Risks of Biological Control for Conservation Purposes

Total Page:16

File Type:pdf, Size:1020Kb

Risks of Biological Control for Conservation Purposes BioControl (2012) 57:263–276 DOI 10.1007/s10526-011-9392-4 Risks of biological control for conservation purposes Daniel Simberloff Received: 21 January 2011 / Accepted: 30 June 2011 / Published online: 24 July 2011 Ó International Organization for Biological Control (IOBC) 2011 Abstract Striking successes in classical biological and that for biological control, the risk that a species, control in agriculture and rangelands engender great once introduced, will spread beyond its intended range, interest in using this technology for wildlands conser- and the consequences of such spread, are not routinely vation and environmental purposes. However, well treated by risk assessors. This phenomenon deserves known unintended consequences of several biological far more attention. Global changes—especially cli- control projects have led to concern that possible mate change—can lead to modified ranges and effica- environmental benefits do not warrant inherent risks. cies of introduced biological control agents and their Four risks demand attention: (1) direct attack on non- targets. Although many examples show that climatic targets; (2) indirect effects on non-targets; (3) dispersal niches are often not conserved, an important first of a biocontrol agent to a new area, either autono- routine step would be to combine climatic envelopes mously or with deliberate or inadvertent human with general circulation models for predicted future assistance; (4) changed relationships between a control climates. Finally, actions based on a risk assessment agent and a native species, particularly as generated by are always implemented in a framework of predicted global climate change. Procedures for assessing risk of costs and benefits, which are inevitably asymmetric, so direct attack on non-targets by phytophagous biolog- it is critically important that all stakeholders, including ical control agents have steadily improved and an conservationists, participate in the decision-making expanded centrifugal phylogenetic approach appears process. to provide adequate insight. Direct non-target impacts by entomophages are more difficult to predict. Myriad Keywords Climate change Á Dispersal Á Ecosystem possible indirect effects, some subtle but nonetheless impact Á Indirect effect Á Non-target host Á important, present a far greater challenge, and tech- Risk assessment niques of assessing such risks are in their earliest infancy and not as closely regulated. Despite promi- nent examples in both the general invasion literature Introduction Handling Editor: Roy van Driesche The impetus for the growth of classical biological control to deal with introduced species arose from & D. Simberloff ( ) famous successful campaigns in the United States Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA in the late 19th and early 20th centuries aimed at e-mail: [email protected] eliminating pests of agriculture or ranching. For 123 264 D. Simberloff instance, cottony cushion scale (Icerya purchasi) was These two projects were old ones, the snail, the controlled on citrus in California by the Australian mongoose, and four of the five other ‘‘worst’’ vedalia ladybeetle, Rodolia cardinalis (Caltagirone and invaders (all but the myna) are generalized predators, Doutt 1989), and Chrysolina beetles from Australia and they are not insects. A common response among suppressed Klamath weed (Hypericum perforatus), modern practitioners of biological control is that such which was poisoning cattle and sheep in California projects would not be undertaken today, as the (Huffaker and Kennett 1959). Striking successes such dangers of such non-target impacts are well recog- as these, in which seemingly intractable, expensive nized by professional entomologists, and generalized problems were solved in perpetuity and with minor feeders are shunned (e.g., Murphy and Evans 2009). cost, were subsequently matched by other successful Nevertheless, some more recent instances of insects projects, some of which achieved international rec- introduced for biological control have had troubling ognition—for example, control of pest Opuntia cactus non-target impacts. The case of the weevil Rhinocyl- species in Australia by the South American cactus lus conicus is