Investment and Financial Markets Study Note
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pricing and Hedging of Lookback Options in Hyper-Exponential Jump Diffusion Models
Pricing and hedging of lookback options in hyper-exponential jump diffusion models Markus Hofer∗ Philipp Mayer y Abstract In this article we consider the problem of pricing lookback options in certain exponential Lévy market models. While in the classic Black-Scholes models the price of such options can be calculated in closed form, for more general asset price model one typically has to rely on (rather time-intense) Monte- Carlo or P(I)DE methods. However, for Lévy processes with double exponentially distributed jumps the lookback option price can be expressed as one-dimensional Laplace transform (cf. Kou [Kou et al., 2005]). The key ingredient to derive this representation is the explicit availability of the first passage time distribution for this particular Lévy process, which is well-known also for the more general class of hyper-exponential jump diffusions (HEJD). In fact, Jeannin and Pistorius [Jeannin and Pistorius, 2010] were able to derive formulae for the Laplace transformed price of certain barrier options in market models described by HEJD processes. Here, we similarly derive the Laplace transforms of floating and fixed strike lookback option prices and propose a numerical inversion scheme, which allows, like Fourier inversion methods for European vanilla options, the calculation of lookback options with different strikes in one shot. Additionally, we give semi-analytical formulae for several Greeks of the option price and discuss a method of extending the proposed method to generalised hyper- exponential (as e.g. NIG or CGMY) models by fitting a suitable HEJD process. Finally, we illustrate the theoretical findings by some numerical experiments. -
A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model
risks Article A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model Emilio Russo Department of Economics, Statistics and Finance, University of Calabria, Ponte Bucci cubo 1C, 87036 Rende (CS), Italy; [email protected] Received: 29 November 2019; Accepted: 25 January 2020 ; Published: 29 January 2020 Abstract: This paper provides a discrete-time approach for evaluating financial and actuarial products characterized by path-dependent features in a regime-switching risk model. In each regime, a binomial discretization of the asset value is obtained by modifying the parameters used to generate the lattice in the highest-volatility regime, thus allowing a simultaneous asset description in all the regimes. The path-dependent feature is treated by computing representative values of the path-dependent function on a fixed number of effective trajectories reaching each lattice node. The prices of the analyzed products are calculated as the expected values of their payoffs registered over the lattice branches, invoking a quadratic interpolation technique if the regime changes, and capturing the switches among regimes by using a transition probability matrix. Some numerical applications are provided to support the model, which is also useful to accurately capture the market risk concerning path-dependent financial and actuarial instruments. Keywords: regime-switching risk; market risk; path-dependent derivatives; insurance policies; binomial lattices; discrete-time models 1. Introduction With the aim of providing an accurate evaluation of the risks affecting financial markets, a wide range of empirical research evidences that asset returns show stochastic volatility patterns and fatter tails with respect to the standard normal model. -
Dixit-Pindyck and Arrow-Fisher-Hanemann-Henry Option Concepts in a Finance Framework
Dixit-Pindyck and Arrow-Fisher-Hanemann-Henry Option Concepts in a Finance Framework January 12, 2015 Abstract We look at the debate on the equivalence of the Dixit-Pindyck (DP) and Arrow-Fisher- Hanemann-Henry (AFHH) option values. Casting the problem into a financial framework allows to disentangle the discussion without unnecessarily introducing new definitions. Instead, the option values can be easily translated to meaningful terms of financial option pricing. We find that the DP option value can easily be described as time-value of an American plain-vanilla option, while the AFHH option value is an exotic chooser option. Although the option values can be numerically equal, they differ for interesting, i.e. non-trivial investment decisions and benefit-cost analyses. We find that for applied work, compared to the Dixit-Pindyck value, the AFHH concept has only limited use. Keywords: Benefit cost analysis, irreversibility, option, quasi-option value, real option, uncertainty. Abbreviations: i.e.: id est; e.g.: exemplum gratia. 1 Introduction In the recent decades, the real options1 concept gained a large foothold in the strat- egy and investment literature, even more so with Dixit & Pindyck (1994)'s (DP) seminal volume on investment under uncertainty. In environmental economics, the importance of irreversibility has already been known since the contributions of Arrow & Fisher (1974), Henry (1974), and Hanemann (1989) (AFHH) on quasi-options. As Fisher (2000) notes, a unification of the two option concepts would have the benefit of applying the vast results of real option pricing in environmental issues. In his 1The term real option has been coined by Myers (1977). -
