Multiple Populations in Globular Clusters and Their Parent Galaxies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astronomy & Astrophysics Background Galaxies As Reddening
A&A 371, 895–907 (2001) Astronomy DOI: 10.1051/0004-6361:20010467 & c ESO 2001 Astrophysics Background galaxies as reddening probes throughout the Magellanic Clouds C. M. Dutra1,3,E.Bica1,3,J.J.Clari´a2,3,A.E.Piatti2,3, and A. V. Ahumada2,3 1 Instituto de Fisica-UFRGS, CP 15051, CEP 91501-970 POA – RS, Brazil 2 Observatorio Astron´omico de C´ordoba, Laprida 854, 5000, C´ordoba, Argentina 3 Visiting Astronomer, Complejo Astron´omico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas de la Rep´ublica Argentina and the National Universities of La Plata, C´ordoba and San Juan Received 3 January 2001 / Accepted 23 March 2001 Abstract. We study the spectral properties in the range 3600 A–6800˚ A˚ of the nuclear region of galaxies behind the Magellanic Clouds. The radial velocities clarified the nature of the objects as background galaxies or extended objects belonging to the Clouds. For most galaxies behind the main bodies of the LMC and SMC, radial velocities were measured for the first time. In the present sample typical LMC background galaxies are nearby (4000 <V(km s−1) < 6000), while SMC’s are considerably more distant (10 000 <V(km s−1) < 20 000). We determine the reddening in each line of sight by matching a reddening-free galaxy template with comparable stellar population. For the LMC main body we derive a combined Milky Way and internal reddening value E(B−V )MW+i =0.120.10, while for the SMC E(B−V )MW+i =0.050.05. -
Arxiv:Astro-Ph/9808091V1 10 Aug 1998 Pc Eecp Cec Nttt,Wihi Prtdb the NAS5-26555
To appear in the Astronomical Journal (accepted 1998 August 10) WFPC2 OBSERVATIONS OF STAR CLUSTERS IN THE MAGELLANIC CLOUDS. II. THE OLDEST STAR CLUSTERS IN THE SMALL MAGELLANIC CLOUD1 Kenneth J. Mighell2 Kitt Peak National Observatory, National Optical Astronomy Observatories3, P. O. Box 26732, Tucson, AZ 85726-6732 Electronic mail: [email protected] Ata Sarajedini4 Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 Electronic mail: [email protected] Rica S. French5 Middle Tennessee State University, Physics & Astronomy Department, WPS 219, P. O. Box 71, Murfreesboro, TN 37132 Electronic mail: [email protected] arXiv:astro-ph/9808091v1 10 Aug 1998 1 Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555. 2 Guest User, Canadian Astronomy Data Centre, which is operated by the Dominion Astrophysical Observatory for the National Research Council of Canada’s Herzberg Institute of Astrophysics. 3NOAO is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. 4Hubble Fellow 5Based on research conducted at NOAO as part of the Research Experiences for Undergraduates program. – 2 – ABSTRACT We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F450W ( B) and F555W ( V ) of the ∼ ∼ intermediate-age populous star clusters NGC 121, NGC 339, NGC 361, NGC 416, and Kron 3 in the Small Magellanic Cloud. -
Star Clusters As Witnesses of the Evolutionary History of the Small Magellanic Cloud