particularly well known (van Driesche moth Cactoblastis cactorum (Dodd 1940). It is et al. 2008). First introduced from France to North primarily this record of successful projects in the America in 1968 by Agriculture Canada to control service of agriculture and ranching that earned the invasive musk thistle (Carduus nutans), then widely technology a reputation as a ‘‘green’’ alternative to distributed in the United States by federal and state chemical pesticides, particularly as the various non- agencies, this seed predator attacks at least 22 native target impacts of the latter were heralded by Rachel species of Cirsium in North America, including some Carson in Silent Spring (1962) and by many in the species of conservation concern that have been environmental movement triggered by that book. shown to be seed-limited (Louda et al. 1997, 2003; However, there were early biocontrol debacles as Pemberton 2000), among 88 native species and 29 well. The small Indian mongoose (Herpestes auro- subspecies and varieties (NatureServe 2010). It is punctatus), introduced in 1872 primarily for rat control even the primary cause of endangerment of the from the vicinity of Calcutta to Jamaica, then carried federally listed Suisun thistle Cirsium hydrophilum from Jamaica to other islands in the West Indies var. hydrophilum (United States Department of the (occasionally to control snakes as well as rats) and to Interior 1997). The project leaders responsible for Hawaii, and independently from Asia to a number of the initial testing, from Agriculture Canada and other islands around the world, has combined with the Commonwealth Institute of Biological Control, introduced rats and cats to cause several extinctions of recognized the possibility of important non-target endemic mammal and bird species and subspecies and impacts (Zwo¨lfer and Harris 1971, 1984) but con- threatens a number of other taxa (Hays and Conant ducted tests on only one native species of Cirsium 2007). Beginning in 1955, the rosy wolf snail, plus five European species introduced to North Euglandina rosea was introduced widely, first from America and concluded, incorrectly, that the facts Florida to Hawaii, then to various island groups that the weevil chose to oviposit and feed on the primarily in the Pacific, to control the previously target musk thistle, that larval mortality was rela- introduced giant African snail Lissachatina fulica. tively high on the few Cirsium tested, and that adults Euglandina rosea has globally extinguished over 50 that do mature on these Cirsium were smaller than island endemic snail species, such as species of Partula those maturing on Carduus nutans meant that impact in French Polynesia and Achatinella in Hawaii on non-target species would be minimal (Zwo¨lfer and (Civeyrel and Simberloff 1998; Cowie 2002, 2011). Harris 1984). Both the mongoose and the rosy wolf snail are regarded Another increasingly well-known example is that by the World Conservation Union (IUCN) as among of the multicolored Asian lady beetle Harmonia the 100 worst global invaders (Lowe et al. 2001), as are axyridis, a generalist predator of soft-bodied insects. at least five other species introduced for biological First introduced as a biocontrol agent to North control: the flatworm Platydemus manokwari, the cane America in 1916, it was frequently released in large toad (Rhinella marinus), the western mosquitofish numbers in the United States and Canada in the (Gambusia affinis), the Indian myna (Acridotheres 1980s (Koch et al. 2006; Koch and Galvan 2008). tristis), and the stoat (Mustela erminea). It was widely established in North America by 2000, 123 Risks of biological control for conservation purposes 265 although controversy surrounds the source(s) of the In fact, at least four types of risks are apparent: (1) established population (Koch and Galvan 2008). direct attack on non-targets; (2) indirect effects on The beetle was quickly recognized as having non-targets; (3) dispersal of the biocontrol agent to a non-target impacts on native insects, including both new area; (4) changed relationships between a control native coccinellids and phytophagous insects, and agent and a native species, including change gener- also harmed fruit production and became a household ated by global climate change. pest (Koch and Galvan 2008). It has recently spread to South America and northwest Europe, and