RJCES ©Academy for Environment and Life Sciences, INDIA

Total Page:16

File Type:pdf, Size:1020Kb

RJCES ©Academy for Environment and Life Sciences, INDIA Research Journal of Chemical and Environmental Sciences Res J. Chem. Environ. Sci. Vol 2 [3] June 2014: 05-16 Online ISSN 2321-1040 CODEN: RJCEA2 [USA] RJCES ©Academy for Environment and Life Sciences, INDIA REVIEW ARTICLE Actinomycetes: Potential Bioresource for Human Welfare: A Review 1Roshan Kumar*, 2Koushik Biswas, 3Vikas Soalnki, 4Pankaj Kumar, 5Avijit Tarafdar 1School of Biotechnology, Chemical and Biomedical Engineering (SBCBE), VIT University, Vellore, (India) 2Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh (India) 3Department of Biotechnology, Beehive College of Advance Studies, Selaqui, Dehradun (India) 4Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, HP (India) 5Cytogenetics and Tissue Culture Unit, Department of Botany,University of Kalyani, Nadia, West Bengal (India) Corresponding Author- [email protected] ABSTRACT Microbial natural products are the origin of most of the antibiotics in the market today. There is an alarming scarcity of new antibiotics currently under development in the pharmaceutical industry. Still, microbial natural products remain the most promising source of novel antibiotics, although new approaches are required to improve the efficiency of the discovery process. Actinomycetes which are the prolific producers of antibi-otics and important suppliers to the pharmaceutical and other industry they are well known for their ability to produce secondary metabolites many of which are active against pathogenic microorganisms. It is only more recently that actinomycetes have become recognized as a source of novel antibiotics and anticancer agents with unusual structures and properties. They are a promising source of wide range of important enzymes, some of which are produced on an industrial scale, but many other remained to be harnessed. The application of enzymes in diverse biotechnological industries indicates a positive trend which needs to be satisfied with the discovery of novel enzymes and metabolites. Since very few enzymes have been potentially utilize data the industrial level; there is a huge scope for the development of robust and low cost enzymes. Actinomycetes are a reservoir of important enzymes and metabolites due to their versatile genetic repertory. They perform microbial transformations of organic compounds, a field of great commercial value. Members of many genera of actinomycetes have potential for use in the bioconversion of underutilized agricultural and urban wastes into high-value chemical products. Keywords- Actinomycetes, bioactive compound, Antibiotics, Enzymes. Received 12.03.2014 Accepted 13.05.2014 © 2014 AELS, INDIA INTRODUCTION Actinomycetes are a wealthy source for the synthesis of medically and technically useful natural products. From the ancient times actinomycetes is mostly related to its use as an antibiotic. Its use as an anti fungal agent in the past is mostly responsible for its popularity with antibiotic research today. From 1914 to 1939, Selman A. Waksman had been systematically screening soil bacteria and fungi in an attempt to find an antibiotic for Tuberculosis. University of California (1939) discovered the effect of certain fungi, especially antinomycetes, on bacterial growth. Actinomycetes slowed bacterial growth because of the antibiotics they produce.Actinomycetes comprise a substantially larger group having wider range of applications in food and pharma. Actinomycetes are Gram-positive bacteria with a high G+C (>55%) content. Among others, representative genera include Micrococcus, Mycobacterium, Nocardia, Propionibacterium, and Streptomyces. Many actinomycetes, such as Streptomyces, grow as branching filaments and live in soil, as fungi do. Because of this resemblance, actinomycetes were originally classified as fungi. This was reflected on their name, where "mycetes" comes from the Greek for "mushroom, fungus". The actinomycetes represent a ubiquitous group of microbes that are widely distributed in natural ecosystems around the world and are particularly significant for their role in the recycling of organic matter. [1, 2] reported a bimodal distribution of actinomycetes in near shore tropical marine environments. The habitat of actinomycetes corresponds to its behavioral characteristics. Actinomycetes is a saprophyte, another word for a decomposing organism, which means it grows best in moist moderate to tropical atmospheres. This bacterium is also a heterotroph, meaning it draws its RJCES Vol 2 [3] June 2014 5 | P a g e © 2014 AELS, INDIA Kumar et al energy from surrounding sources such as dead and decomposing animal matter. These factors determine the habitat of actinomycetes. As a decomposer, actinomycetes is commonly found in compost piles and