JENAM, Symposium 5: Star Clusters – Witnesses of Cosmic History Star Clusters as Witnesses of the Evolutionary History of the Small Magellanic Cloud Eva K. Grebel Astronomisches Rechen-Institut 11.0Z9.2e00n8 trum für AstrGroebnel,o JEmNAMie Sy mdp.e 5:r S MUC nStairv Celusrtesrsität Heidelbe0 rg My collaborators: ! PhD student Katharina Glatt ! PhD student Andrea Kayser (both University of Basel & University of Heidelberg) ! Andreas Koch (U Basel & UCLA / OCIW) ! Jay Gallagher, D. Harbeck (U Wisc) ! Elena Sabbi (U Heidelberg & STScI) ! Antonella Nota, Marco Sirianni (STScI) ! Monica Tosi, Gisella Clementini (U Bologna) ! Andrew Cole (U Tasmania) ! Gary Da Costa (ANU) 11.09.2008 Grebel, JENAM Symp. 5: SMC Star Clusters 1 NGC 416 (OGLE) Tracers of the Age-Metallicity Relation: ! Star clusters: ! Easily identifiable. ! Chronometers of intense star formation events. ! Single-age, single-metallicity fossils of local conditions. ! Star clusters in the SMC: ! Clusters formed (and survived) for most of its lifetime " Closely spaced set of age tracers! " Unique property of the SMC. # Milky Way: No comparable set of intermediate-age, populous clusters. # LMC: Age gap at intermediate ages. 11.09.2008 Grebel, JENAM Symp. 5: SMC Star Clusters 2 Cluster-based Age-Metallicity Relation: Photometry Spectroscopy After Da Costa 2002 An inhomogeneous sample: ! Photometric and spectroscopic metallicities from different techniques ! Photometric ages from ground-/space-based data of differing depth 11.09.2008 Grebel, JENAM Symp. 5: SMC Star Clusters 3 Getting Homogeneous Ages and Metallicities: PhD thesis Katharina Glatt ! HST / ACS program to obtain deep CMDs (PI: Gallagher) $ GO 10396, 29 orbits, executed 2005 – 2006. $ 6 populous intermediate-age clusters, 1 globular cluster: NGC 419, Lindsay 38, NGC 416, 339, Kron 3, Lindsay 1, NGC 121. -
108 Afocal Procedure, 105 Age of Globular Clusters, 25, 28–29 O
Index Index Achromats, 70, 73, 79 Apochromats (APO), 70, Averted vision Adhafera, 44 73, 79 technique, 96, 98, Adobe Photoshop Aquarius, 43, 99 112 (software), 108 Aquila, 10, 36, 45, 65 Afocal procedure, 105 Arches cluster, 23 B1620-26, 37 Age Archinal, Brent, 63, 64, Barkhatova (Bar) of globular clusters, 89, 195 catalogue, 196 25, 28–29 Arcturus, 43 Barlow lens, 78–79, 110 of open clusters, Aricebo radio telescope, Barnard’s Galaxy, 49 15–16 33 Basel (Bas) catalogue, 196 of star complexes, 41 Aries, 45 Bayer classification of stellar associations, Arp 2, 51 system, 93 39, 41–42 Arp catalogue, 197 Be16, 63 of the universe, 28 Arp-Madore (AM)-1, 33 Beehive Cluster, 13, 60, Aldebaran, 43 Arp-Madore (AM)-2, 148 Alessi, 22, 61 48, 65 Bergeron 1, 22 Alessi catalogue, 196 Arp-Madore (AM) Bergeron, J., 22 Algenubi, 44 catalogue, 197 Berkeley 11, 124f, 125 Algieba, 44 Asterisms, 43–45, Berkeley 17, 15 Algol (Demon Star), 65, 94 Berkeley 19, 130 21 Astronomy (magazine), Berkeley 29, 18 Alnilam, 5–6 89 Berkeley 42, 171–173 Alnitak, 5–6 Astronomy Now Berkeley (Be) catalogue, Alpha Centauri, 25 (magazine), 89 196 Alpha Orionis, 93 Astrophotography, 94, Beta Pictoris, 42 Alpha Persei, 40 101, 102–103 Beta Piscium, 44 Altair, 44 Astroplanner (software), Betelgeuse, 93 Alterf, 44 90 Big Bang, 5, 29 Altitude-Azimuth Astro-Snap (software), Big Dipper, 19, 43 (Alt-Az) mount, 107 Binary millisecond 75–76 AstroStack (software), pulsars, 30 Andromeda Galaxy, 36, 108 Binary stars, 8, 52 39, 41, 48, 52, 61 AstroVideo (software), in globular clusters, ANR 1947 -
The Search for Multiple Populations in Magellanic Cloud Clusters II: the Detection of Multiple Populations in Three Intermediate-Age SMC Clusters?
