Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3799472/9781565762299_frontmatter.pdf by guest on 26 September 2021 Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA Edited by: Walter E. Dean, U.S. Geological Survey, Denver, Colorado And Michael A. Arthur, Pennsylvania State University, University Park, Pennsylvania On the front cover: (lower, background figure) Northeast face of the Kaiparowits Plateau, south-central Utah. Cliffs are formed by the Coniacian/Santonian Straight Cliffs Formation. Gray shale at the base of the cliffs is the Cenomanian/Turonian Tropic Shale; (Middle, left) Bedding cycles in the Bridge Creek Limestone Member of the Cenomanian/Turonian Greenhorn Formation, Pueblo, Colorado; (Middle, right) Map of major basins and uplifts in Colorado and adjacent states. On the back cover: Photograph of bioturbated limestone in the Fort Hays Limestone Member of the Niobrara Formation in the Amoco Bounds core showing large Chondrites burrows at the base and large Teichichnus burrows at the top. Copyright 1998 by SEPM (Society for Sedimentary Geology) Robert W. Dalrymple, Editor of Special Publications SEPM Concepts in Sedimentology and Paleontology No. 6 Tulsa, Oklahoma, USA March 1998 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3799472/9781565762299_frontmatter.pdf by guest on 26 September 2021 SEPM thanks the following for their generous contributions to Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA Walter E. Dean U.S. Geological Survey Robert W. Scott Precision Stratigraphy Associates Cleveland, Oklahoma Paul C. Franks, Geologist Tulsa, Oklahoma ISBN 1-56576-044-1 0 1998 by SEPM (Society for Sedimentary Geology) 1731 E. 71st Street Tulsa, OK 7413-5108 1-800-865-9765 Printed in the United States Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3799472/9781565762299_frontmatter.pdf by guest on 26 September 2021 iii PREFACE This volume presents the results of a coordinated, multidisciplinary study of Cretaceous carbonate and elastic rocks in cores collected along a transect across the old Cretaceous seaway that extended from the Gulf Coast to the Arctic by a team of academic, industry, and U.S. Geological Survey (USGS) scientists. Our overall goal was to construct a subsurface transect of mid-Cretaceous strata that were deposited in the U.S. Western Interior Seaway (WIS), ranging from pelagic, organic-carbon rich, marine hydro-carbon source rocks in Kansas and eastern Colorado to nearshore, coal-bearing units in western Colorado and Utah. This transect of cores has provided the basis for paleoenvironmental interpretation of organic-carbon burial in an epicontinental, foreland basin setting. In part, the objectives of our study were motivated by the research emphases outlined by the Cretaceous Resources, Events and Rhythms (CRER) Project of the Global Sedimentary Geology Program. In particular, the papers in this volume focus on the Graneros Shale, Greenhorn Formation, Carlile Shale, and Niobrara Formation and equivalents in cores from six drillholes from western Kansas, southeastern Colorado, and eastern Utah. This series of cores provides unweathered samples and continuous, smooth exposures required for geochemical studies, mineralogical investigations, and biostratigraphic studies. Major objectives of the project covered in the collected papers include: (1) establishing the precise timing of sea level change, rates of subsidence, and facies change; (2) determining of controls on the accumulation, burial, and diagenesis of organic matter; (3) calibrating of depositional cycles using high-resolution stratigraphy; and (4) determining the paleogeography, paleoclimatology, and paleoceanography of the Western Interior Seaway and immediately adjacent landmasses. We gratefiilly acknowledge the many sources of funding and materials that supported these studies. Much of the research was fiinded by the Continental Scientific Drilling Program through the USGS and by the Department of Energy (DOE) through a grant to Penn State (DE-FG02-92ER14251). A core from an Amoco drillhole from western Kansas was released to the USGS in 1992, and description and analysis of this core plus that of a previously acquired well (Schock-Errington #1) in northwestern Kansas constitute the data base for the eastern end of the transect. Three holes that form the western end of the transect, funded by USGS energy programs, were drilled and continuously cored in June 1991 in the Kaiparowits basin near Escalante, Utah. In June 1992, a 700-foot hole, fiuided