its introduction for biological control is now widely Direct effects on non-targets regarded as a mistake (Roy and Wajnberg 2008). Although biocontrol began as a technique for pest Variants of the centrifugal phylogeny method control in agriculture and rangelands, it has increas- (Wapshere 1974) have become the modus operandi ingly been used for ecological or conservation pur- for biological control of plants. As a safeguard, poses, in some instances generating great benefits. For Wapshere suggested adding several economically instance, in Florida, the South American alligatorweed important plants to the list, and nowadays often other (Alternanthera phyloxeroides) has been well con- plants are added based on phytochemical or morpho- trolled by the alligatorweed flea beetle, Agasicles logical similarity or other reasonable concerns. The hygrophila, plus a moth and
Recommended publications
  • Arthropod Containment in Plant Research
    Arthropod Containment in Plant Research Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware What we do at USDA ARS BIIRU - • To develop biological control programs against invasive (non-native) agriculture and forest pests – Research involves both the plant-feeding insects and their natural enemies (predators & parasitoids) Invasive Emerald Ash Borer Larval Parasitoids of EAB (EAB) The Goal of Insect Containment at USDA ARS BIIRU-Quarantine Facility • Prevent “accidental introduction” of “unwanted” non-native insects from damaging our agriculture and forestry Outlines • Why do we need to contain insects in plant research? • How can we most effectively contain insects in plant research? • Quarantine containment facility and standard operation procedures Why Do We Need To Contain Insects in Plant Research • Non-native insects can become serious invasive pests in a newly introduced region because disassociation with co- evolved natural enemies • Non-native insects used in plant research should be contained prior to regulatory approval for environmental releases Non-native, plant-feeding insects can become devastating pests in agriculture and forestry Detected in Michigan in 2002 • 31 States in the U.S. • Killed millions of ash trees Emerald Ash Borer Native Range of EAB & Origin of EAB-Parasitoids Origin of EAB Biocontrol Agents (Year releases began in US) 1. Oobius agrili 2. Tetrastichus planipennisi 3. Spathius agrili 4. Spathius galinae Russia China 1 4 2 3 Prevent “accidental introduction” of weed biocontrol
    [Show full text]
  • Biology and Management of the Dutch Elm Disease Vector, Hylurgopinus Rufipes Eichhoff (Coleoptera: Curculionidae) in Manitoba By
    Biology and Management of the Dutch Elm Disease Vector, Hylurgopinus rufipes Eichhoff (Coleoptera: Curculionidae) in Manitoba by Sunday Oghiakhe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Doctor of Philosophy Department of Entomology University of Manitoba Winnipeg Copyright © 2014 Sunday Oghiakhe Abstract Hylurgopinus rufipes, the native elm bark beetle (NEBB), is the major vector of Dutch elm disease (DED) in Manitoba. Dissections of American elms (Ulmus americana), in the same year as DED symptoms appeared in them, showed that NEBB constructed brood galleries in which a generation completed development, and adult NEBB carrying DED spores would probably leave the newly-symptomatic trees. Rapid removal of freshly diseased trees, completed by mid-August, will prevent spore-bearing NEBB emergence, and is recommended. The relationship between presence of NEBB in stained branch sections and the total number of NEEB per tree could be the basis for methods to prioritize trees for rapid removal. Numbers and densities of overwintering NEBB in elm trees decreased with increasing height, with >70% of the population overwintering above ground doing so in the basal 15 cm. Substantial numbers of NEBB overwinter below the soil surface, and could be unaffected by basal spraying. Mark-recapture studies showed that frequency of spore bearing by overwintering beetles averaged 45% for the wild population and 2% for marked NEBB released from disease-free logs. Most NEBB overwintered close to their emergence site, but some traveled ≥4.8 km before wintering. Studies comparing efficacy of insecticides showed that chlorpyrifos gave 100% control of overwintering NEBB for two years as did bifenthrin: however, permethrin and carbaryl provided transient efficacy.
