved for DWS: Reviewed: Dr BL Mwaka T Nditwani Director: Water Resources Planning Acting Director: National Water Resource Systems Planning Prepared by: AECOM SA (Pty) Ltd PO Box 3173 Pretoria 0001 In association with: Hydrosol Consulting Jones & Wagener VSA Rebotile Metsi Consulting P WMA 01/000/02914/11A - Draft Reconciliation Strategy Report Draft Limpopo Water Management Area North Reconciliation Strategy ii Limpopo Water Management Area North Reconciliation Strategy Date: September 2016 Phase 1: Study planning and Process PWMA 01/000/00/02914/1 Initiation Inception Report Phase 2: Study Implementation PWMA 01/000/00/02914/2 Literature Review PWMA 01/000/00/02914/3/1 PWMA 01/000/00/02914/3 Supporting Document 1: Hydrological Analysis Rainfall Data Analysis PWMA 01/000/00/02914/4/1 PWMA 01/000/00/02914/4 Supporting Document
    [Show full text]
  • Water Risks of Coal Driven Mega Projects in Limpopo: the MCWAP and the EMSEZ
    Water risks of coal driven mega projects in Limpopo: the MCWAP and the EMSEZ Figure 1. Artist impression of proposed Electro Metallurgical Special Economic Zone (EMSEZ) between Musina and Makhado (from EMSEZ website). Victor Munnik, Society Work and Politics (SWOP) Institute, University of the Witwatersrand May 2020 1 Preface The proposed Electro Metallurgical Special Economic Zone (EMSEZ) threat in Makhado is both a huge risk to water users and the environment in the Limpopo valley, and difficult to take seriously, since it has so many irrational aspects. For that reason many NGO researchers have been reluctant to become involved in a complicated issue in what could be a waste of time and money. A word of thanks is thus due to Richard Worthington at Friedrich Ebert Foundation who commissioned this piece in order to get this work done. I sincerely hope that this will be useful to fellow activists and to decision makers. This report focuses specifically on the water aspects of the EMSEZ, which I believe is a major threat, although together with other activists I wonder about the likelihood of the EMSEZ plans. The Mokolo Crocodile West Augmentation Project (MCWAP) is also discussed in this report, as an example of how fossil fuel development can still have dire water implications five decades after the start of coal mining and coal fired power generation, and a caution that even failed mega projects, as the EMSEZ is likely to be, have a cost to people and the environment. This report relies on a close reading of the Department of Water and Sanitation’s 2016 Limpopo Water Management Area North Reconciliation Strategy, as well as the October 2018 DWS Master Plan.
    [Show full text]
  • Abstract Volume of the IAG RCG-2011
    International Association of Geomorphologists Association Internationale de Géomorphologues IIAAGG//AAIIGG RREEGGIIOONNAALL CCOONNFFEERREENNCCEE 22001111 GEOMORPHOLOGY FOR HUMAN ADAPTATION TO CHANGING TROPICAL ENVIRONMENTS GHION HOTEL ADDIS ABABA, ETHIOPIA FEBRUARY 18‐22, 2011 AABBSSTTRRAACCTT VVOOLLUUMMEE Editors: Asfawossen Asrat, Francesco Dramis, Jan Nyssen, Mohammed Umer I A G ‐ 2 0 1 1 , A D D I S A B A B A , E T H I O P I A , 1 8 ‐ 2 2 F E B R U A R Y 2 0 1 1 Cover Photo: Amba Seneyti, Tigray, Northern Ethiopia. Triassic sandstone tor overlying Plaeozoic tillites, which in turn lie over upper Proterozoic metavolcanics-metasediments. [Photo © Asfawossen Asrat, 2010] I A G ‐ 2 0 1 1 , A D D I S A B A B A , E T H I O P I A , 1 8 ‐ 2 2 F E B R U A R Y 2 0 1 1 International Association of Geomorphologists Association Internationale de Géomorphologues IIAAGG//AAIIGG RREEGGIIOONNAALL CCOONNFFEERREENNCCEE 22001111 GEOMORPHOLOGY FOR HUMAN ADAPTATION TO CHANGING TROPICAL ENVIRONMENTS GHION HOTEL ADDIS ABABA, ETHIOPIA FEBRUARY 18‐22, 2011 AABBSSTTRRAACCTT VVOOLLUUMMEE Editors: Asfawossen Asrat, Francesco Dramis, Jan Nyssen, Mohammed Umer 1 | I A G ‐ 2 0 1 1 , A D D I S A B A B A , E T H I O P I A , 1 8 ‐ 2 2 F E B R U A R Y 2 0 1 1 CONFERENCE ORGANIZATION ORGANIZED BY EAG ‐ ETHIOPIAN ASSOCIATION OF GEOMORPHOLOGISTS WITH THE SUPPORT OF Department of Earth Sciences, Addis Ababa University, Ethiopia, Paleoanthropology & Paleoenvironment Program, Addis Ababa University, Ethiopia Mekelle University, Ethiopia Department of Geological Sciences,