Analysis of Employee Stock Options and Guaranteed Withdrawal Benefits for Life by Premal Shah B
Analysis of Employee Stock Options and Guaranteed Withdrawal Benefits for Life by Premal Shah B. Tech. & M. Tech., Electrical Engineering (2003), Indian Institute of Technology (IIT) Bombay, Mumbai Submitted to the Sloan School of Management in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Operations Research at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2008 c Massachusetts Institute of Technology 2008. All rights reserved. Author.............................................................. Sloan School of Management July 03, 2008 Certified by. Dimitris J. Bertsimas Boeing Professor of Operations Research Thesis Supervisor Accepted by . Cynthia Barnhart Professor Co-director, Operations Research Center 2 Analysis of Employee Stock Options and Guaranteed Withdrawal Benefits for Life by Premal Shah B. Tech. & M. Tech., Electrical Engineering (2003), Indian Institute of Technology (IIT) Bombay, Mumbai Submitted to the Sloan School of Management on July 03, 2008, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Operations Research Abstract In this thesis we study three problems related to financial modeling. First, we study the problem of pricing Employee Stock Options (ESOs) from the point of view of the issuing company. Since an employee cannot trade or effectively hedge ESOs, she exercises them to maximize a subjective criterion of value. Modeling this exercise behavior is key to pricing ESOs. We argue that ESO exercises should not be modeled on a one by one basis, as is commonly done, but at a portfolio level because exercises related to different ESOs that an employee holds would be coupled. Using utility based models we also show that such coupled exercise behavior leads to lower average ESO costs for the commonly used utility functions such as power and exponential utilities. -
Finance II (Dirección Financiera II) Apuntes Del Material Docente
Finance II (Dirección Financiera II) Apuntes del Material Docente Szabolcs István Blazsek-Ayala Table of contents Fixed-income securities 1 Derivatives 27 A note on traditional return and log return 78 Financial statements, financial ratios 80 Company valuation 100 Coca-Cola DCF valuation 135 Bond characteristics A bond is a security that is issued in FIXED-INCOME connection with a borrowing arrangement. SECURITIES The borrower issues (i.e. sells) a bond to the lender for some amount of cash. The arrangement obliges the issuer to make specified payments to the bondholder on specified dates. Bond characteristics Bond characteristics A typical bond obliges the issuer to make When the bond matures, the issuer repays semiannual payments of interest to the the debt by paying the bondholder the bondholder for the life of the bond. bond’s par value (or face value ). These are called coupon payments . The coupon rate of the bond serves to Most bonds have coupons that investors determine the interest payment: would clip off and present to claim the The annual payment is the coupon rate interest payment. times the bond’s par value. Bond characteristics Example The contract between the issuer and the A bond with par value EUR1000 and coupon bondholder contains: rate of 8%. 1. Coupon rate The bondholder is then entitled to a payment of 8% of EUR1000, or EUR80 per year, for the 2. Maturity date stated life of the bond, 30 years. 3. Par value The EUR80 payment typically comes in two semiannual installments of EUR40 each. At the end of the 30-year life of the bond, the issuer also pays the EUR1000 value to the bondholder. -
Sequential Compound Options and Investments Valuation