    [Show full text]
  • Emergence of Laricobius Nigrinus (Fender) (Coleoptera: Derodontidae) in the North Georgia Mountains1
    Emergence of Laricobius nigrinus (Fender) (Coleoptera: Derodontidae) in the North Georgia Mountains1 C.E. Jones2, J.L. Hanula3, and S. K. Braman4 Dept. of Entomology, University of Georgia, 41 3 Biological Sciences Building, Athens, Georgia 30602, USA J. Entomol. Sci. 49(4): 401-412 (October 2014} Abstract Hemlock woolly adelgid, Adelges tsugae An nand, is currently found throughout most of the range of eastern hemlock, Tsuga canadensis (L. ) Carriere. Biological control agents have been released in attempts to control this pest, but how different climates influence the efficacy and survival of these agents has not been studied. One predatory beetle of A. tsugae, Laricobius nigrinus Fender, is native to the Pacific Northwest and, therefore, experiences a much different summer climate in the north Georgia mountains. To better understand survival of this predator as it aestivates in the soil, 5 mesh cages were set up at each of 16 sites with 4 sites located at an elevation below 549 m, 4 sites between 549 m - 732 m, 5 sites between 732 m - 914 m, and 3 sites over 914 m. At each site 30 larvae were placed inside one of the cages during March, April, or May on a bouquet of adelgid infested hemlock twigs, and emergence of adults was monitored in the fall . Of the 1440 larvae placed at the 16 sites, only 4 adult beetles emerged between 06 October 2012 and 05 November 2012. The overall success rate remains unknown, and more research is needed to assess the efficacy of L. nigrinus as a biological control agent in Georgia.
    [Show full text]
  • Behavioral Ecology and Genetics of Potential Natural Enemies of Hemlock Woolly Adelgid Arielle Arsenault University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2013 Behavioral Ecology and Genetics of Potential Natural Enemies of Hemlock Woolly Adelgid Arielle Arsenault University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Arsenault, Arielle, "Behavioral Ecology and Genetics of Potential Natural Enemies of Hemlock Woolly Adelgid" (2013). Graduate College Dissertations and Theses. 10. https://scholarworks.uvm.edu/graddis/10 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. BEHAVIORAL ECOLOGY AND GENETICS OF POTENTIAL NATURAL ENEMIES OF HEMLOCK WOOLLY ADELGID A Thesis Presented by Arielle L. Arsenault to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Natural Resources October, 2013 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Master of Science, specializing in Natural Resources. Thesis Examination Committee: ____________________________________________Advisor Kimberly F. Wallin, Ph.D. ___________________________________________ Jon D. Erickson, Ph.D. ____________________________________________Chairperson Lori Stevens, Ph.D ____________________________________________Dean, Graduate College Dominico Grasso, Ph.D. June 26, 2013 ABSTRACT Eastern and Carolina hemlock in the eastern United States are experiencing high mortality due to the invasive non-native hemlock woolly adelgid (HWA). The most promising means of control of HWA is the importation of natural enemies from the native range of HWA for classical biological control.
    [Show full text]
  • Biological Control of St John's Wort Using Chrysolina Leaf Beetles (DSE
    June 1999 Biological control of St John's wort LC0152 with the chrysolina leaf beetles ISSN 1329-833X Keith Turnbull Research Institute (Frankston) Common and scientific names Pupae - in globular cells in the soil at up to 5 cm depth. St John’s wort leaf beetles Life cycle Chrysolina hyperici (Förster) Females lay eggs on the undersides of leaves or leaf buds Chrysolina quadrigemina (Suffrian) in autumn. C. quadrigemina larvae emerge after about 3 Background weeks and overwinter as larvae. C. hyperici overwinters in the egg stage. Larvae consume the young leaves and buds St John’s wort, Hypericum perforatum, was introduced in of procumbent autumn and winter growth. Larger larvae the Ovens Valley of Victoria as a medicinal plant in the leave the plant during the day and return to feed at night. 1860s. It spread rapidly and was well established by the When mature, they pupate in the soil at a depth of a few early 1900s. It is a serious weed of improved pastures, centimetres. The pupal stage lasts 2 to 3 weeks and adults roadsides and neglected areas in north east Victoria and is emerge in the spring. Adult beetles defoliate the erect an increasing problem in dry forests and woodlands. In spring plants and enter a resting stage (aestivation or natural areas it is a serious environmental weed which can diapause) under the bark of trees during summer. out-compete other ground storey plants. St John’s wort is a Regionally Prohibited Weed in the Corangamite and Port Phillip West Catchment and Land Protection Regions, and a Regionally Controlled Weed in all other areas of Victoria except Mallee CaLP Region.