MNRAS 000,1{7 (2016) Preprint 29 August 2018 Compiled using MNRAS LATEX style file v3.0 The Search for Multiple Populations in Magellanic Cloud Clusters II: The Detection of Multiple Populations in Three Intermediate-Age SMC Clusters? F. Niederhofer1y, N. Bastian2, V. Kozhurina-Platais1, S. Larsen3, K. Hollyhead2, C. Lardo2, I. Cabrera-Ziri2;4, N. Kacharov5, I. Platais6, M. Salaris2, M. Cordero7, E. Dalessandro8;9, D. Geisler10, M. Hilker4, C. Li11, D. Mackey12, and A. Mucciarelli8, 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2 Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK 3 Department of Astrophysics/IMAPP, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands 4 European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei Munchen,¨ Germany 5 Max-Planck-Institut fur¨ Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany 6 Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA 7 Astronomisches Rechen-Institut, Zentrum fur¨ Astronomie der Universit¨at Heidelberg, M¨onchhofstraße 12-14, D-69120 Heidelberg, Germany 8 Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, I-40127 Bologna, Italy 9 INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127, Bologna, Italy 10 Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Chile 11 Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia 12 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia Accepted XXX. Received YYY; in original form ZZZ ABSTRACT This is the second paper in our series about the search for multiple populations in Magellanic Cloud star clusters using the Hubble Space Telescope. -
Ca II Triplet Spectroscopy of Giants in SMC Star Clusters: Abundances, Velocities and the Age-Metallicity Relation
Ca II Triplet Spectroscopy of Giants in SMC Star Clusters: Abundances, Velocities and the Age-Metallicity Relation G. S. Da Costa Mount Stromlo and Siding Spring Observatories, The Australian National University, Private Bag, Weston Creek Post Office, ACT 2611, Australia Electronic mail: [email protected] and D. Hatzidimitriou Physics Department, University of Crete, P.O. Box 2208, Heraklion 710 03, Crete, Greece Electronic mail: [email protected] ABSTRACT We have obtained spectra at the Ca II triplet of individual red giants in seven SMC star clusters whose ages range from ∼4 to 12 Gyr. The spectra have been used to determine mean abundances for six of the star clusters to a typical precision of 0.12 dex. When combined with existing data for other objects, the resulting SMC age-metallicity relation is generally consistent with that for a simple model of chemical evolution, scaled to the present-day SMC mean abundance and gas mass fraction. Two of the clusters (Lindsay 113 and NGC 339), however, have abundances that are ∼0.5 dex lower than that expected from the mean age-metallicity relation. It is suggested that the formation of these clusters, which have ages of ∼5 Gyr, may have involved the infall of unenriched gas, perhaps from the Magellanic Stream. The spectra also yield radial velocities for the seven clusters. The resulting velocity dispersion is −1 arXiv:astro-ph/9802008v1 2 Feb 1998 16 ± 4 km s , consistent with those of the SMC planetary nebula and carbon star populations. Subject headings: galaxies: abundances — galaxies: individual (SMC) — galaxies: kinematics and dynamics — galaxies: star clusters — Magellanic Clouds Accepted for Publication in The Astronomical Journal – 2 – 1. -
NGC 6535: the Lowest Mass Milky Way Globular Cluster with a Na-O Anti-Correlation??,?? Cluster Mass and Age in the Multiple Population Context