Sequential compound options and investments valuation Luigi Sereno Dottorato di Ricerca in Economia - XIX Ciclo - Alma Mater Studiorum - Università di Bologna Marzo 2007 Relatore: Prof. ssa Elettra Agliardi Coordinatore: Prof. Luca Lambertini Settore scienti…co-disciplinare: SECS-P/01 Economia Politica ii Contents I Sequential compound options and investments valua- tion 1 1 An overview 3 1.1 Introduction . 3 1.2 Literature review . 6 1.2.1 R&D as real options . 11 1.2.2 Exotic Options . 12 1.3 An example . 17 1.3.1 Value of expansion opportunities . 18 1.3.2 Value with abandonment option . 23 1.3.3 Value with temporary suspension . 26 1.4 Real option modelling with jump processes . 31 1.4.1 Introduction . 31 1.4.2 Merton’sapproach . 33 1.4.3 Further reading . 36 1.5 Real option and game theory . 41 1.5.1 Introduction . 41 1.5.2 Grenadier’smodel . 42 iii iv CONTENTS 1.5.3 Further reading . 45 1.6 Final remark . 48 II The valuation of new ventures 59 2 61 2.1 Introduction . 61 2.2 Literature Review . 63 2.2.1 Flexibility of Multiple Compound Real Options . 65 2.3 Model and Assumptions . 68 2.3.1 Value of the Option to Continuously Shut - Down . 69 2.4 An extension . 74 2.4.1 The mathematical problem and solution . 75 2.5 Implementation of the approach . 80 2.5.1 Numerical results . 82 2.6 Final remarks . 86 III Valuing R&D investments with a jump-di¤usion process 93 3 95 3.1 Introduction . -
Calibration Risk for Exotic Options
Forschungsgemeinschaft through through Forschungsgemeinschaft SFB 649DiscussionPaper2006-001 * CASE - Center for Applied Statistics and Economics, Statisticsand Center forApplied - * CASE Calibration Riskfor This research was supported by the Deutsche the Deutsche by was supported This research Wolfgang K.Härdle** Humboldt-Universität zuBerlin,Germany SFB 649, Humboldt-Universität zu Berlin zu SFB 649,Humboldt-Universität Exotic Options Spandauer Straße 1,D-10178 Berlin Spandauer http://sfb649.wiwi.hu-berlin.de http://sfb649.wiwi.hu-berlin.de Kai Detlefsen* ISSN 1860-5664 the SFB 649 "Economic Risk". "Economic the SFB649 SFB 6 4 9 E C O N O M I C R I S K B E R L I N Calibration Risk for Exotic Options K. Detlefsen and W. K. H¨ardle CASE - Center for Applied Statistics and Economics Humboldt-Universit¨atzu Berlin Wirtschaftswissenschaftliche Fakult¨at Spandauer Strasse 1, 10178 Berlin, Germany Abstract Option pricing models are calibrated to market data of plain vanil- las by minimization of an error functional. From the economic view- point, there are several possibilities to measure the error between the market and the model. These different specifications of the error give rise to different sets of calibrated model parameters and the resulting prices of exotic options vary significantly. These price differences often exceed the usual profit margin of exotic options. We provide evidence for this calibration risk in a time series of DAX implied volatility surfaces from April 2003 to March 2004. We analyze in the Heston and in the Bates model factors influencing these price differences of exotic options and finally recommend an error func- tional. -
Value at Risk for Linear and Non-Linear Derivatives
Value at Risk for Linear and Non-Linear Derivatives by Clemens U. Frei (Under the direction of John T. Scruggs) Abstract This paper examines the question whether standard parametric Value at Risk approaches, such as the delta-normal and the delta-gamma approach and their assumptions are appropriate for derivative positions such as forward and option contracts. The delta-normal and delta-gamma approaches are both methods based on a first-order or on a second-order Taylor series expansion. We will see that the delta-normal method is reliable for linear derivatives although it can lead to signif- icant approximation errors in the case of non-linearity. The delta-gamma method provides a better approximation because this method includes second order-effects. The main problem with delta-gamma methods is the estimation of the quantile of the profit and loss distribution. Empiric results by other authors suggest the use of a Cornish-Fisher expansion. The delta-gamma method when using a Cornish-Fisher expansion provides an approximation which is close to the results calculated by Monte Carlo Simulation methods but is computationally more efficient. Index words: Value at Risk, Variance-Covariance approach, Delta-Normal approach, Delta-Gamma approach, Market Risk, Derivatives, Taylor series expansion. Value at Risk for Linear and Non-Linear Derivatives by Clemens U. Frei Vordiplom, University of Bielefeld, Germany, 2000 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Master of Arts Athens, Georgia 2003 °c 2003 Clemens U. Frei All Rights Reserved Value at Risk for Linear and Non-Linear Derivatives by Clemens U. -
Venture Capitalists' Entry-Exit Investment Decisions