    [Show full text]
  • Data on Cerambycidae and Chrysomelidae (Coleoptera: Chrysomeloidea) from Bucureªti and Surroundings
    Travaux du Muséum National d’Histoire Naturelle © Novembre Vol. LI pp. 387–416 «Grigore Antipa» 2008 DATA ON CERAMBYCIDAE AND CHRYSOMELIDAE (COLEOPTERA: CHRYSOMELOIDEA) FROM BUCUREªTI AND SURROUNDINGS RODICA SERAFIM, SANDA MAICAN Abstract. The paper presents a synthesis of the data refering to the presence of cerambycids and chrysomelids species of Bucharest and its surroundings, basing on bibliographical sources and the study of the collection material. A number of 365 species of superfamily Chrysomeloidea (140 cerambycids and 225 chrysomelids species), belonging to 125 genera of 16 subfamilies are listed. The species Chlorophorus herbstii, Clytus lama, Cortodera femorata, Phytoecia caerulea, Lema cyanella, Chrysolina varians, Phaedon cochleariae, Phyllotreta undulata, Cassida prasina and Cassida vittata are reported for the first time in this area. Résumé. Ce travail présente une synthèse des données concernant la présence des espèces de cerambycides et de chrysomelides de Bucarest et de ses environs, la base en étant les sources bibliographiques ainsi que l’étude du matériel existant dans les collections du musée. La liste comprend 365 espèces appartenant à la supra-famille des Chrysomeloidea (140 espèces de cerambycides et 225 espèces de chrysomelides), encadrées en 125 genres et 16 sous-familles. Les espèces Chlorophorus herbstii, Clytus lama, Cortodera femorata, Phytoecia caerulea, Lema cyanella, Chrysolina varians, Phaedon cochleariae, Phyllotreta undulata, Cassida prasina et Cassida vittata sont mentionnées pour la première fois dans cette zone Key words: Coleoptera, Chrysomeloidea, Cerambycidae, Chrysomelidae, Bucureºti (Bucharest) and surrounding areas. INTRODUCTION Data on the distribution of the cerambycids and chrysomelids species in Bucureºti (Bucharest) and the surrounding areas were published beginning with the end of the 19th century by: Jaquet (1898 a, b, 1899 a, b, 1900 a, b, 1901, 1902), Montandon (1880, 1906, 1908), Hurmuzachi (1901, 1902, 1904), Fleck (1905 a, b), Manolache (1930), Panin (1941, 1944), Eliescu et al.
    [Show full text]
  • Classical Biological Control of Nodding and Plumeless Thistles
    Biological Control 21, 206–213 (2001) doi:10.1006/bcon.2001.0940, available online at http://www.idealibrary.com on Classical Biological Control of Nodding and Plumeless Thistles L. T. Kok Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0319 Received March 15, 2001; accepted March 20, 2001; published online May 22, 2001 group. Both thistles are winter annuals or biennials. Nodding (musk) thistle (Carduus thoermeri Wein- Seeds produced in summer form rosettes which over- mann in the Carduus nutans L. group) and plumeless winter. The rosettes resume development in spring, thistle (Carduus acanthoides L.) are introduced nox- followed by stem elongation and flowering. Nodding ious weeds of Eurasian origin. Both weeds are prob- thistle was first recorded in 1853 at Harrisburg, Penn- lematic in pastures, rangelands, and croplands and sylvania (Stuckey and Forsyth, 1971) and has been along state highways in many parts of the United reported in 40 of the 48 contiguous states (Frick, 1978). States. The success of both species of thistles is largely Plumeless thistle first appeared in 1878 at Camden, due to their prolific seed production, seed longevity, New Jersey and in Ohio (Batra, 1978) and is found in competitive ability, and lack of natural enemies. Clas- sical biological control of nodding thistle in Virginia 19 states (Frick, 1978). The two thistle species often has been achieved with three exotic thistle herbivores, occupy the same habitats in the northeast, such as Rhinocyllus conicus Froelich (Coleoptera: Curculion- overgrazed pastures and disturbed roadsides, some- idae), Trichosirocalus horridus (Panzer) (Coleoptera: times occurring in mixed stands (Batra, 1978).