forest floor litter, and forms symbiotic relationships with red alders, a type of tree that forms anaerobic nodules in which actinomycetes fixes nitrogen for the tree. Actinomycetes bacteria are found in human and cattle bodies in the mouth, throat, and intestinal tract. Occurrence Actinomycetes occur in the soil in the spore stage as well as in the mycelial stage. As a result of comparative examination of the relative abundance of actinomycetes in the form of substrate growth and spores in soil, using the microscopic and plate methods. The mycelium developed most abundantly at 28 oC to 37 oC; at lower and higher temperatures growth was slower but eventually reached the same density. At higher temperatures, the mycelium underwent increasing fragmentation, giving rise to abundant formation of spores. Sporulation is also favored by a dry atmosphere. Enrichment of soil with bacteria leads to extensive actinomycete development; their excessive growth is due largely to the introduction of fresh supply of available nutrients in the form of bacterial cells. Addition of organic matter has in general a marked stimulating effect upon the development of Actinomycetes. When soils rich in organic matter such as peat bogs, are drained and aerated, actinomycetes are able to make extensive growth. Actinomycetes, including Streptomycetes and certain nocardiae, occur abundantly in and around the root systems of higher plants. (Table.1) contain list of actinomycetes strain present in particular plant and their function are given in. Some forms produce yellowish, orange, or black pigments in organic media. Some are spiral producing, others forming straight aerial mycelium. Certain horizons of different soil types were found to contain characteristic communities of Streptomycetes.Freshwater lakes, rivers, and sewage contain an abundance of actinomycetes, including thermophilic forms growing well at 60 oC. Diversity of marine actinobacteria An intriguing picture of the diversity of marine actinobacteria is beginning to emerge. Once largely considered to originate from dormant spores that washed in from land [3], it is now clear that specific populations of marine adapted actinobacteria not only exist but add significant new diversity within a broad range of actinobacterial taxa [ 4,5]. The first report on the marine actinobacteria was made by [6], when he observed and documented those in the salt mud. In 1969, Weyland [7] carried out an extensive survey on the distribution on marine actinobacteria in the sediments of North Sea and Atlantic Ocean and suggested that the marine actinobacteria are the best sources for isolation of unique bioactive compounds compared to terrestrial ones. After this, a number of researchers around the world have concentrated to isolate and identify the actinobacteria from the different marine habitats. Ecology of antibiotic producing actinomycetes Microbial diversity is a substantial leading edge and prospective goldmine for biotechnology industry because it offers countless of secondary metabolites to probe for enzymes, antibiotics, antioxidant, cytotoxic and so many other useful substances [8-10]. The actinomycetes occur in vast diversity of habitat either natural or artificial, growing on different kinds of substrate. The diversity of actinomycetes is of exceptional impact in several areas of pharmaceutical, medicine and agriculture, particularly, in antibiotic production [11]. Actinomycetes are ubiquitous and have been isolated from various locations, in the soil, fresh water, marine, hot spring, mining sites, and also in extreme environments. Table 1. Examples of rizosphere some actinomycetes and their functions to plants. Rhizospheric Function Plant species References actinomycetes Micromonospora endolithica Phosphate solubilization to Bean (Phaseolus vulgaris [12] promote plant growth L.) Streptomyces griseus Protection against damping Wheat (Triticum spp.) [13] off disease caused by Pythium ultimum Frankia species Biological fixation of Actinorhizal plant [14] nitrogen (Casuarina equisetifolia) Norcardia levis Biological control of Sorghum (Sorghum bicolor) [15] Fusarium oxysporum wilt disease Streptomyces species Act as biocontrol against Tomato (Solanum [16] Rhizoctonia solani lycopersicum) Streptomyces species Bioremediation of Maize (Zea mays) [17] contaminated soil RJCES Vol 2 [3] June 2014 6 | P a g e © 2014 AELS, INDIA Kumar et al Role of actinomycetes in the marine environment The marine environment is characterized by the hostile parameters such as high pressure, salinity; low temperature, absence of light, etc. and the marine actinobacteria have adapted themselves to survive in this environment. They require Na+ for growth because it is essential
Recommended publications
  • Improved Taxonomy of the Genus Streptomyces
    UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR.