A Dynamic Model for Venture Capitalists' Entry{Exit Investment Decisions∗ Ricardo M. Ferreiray, Paulo J. Pereiraz yFaculdade de Economia, Universidade do Porto, Portugal zCEF.UP and Faculdade de Economia, Universidade do Porto, Portugal. Abstract In this paper we develop a dynamic model to study the entry and the exit decision of a VC facing the opportunity to invest and expand a start-up firm. Two settings are considered. A benchmark setting, where no time constrain for exiting is in place, is compared with the one where, realistically, the VC has a finite time-window for divesting. In both cases we consider the trade sale (M&A) as the exit route. The model returns the entry and the exit triggers, the optimal post-money ownerships, the expected cash multiple for the VC, and also proposes a new time-adjusted version of the cash multiple, useful for measuring, ex ante, the expected performance of the investment. The model aims to guide the VCs when analyzing their investment op- portunities, considering the entire VC's business-cycle (entry{expand{exit). Finally, the model is applied to an hypothetical, but realistic, situation in order to understand the main outcomes. A comparative statics analysis is also performed. Keywords: Finance; Venture Capital; Start-ups; Real Options; Growth Options. JEL codes: G24; G34; L26; M13. ∗We thank Roel Nagy, Miguel Sousa, Miguel Tavares-G¨artner,Lenos Trigeorgis and the participants at the 2019 Annual International Real Options Conference in London. Paulo J. Pereira acknowledge that this research has been financed by Portuguese public funds through FCT - Funda¸c~aopara a Ci^enciae a Tecnologia, I.P., in the framework of the projects UID/ECO/04105/2019. -
Solution to the Chooser Question
Solution to the Chooser Question The payoff of the chooser option at time 1 is given by max[C(S1,X,1),P(S1,X,1)], where C(S1,X,1) is the value of a call option that matures at time 2, with exercise price X and stock price S1. Put call parity implies that at time 1, C(S1,X,1)- P(S1,X,1)=S1-X/R. Substituting in for the value of the put, the chooser payoff at time 1 is given by max[C(S1,X,1),C(S1,X,1)- S1+X/R]= C(S1,X,1)+max[0,X/R-S1]. But, max[0,X/R-S1] is the payoff of a put option that expires at time 1, with exercise price X/R. So, at time 0, the value of the chooser must be equal to C(S0,X,2)+P(S0,X/R,1). We can then use put call parity again to substitute out the value of the one period put in terms of a one period call, giving us the final result that the 2 chooser payoff equals C(S0,X,2)+ C(S0,X/R,1)-S0+X/R . You would likely purchase the chooser option of you wanted a positive payoff in the tails of the distribution of the underlying return in the future. To solve for the value of the chooser, we work recursively through the tree. The call option payoffs are given by Cuu=Max(15.625-10,0)=5.625 Cu C0 Cud=Max(10-10,0)=0 Cd Cdd=Max(6.4-10,0)=0 Clearly, after the first down move, the call is worthless. -
Asymptotics of Forward Implied Volatility
ASYMPTOTICS OF FORWARD IMPLIED VOLATILITY by Patrick Francois Springfield Roome Department of Mathematics Imperial College London London SW7 2AZ United Kingdom Submitted to Imperial College London for the degree of Doctor of Philosophy 2015 1 Declaration I the undersigned hereby declare that the work presented in this thesis is my own. When mate- rial from other authors has been used, these have been duly acknowledged. This thesis has not previously been presented for this or any other PhD examinations. Patrick Francois Springfield Roome 2 Copyright The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 3 \Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever." Niels Hendrik Abel, 1828 Abstract We study asymptotics of forward-start option prices and the forward implied volatility smile using the theory of sharp large deviations (and refinements). In Chapter 1 we give some intu- ition and insight into forward volatility and provide motivation for the study of forward smile asymptotics. We numerically analyse no-arbitrage bounds for the forward smile given calibration to the marginal distributions using (martingale) optimal transport theory. Furthermore, we derive several representations of forward-start option prices, analyse various measure-change symmetries and explore asymptotics of the forward smile for small and large forward-start dates. -
Analytical Finance Volume I
The Mathematics of Equity Derivatives, Markets, Risk and Valuation ANALYTICAL FINANCE VOLUME I JAN R. M. RÖMAN Analytical Finance: Volume I Jan R. M. Röman Analytical Finance: Volume I The Mathematics of Equity Derivatives, Markets, Risk and Valuation Jan R. M. Röman Västerås, Sweden ISBN 978-3-319-34026-5 ISBN 978-3-319-34027-2 (eBook) DOI 10.1007/978-3-319-34027-2 Library of Congress Control Number: 2016956452 © The Editor(s) (if applicable) and The Author(s) 2017 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Cover image © David Tipling Photo Library / Alamy Printed on acid-free paper This Palgrave Macmillan imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To my soulmate, supporter and love – Jing Fang Preface This book is based upon lecture notes, used and developed for the course Analytical Finance I at Mälardalen University in Sweden.