    [Show full text]
  • Terrestrial Insects: a Hidden Biodiversity Crisis? 1
    Chapter 7—Terrestrial Insects: A Hidden Biodiversity Crisis? 1 Chapter 7 Terrestrial Insects: A Hidden Biodiversity Crisis? C.H. Dietrich Illinois Natural History Survey OBJECTIVES Like most other elements of the biota, the terrestrial insect fauna of Illinois has undergone drastic change since European colonization of the state. Although data are sparse or entirely lacking for most species, it is clear that many formerly abundant native species are now exceedingly rare while a few previously uncommon or undocumented species, both native and exotic, are now abundant. Much of this change may be attributable to fragmentation and loss of native habitats (e.g., deforestation, draining of wetlands, agricultural conversion and intensification, urbanization), although other factors such as invasion by exotic species (including plants, insects and pathogens), misuse of pesticides, and improper management of native ecosystems have probably also been involved. Data from Illinois and elsewhere in the north temperate zone provide evidence that at least some groups of terrestrial insects have undergone dramatic declines over the past several decades, suggesting that insects are no less vulnerable to anthropogenic environmental change than other groups of organisms Yet, insects continue to be under-represented on official lists of threatened or endangered species and conservation programs focus primarily on vertebrates and plants. This chapter summarizes available information on long-term changes in the terrestrial insect fauna of Illinois, reviews possible causes for these changes, highlights some urgent research needs, and provides recommendations for conservation and management of terrestrial insect communities. INTRODUCTION Insects are among the most important “little things that run the world” (1).
    [Show full text]
  • Functional Response and Predation Potential of Hyperaspis Campestris
    January - February 2020 ISSN: 0193 - 4120 Page No. 5976 - 5985 Functional Response and Predation Potential of Hyperaspis Campestris (Herbst 1783) (Coleoptera: Coccinellidae) on Opuntiae Cochineal Dactylopius Opuntiae (Hemiptera: Dactylopiidae) in Morocco Mohamed El Aalaoui,1,4*, Rachid Bouharroud,1 Mohamed Sbaghi,2 Mustapha El Bouhssini,3 and Lahoucine Hilali,4 1Integrated Crop Production Unit, Regional Center of Agadir, National Institute of Agronomic Research, Morocco. Emails: [email protected] (Corresponding author) and [email protected], 2National Institute of Agronomic Research, Plant Protection Department, Scientific Division, Rabat Morocco. Emails: [email protected] 3 International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco. Email: [email protected] 4Faculty of Science and Technology of Settat, Morocco. Email: [email protected] *Corresponding author: [email protected], Article Info Abstract: Volume 82 Functional response of the lady beetle Hyperaspis campestris (Herbst 1783) Page Number: 5976 - 5985 to varying densities (1, 5, 10, 15, 20 and 25) of Dactylopius opuntiae Publication Issue: (Cockerell) young females (20 days old) were determined under controlled January-February 2020 conditions at 26±2°C, 60±10 % RH and 12:12 h L:D regime. The searching efficiency of H. campestris considerably decreased as prey density increased. The significant linear coefficient (P1) obtained by logistic regression had a negative indicating functional response type II. Attack rates (0.151, 0.101, 0.097, 0.122, 0.124 and 0.135) and handling times (3.848, 5.171, 5.417, 4.245, 4.356 and 3.940) for 1 to 25 density, respectively, were recorded using Holling‘s disc equation.