    [Show full text]
  • Evolution of the Streptomycin and Viomycin Biosynthetic Clusters and Resistance Genes
    University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of PhD at the University of Warwick http://go.warwick.ac.uk/wrap/2773 This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. Evolution of the streptomycin and viomycin biosynthetic clusters and resistance genes Paris Laskaris, B.Sc. (Hons.) A thesis submitted to the University of Warwick for the degree of Doctor of Philosophy. Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL September 2009 Contents List of Figures ........................................................................................................................ vi List of Tables ....................................................................................................................... xvi Abbreviations ........................................................................................................................ xx Acknowledgements .............................................................................................................. xxi Declaration .......................................................................................................................... xxii Abstract .............................................................................................................................
    [Show full text]
  • Diversity of Free-Living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2016 Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Bacteriology Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Dahal, Bibha, "Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota" (2016). Theses and Dissertations. 688. http://openprairie.sdstate.edu/etd/688 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. DIVERSITY OF FREE-LIVING NITROGEN FIXING BACTERIA IN THE BADLANDS OF SOUTH DAKOTA BY BIBHA DAHAL A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Biological Sciences Specialization in Microbiology South Dakota State University 2016 iii ACKNOWLEDGEMENTS “Always aim for the moon, even if you miss, you’ll land among the stars”.- W. Clement Stone I would like to express my profuse gratitude and heartfelt appreciation to my advisor Dr. Volker Brӧzel for providing me a rewarding place to foster my career as a scientist. I am thankful for his implicit encouragement, guidance, and support throughout my research. This research would not be successful without his guidance and inspiration.
    [Show full text]
  • Biologically Active Secondary Metabolites from Actinomycetes
    Cent. Eur. J. Biol. • 7(3) • 2012 • 373-390 DOI: 10.2478/s11535-012-0036-1 Central European Journal of Biology Biologically active secondary metabolites from Actinomycetes Review Article Jolanta Solecka*, Joanna Zajko, Magdalena Postek, Aleksandra Rajnisz Laboratory of Biologically Active Compounds, National Institute of Public Health - National Institute of Hygiene, 00-791 Warsaw, Poland Received 01 September 2011; Accepted 05 March 2012 Abstract: Secondary metabolites obtained from Actinomycetales provide a potential source of many novel compounds with antibacterial, antitumour, antifungal, antiviral, antiparasitic and other properties. The majority of these compounds are widely used as medicines for combating multidrug-resistant Gram-positive and Gram-negative bacterial strains. Members of the genus Streptomyces are profile producers of previously-known secondary metabolites. Actinomycetes have been isolated from terrestrial soils, from the rhizospheres of plant roots, and recently from marine sediments. This review demonstrates the diversity of secondary metabolites produced by actinomycete strains with respect to their chemical structure, biological activity and origin. On the basis of this diversity, this review concludes that the discovery of new bioactive compounds will continue to pose a great challenge for scientists. Keywords: Bioactive • Secondary metabolites • Antibacterial properties • Cytotoxicity • Streptomyces sp. © Versita Sp. z o.o. 1. Introduction (8 600) are of fungal origin [1,3]. Among filamentous actinomycetes, about 75% (7 600) of metabolites are Bioactive metabolites are products of primary and produced by species of the genus Streptomyces [3,4] secondary metabolism of different organisms (plants, (Figure 1). animals, fungi, bacteria). They often demonstrate More than 140 actinomycete genera have been biological activity [1]. Secondary metabolites have described to date.