    [Show full text]
  • A Comparative Ecotoxicological
    A COMPARATIVE ECOTOXICOLOGICAL STUDY OF TWO MAJOR SOUTH AFRICAN RIVER SYSTEMS: A CATCHMENT SCALE APPROACH FOR IMPROVED RISK ASSESSMENT AND ENVIRONMENTAL MANAGEMENT THROUGH THE INTEGRATION OF ABIOTIC, BIOTIC, BIOCHEMICAL AND MOLECULAR ENDPOINTS By Arno Reed de Klerk Dissertation presented for the degree of Doctor of Philosophy Faculty of Natural Sciences Stellenbosch University Supervisor: Prof. Anna-Maria Botha-Oberholster (Genetics Department) Co-supervisor: Prof. Johannes H van Wyk (Department of Botany and Zoology) Co-supervisor: Prof. Paul J Oberholster (Department of Botany and Zoology; CSIR: NRE) December 2016 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1 By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), and that I have not previously in its entirety or in part submitted it for obtaining any qualification. This dissertation includes two original papers published in peer-reviewed journals and three unpublished publications. The development and writing of the papers (published and unpublished) were the principal responsibility of myself and, for each of the cases where this is not the case, a declaration is included in the dissertation, indicating the nature and extent of the contributions of the co-authors. Signature: Declaration with signature in possession of candidate and supervisor Date: Copyright © 2016 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za ABSTRACT Along with the prosperity of humankind, the inevitable increase in developments to support this often results in water resources becoming repositories for the waste generated by such progress.
    [Show full text]
  • A Baseline Study of the Mokolo and Lephalala Rivers in the Waterberg Area De Klerk, A.R* and De Klerk, L.P
    A Baseline Study of the Mokolo and Lephalala Rivers in the Waterberg Area De Klerk, A.R* and De Klerk, L.P. CSIR, Natural Resources and the Environment, PO Box 395, Pretoria, 0001, South Africa; *Correspondence: [email protected] INTRODUCTION MATERIALS AND METHODS South Africa faces a growing water supply crisis caused by a combination of low rainfall, Aquatic macroinvertebrates were sampled using a standard sweep net (300 mm x 300 high evaporation rates, and a growing population. This situation is particularly true for the mm with 1000 µm mesh), which was held immediately downstream of the area to be Limpopo River basin which is already water-stressed (Ashton et al ., 2008). The Waterberg sampled. All the available biotopes at each site were sampled sequentially. The hills form the headwaters of four main rivers in the Limpopo Water Management Area, macroinvertebrates were then identified to the appropriate taxonomic level, according to namely the Lephalala, Mokolo, Matlabas and Mogalakwena rivers. The aquatic ecosystems Gerber and Gabriel (2002), and enumerated using a sub-sampling technique. An that characterize the rivers draining the Waterberg and flowing to the Limpopo River are assessment of the various macroinvertebrate habitat availability and quality at each site already modified and increasingly vulnerable to change (RHP, 2006). was done using the Invertebrate Habitat Assessment System (IHAS) according to McMillan Current plans to resolve South Africa’s energy crisis and ensure the country’s future (1998). power needs will bring dramatic changes to the Waterberg area, where a coalfield was Qualitative (or semi-quantitative) fish sampling was undertaken to determine the fish discovered in the 1920s.
    [Show full text]