A&A 607, A44 (2017) Astronomy DOI: 10.1051/0004-6361/201731526 & c ESO 2017 Astrophysics NGC 6535: the lowest mass Milky Way globular cluster with a Na-O anti-correlation??,?? Cluster mass and age in the multiple population context A. Bragaglia1, E. Carretta1, V. D’Orazi2; 3; 4, A. Sollima1, P. Donati1, R. G. Gratton2, and S. Lucatello2 1 INAF–Osservatorio Astronomico di Bologna, via Gobetti 93/3, 40129 Bologna, Italy e-mail: [email protected] 2 INAF–Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy 3 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia 4 Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia Received 7 July 2017 / Accepted 1 August 2017 ABSTRACT To understand globular clusters (GCs) we need to comprehend how their formation process was able to produce their abundance distribution of light elements. In particular, we seek to figure out which stars imprinted the peculiar chemical signature of GCs. One of the best ways is to study the light-element anti-correlations in a large sample of GCs that are analysed homogeneously. As part of our spectroscopic survey of GCs with FLAMES, we present here the results of our study of about 30 red giant member stars in the low-mass, low-metallicity Milky Way cluster NGC 6535. We measured the metallicity (finding [Fe/H] = −1:95, rms = 0.04 dex in our homogeneous scale) and other elements of the cluster and, in particular, we concentrate here on O and Na abundances. -
THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein
THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 144 — 5 December 2016 http://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon 10 5 MB 0 Y -5 -10 10 0 -10 -20 -30 XMB Figure 1: The Magellanic Bridges as traced by young main sequence stars (in red) and old RR Lyræ stars (in blue). These Gaia data release 1 results have been submitted by Belokurov et al. ( http://arxiv.org/abs/1611.04614 ) Editorial Dear Colleagues, It is my pleasure to present you the 144th issue of the Magellanic Clouds Newsletter. Please also see the announcement of Nature Astronomy if you hadn’t noticed it before. This is a newly launched journal that may be of interest to you. The next issue is planned to be distributed on the 1st of February 2017. I wish you all a Merry Christmas and a Happy New Year! Editorially Yours, Jacco van Loon 1 Refereed Journal Papers Multiple populations in the old and massive Small Magellanic Cloud globular cluster NGC 121 Emanuele Dalessandro1,2, Emilio Lapenna2, Alessio Mucciarelli2, Livia Origlia1, Francesco R. Ferraro2 and Barbara Lanzoni2 1INAF – Bologna Observatory, Italy 2Department of Physics and Astronomy – Bologna University, Italy We used a combination of optical and near-UV Hubble Space Telescope photometry and FLAMES/ESO-VLT high- resolution spectroscopy to characterize the stellar content of the old and massive globular cluster (GC) NGC 121 in the Small Magellanic Cloud (SMC). We report on the detection of multiple stellar populations, the first case in the SMC stellar cluster system. -
Object Index
Cambridge University Press 0521651816 - The Galaxies of the Local Group Sidney Van Den Bergh Index More information Object Index 30 Doradus, 49, 88, 99, 100, 101, 108, 110, 112–116, DDO 155, 263 121, 124, 131, 134, 135, 139 DDO 187, 263, 279 47 Tucanae, see NGC 104 DDO 210, 5, 7, 194–195, 280, 288 287.5 + 22.5 + 240, 139, 161 DDO 216, 5, 6, 7, 174, 192–194, 280 AE And, 37 DDO 221, 174, 188–191, 280 AF And, see M31 V 19 DEM 71, 132 Alpha UMi, see Polaris DEM L316, 133 AM 1013-394A, 270, 272 Draco dwarf, 5, 58, 137, 185, 231, 249–252, 256, 259, And I, 5, 234, 235, 236, 237, 242, 280 262, 280 And II, 5, 7, 234, 236, 237, 238, 240, 242, 280 And III, 5, 234, 236, 237, 238, 240, 242, 280 EGB 0419 + 72, 270 And IV, 234 EGB 0427 + 63, see UGC-A92 And V, 5, 7, 237–240, 242, 280 Eridanus, 58, 64, 229 And VI, 5, 7, 240, 241, 242, 280 ESO 121-SC03, 103, 104, 124, 125, 161, 162 And VII, 5, 7, 241, 242, 280 ESO 249-010, 264 Andromeda galaxy, see M31 ESO 439-26, 55 Antlia dwarf, 265–267, 270, 272 Eta Carinae, 37 Aquarius dwarf, see DDO 210 AqrDIG, see DDO 210 F8D1, 2 Arches cluster, see G0.121+0.017 Fornax clusters 1–6, 222, 223, 224 Arp 2, 58, 64, 161, 226, 227, 228, 230, 232 Fornax dwarf 5, 94, 167, 219–226, 231, 256, 259, 260, Arp 220, 113 262, 280 B 327, 24 G 1, 27, 32, 34, 35, 45 BD +40◦ 147, 164 G 105, 35 BD +40◦ 148, 12 G 185, 31 Berkeley 17, 54 G 219, 27, 32 Berkeley 21, 56 G 280, 32 G0.7-0.0, see Sgr B2 C1,20 G0.121 + 0.017, 48 C 107, see vdB0 G1.1-0.1, 49 Camelopardalis dwarf, 241, 242 G359.87 + 0.18, 67 Carina dwarf, 5, 245–247, 256, 259, -