    [Show full text]
  • A New Antibiotic, Asukamycin, Produced by Streptomyces
    876 THE JOURNAL OF ANTIBIOTICS SEPT. 1976 A NEW ANTIBIOTIC, ASUKAMYCIN, PRODUCED BY STREPTOMYCES SATOSHI OMURA, CHIAKI KITAO, HARUO TANAKA, RUIKO OIWA, YOKO TAKAHASHI, AKIRA NAKAGAWA, MASAYUKI SHIMADA and YUZURU IWAI Kitasato University and The Kitasato Institute, Minato-ku, Tokyo 108, Japan (Received for publication June 2, 1976) Asukamycin, a new antibiotic, has been isolated from the culture broth of a strepto- mycete designated as Streptomyces nodosus subsp. asukaensis. The antibiotic inhibits the growth of Gram-positive bacteria including Nocardia asteroides. The empirical formula of antibiotic asukamycin has been proposed as C29H22N2O9(M.W. 542). An acute toxicity of the antibiotic in mice is LD50 48.5 mg/kg by intraperitoneal injection and it has no effect on mice when it was administered by 450 mg/kg per os. During the course of searching for new antibiotics, we have found a new compound designated as asukamycin, which inhibits the growth of some Gram-positive bacteria, in culture broths of a strepto- mycete isolated from the soil sample collected in Nara Prefecture, Japan. In the present paper, the taxonomy of the producing strain, fermentation, isolation, and physico-chemical and biological pro- perties of antibiotic asukamycin are described. Taxonomic Studies The antibiotic-producing strain AM-1042, which was cultured on several agar media for 2-3 weeks at 27'C, was used for taxonomic studies. Morphological characteristics of Fig. 1. Morphological observations of strain AM-1042 grown on oatmeal agar for 14 days by optical and electron micro- the strain are shown in Fig. 1. A scopes well-branched substrate mycelium was formed abundantly on most agar media, except for several natu- ral media.
    [Show full text]
  • Production of an Antibiotic-Like Activity by Streptomyces Sp. COUK1 Under Different Growth Conditions Olaitan G
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2014 Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions Olaitan G. Akintunde East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biology Commons Recommended Citation Akintunde, Olaitan G., "Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions" (2014). Electronic Theses and Dissertations. Paper 2412. https://dc.etsu.edu/etd/2412 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions A thesis presented to the faculty of the Department of Health Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology by Olaitan G. Akintunde August 2014 Dr. Bert Lampson Dr. Eric Mustain Dr. Foster Levy Keywords: Streptomyces, antibiotics, natural products, bioactive compounds ABSTRACT Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions by Olaitan Akintunde Streptomyces are known to produce a large variety of antibiotics and other bioactive compounds with remarkable industrial importance. Streptomyces sp. COUK1 was found as a contaminant on a plate in which Rhodococcus erythropolis was used as a test strain in a disk diffusion assay and produced a zone of inhibition against the cultured R.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Induction of Secondary Metabolism Across Actinobacterial Genera
    Induction of secondary metabolism across actinobacterial genera A thesis submitted for the award Doctor of Philosophy at Flinders University of South Australia Rio Risandiansyah Department of Medical Biotechnology Faculty of Medicine, Nursing and Health Sciences Flinders University 2016 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................ ii TABLE OF FIGURES ............................................................................................. viii LIST OF TABLES .................................................................................................... xii SUMMARY ......................................................................................................... xiii DECLARATION ...................................................................................................... xv ACKNOWLEDGEMENTS ...................................................................................... xvi Chapter 1. Literature review ................................................................................. 1 1.1 Actinobacteria as a source of novel bioactive compounds ......................... 1 1.1.1 Natural product discovery from actinobacteria .................................... 1 1.1.2 The need for new antibiotics ............................................................... 3 1.1.3 Secondary metabolite biosynthetic pathways in actinobacteria ........... 4 1.1.4 Streptomyces genetic potential: cryptic/silent genes ..........................