    [Show full text]
  • Coccinellid Beetles Diversity in Agro-Climatic Zones of Bhubaneswar
    Journal of Entomology and Zoology Studies 2017; 5(4): 1244-1248 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Coccinellid beetles diversity in agro-climatic JEZS 2017; 5(4): 1244-1248 © 2017 JEZS zones of Bhubaneswar Received: 09-05-2017 Accepted: 10-06-2017 Sandeep Kumar Mukherjee Sandeep Kumar Mukherjee and Sushree Shailani Suman Associate Professor, Department of Entomology, OUAT, Abstract Bhubaneswar, India The current research was conducted to study the abundance and diversity of various species of Sushree Shailani Suman coccinellid beetles around the agro-climatic zone of Bhubaneswar. It revealed the presence of 10 1) Study Conducted at different species of lady bird beetles viz. E. vigintioctopunctata, B. suturalis, C. transversalis, C. Department of Entomology, undecimpunctata, C. septempunctata, C. sexmaculata, H. maindroni, A. cardoni, S. coccivora and P. OUAT, Bhubaneswar, India dissecta. All total of 1363 numbers of beetles have been collected (few visually counted) from different 2) PhD scholar, KIIT vegetation including vegetables, crop field, fruit orchards, etc. The abundance of P. dissecta species was University, Bhubaneswar, highest (344) contributing about 25.24% of the total population, followed by C. septempunctata (230, Odisha, India 16.87%), and C. transversalis (226, 16.58%). But in terms of species diversity, C. transversalis was the most diversified species among all followed by P. dissecta and E. vigintioctopunctata. The collected species of coccinellid were classified into three groups as per their sub-family viz. Epilachninae, Chilocorinae and Coccinellinae. Among them the coccinellinae sub-family included highest numbers of species (6) with maximum abundance in the area having 701 beetles contributing about 51.42% of all coccinellids collected.
    [Show full text]
  • Development of Biological Agents for Invasive Species Control 6
    MD-13-SP009B4T Martin O’Malley, Governor Darrell B. Mobley, Acting Secretary Anthony G. Brown, Lt. Governor Melinda B. Peters, Administrator STATE HIGHWAY ADMINISTRATION RESEARCH REPORT DEVELOPMENT OF BENEFICIAL BIOLOGICAL AGENTS FOR INVASIVE SPECIES CONTROL ROBERT B. TRUMBULE MARYLAND DEPARTMENT OF AGRICULTURE SP009B4T FINAL REPORT May 2013 The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Maryland State Highway Administration. This report does not constitute a standard, specification, or regulation. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. MD-13-SP009B4T 4. Title and Subtitle 5. Report Date May 2013 Development of Biological Agents for Invasive Species Control 6. Performing Organization Code 7. Author/s 8. Performing Organization Report No. Robert B. Trumbule 9. Performing Organization Name and Address 10. Work Unit No. Maryland Department of Agriculture 11. Contract or Grant No. 50 Harry S Truman Parkway. Annapolis, MD 21401 SP009B4T 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Final Report Maryland State Highway Administration 14. Sponsoring Agency Code Office of Policy & Research 707 North Calvert Street (7120) STMD - MDOT/SHA Baltimore MD 21202 15. Supplementary Notes 16. Abstract Noxious and invasive weeds readily colonize disturbed areas and outcompete and displace native and other desirable vegetation. This can result in a loss of pollinators (i.e. animals such as birds, bees, and other insects that move pollen between plants making them very important to plant reproduction), wildlife food and nesting resources, and decrease biodiversity in general.
    [Show full text]
  • Milk Thistle
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]