    [Show full text]
  • Investigating the Relationship Between Amphotericin B and Extracellular
    Investigating the relationship between amphotericin B and extracellular vesicles produced by Streptomyces nodosus By Samuel John King A thesis submitted in partial fulfilment of the requirements for the degree of Master of Research School of Science and Health Western Sydney University 2017 Acknowledgements A big thank you to the following people who have helped me throughout this project: Jo, for all of your support over the last two years; Ric, Tim, Shamilla and Sue for assistance with electron microscope operation; Renee for guidance with phylogenetics; Greg, Herbert and Adam for technical support; and Mum, you're the real MVP. I acknowledge the services of AGRF for sequencing of 16S rDNA products of Streptomyces "purple". Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. ……………………………………………………..… (Signature) Contents List of Tables............................................................................................................... iv List of Figures .............................................................................................................. v Abbreviations .............................................................................................................. vi Abstract .....................................................................................................................
    [Show full text]
  • Exploring the Potential of Antibiotic Production from Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis
    fmicb-11-01540 July 27, 2020 Time: 14:51 # 1 ORIGINAL RESEARCH published: 15 July 2020 doi: 10.3389/fmicb.2020.01540 Exploring the Potential of Antibiotic Production From Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis Dini Hu1,2, Chenghang Sun3, Tao Jin4, Guangyi Fan4, Kai Meng Mok2, Kai Li1* and Simon Ming-Yuen Lee5* 1 School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China, 2 Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China, 3 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 4 Beijing Genomics Institute, Shenzhen, China, 5 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China Actinobacteria are well recognized for their production of structurally diverse bioactive Edited by: secondary metabolites, but the rare actinobacterial genera have been underexploited Sukhwan Yoon, for such potential. To search for new sources of active compounds, an experiment Korea Advanced Institute of Science combining genomic analysis and tandem mass spectrometry (MS/MS) screening and Technology, South Korea was designed to isolate and characterize actinobacterial strains from a mangrove Reviewed by: Hui Li, environment in Macau. Fourteen actinobacterial strains were isolated from the collected Jinan University, China samples. Partial 16S sequences indicated that they were from six genera, including Baogang Zhang, China University of Geosciences, Brevibacterium, Curtobacterium, Kineococcus, Micromonospora, Mycobacterium, and China Streptomyces. The isolate sp.01 showing 99.28% sequence similarity with a reference *Correspondence: rare actinobacterial species Micromonospora aurantiaca ATCC 27029T was selected for Kai Li whole genome sequencing.
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]
  • Malaysian Journal of Microbiology, Vol 14(7) 2018, Pp
    Malaysian Journal of Microbiology, Vol 14(7) 2018, pp. 663-673 DOI: http://dx.doi.org/10.21161/mjm.108617 Malaysian Journal of Microbiology Published by Malaysian Society for Microbiology (In since 2011) Diversity and functional characterization of antifungal-producing Streptomyces-like microbes isolated from the rhizosphere of cajuput plants (Melaleuca leucodendron L.) Alimuddin Ali1*, Mustofa2, Widya Asmara3, Herlina Rante4 and Jaka Widada5 1Laboratory of Microbiology. Department of Biology, Universitas Negeri Makassar, South Sulawesi, Indonesia. 2Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia. 3Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia. 4Laboratory of Microbiology. Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia. 5Department of Microbiology. Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia. Email: [email protected] Received 10 August 2017; Received in revised form 7 August 2018; Accepted 8 August 2018 ABSTRACT Aims: The study was undertaken to evaluate the diversity of actinomycetes from the rhizosphere of the cajuput plant (Melaleuca leucodendron L.) using ARDRA, and to examine their in vitro antifungal potency against selected fungi. Methodology and results: A total of 78 Streptomyces-like microbes were isolated from the limestone rhizosphere of cajuput plants and cultured in SN agar medium. The ability to inhibit fungal growth was observed using a dual culture assay. The diversity of the isolates was examined by morphological and genotype profiling using ARDRA (Amplified 16S ribosomal DNA restriction analysis), following which they were assigned to eight groups. Seventeen (21.8%) strains showed the ability to produce the antifungal compound as evidenced by their antagonism in vitro against the tested fungi, namely Saccharomyces cerevisiae BY 47420, Candida albicans CGMCC 2538, Aspergillus flavus NRLL 3357, and Fusarium oxysporum KFCC 11363P in the dual culture assay.
    [Show full text]