by DOE, was drilled and continuously cored near Portland, Colorado, east of the Florence oil field. This sequence, deposited in relatively deep water on the west side of the WIS, includes cycles of terrigenous-clastic and pelagic- marine sediments to contrast with the pelagic-carbonate-dominated cycles of Kansas and the clastic- dominated cycles of western Colorado and Utah. A second, 800-foot hole, also funded by DOE, was drilled in July 1992 about 10 miles southwest of the Portland hole in Pierre Shale, which serves as the reservoir for hydrocarbons in the Florence field. Formal descriptions of the cores are available in a computer data base published as USGS Open-File Reports. All tabulated data from the project are available through the National Geophysical Data Center (NGDC). We sincerely thank the many reviewers of individual papers in the volume for their concentrated efforts to maintain high tecimical standards and Peter Sholle for encouraging us to publish this volume through SEPM, the Society for Sedimentary Geology. Most of the data presented in the papers in this volume are available through: World Data Center-A for Paleoclimatology Phone: 303-497-6280 NOAA/NGDC Fax: 303-497-6513 325 Broadway Telex: 592811 NOAA MASC BDR Boulder, CO 80303 USA http ://www. ngdc . noaa.gov/p al eo/p al eo . html Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3799472/9781565762299_frontmatter.pdf by guest on 26 September 2021 iv DEDICATION We dedicate this volume to our colleague and friend, Erle G. Kauffman. Erle was a collaborator in this project but was unable to complete his planned contribution to meet the deadline for the volume because of a major illness. However, Erle Kauffman's profound influence is evident in nearly every paper and we are indebted to him for helping us in so many ways. Armed with a strong intellect, boundless energy, and the gift of a silver tongue, Erle has captured the imagination of a horde of students and colleagues and ensnared many to study the spectacular but complicated Cretaceous geology of the Western Interior. Erle's own "holistic" efforts, aided by a cadre of talented students, combine grueling field work with classical principles of biozonation, radiometric dating, lithostratigraphy, and paleoecology to build a foundation for understanding Cretaceous events and basin evolution in the U.S. Western Interior. This substantial body of work includes early recognition of the utility of "Milankovitch" cyclicity in the rock record that provides an unprecedented quasi-20,000-year resolution of events preserved in sedimentary strata. Likewise, he has examined the imprints of anoxic events on faunal compositions and sedimentary structures of these strata, and has made a number of intriguing suggestions, including the hypothesis that anoxia -typically occurred at the sediment/water interface rather than within the water column as commonly assumed. Erle was also among the first to use sequence stratigraphic concepts in his studies--long before the techniques became a hallmark of sedimentary geology. In 1977, a landmark paper summarized many of these concepts as a series of enduring insights into the history of sea level and lithostratigraphy of Cretaceous Western Interior basin. He also found evidence for stepwise biotic extinctions accompanying the Cenomanian/Turonian "event," among many other contributions. Erle Kauffman has pursued both science and life with great vigor. His detailed knowledge and experience, infectious enthusiasm, and endless store of intriguing speculation coupled with boundless optimism and humor and profound generosity has affected us all. We wish him all the best as he rebounds from his unfortunate illness and hope that he will soon rejoin us in our quest to understand the intriguing strata of the Cretaceous Western Interior Seaway, of course with a few bottles of wine and strum of the ol' banjo. Walter E. Dean Michael A. Arthur Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3799472/9781565762299_frontmatter.pdf by guest on 26 September 2021 TABLE OF CONTENTS PAGE PREFACE ....... ... ...IH DEDICATION IV CRETACEOUS WESTERN INTERIOR SEAWAY DRILLING PROJECT: AN OVERVIEW Walter E. Dean, and Michael A. Arthur TIMING OF MID-CRETACEOUS RELATIVE SEA LEVEL CHANGES TN THE WESTERN INTERIOR: AMOCO NO. 1 BOUNDS CORE........... ............. ... ... 11-34 Robert W. Scott, M. J. Evetts, P. C. Franks, James A. Bergen, and J. A. Stein UPPER CRETACEOUS NANNOFOSSIL ASSEMBLAGES ACROSS THE WESTERN INTERIOR SEAWAY: IMPLICATIONS FOR THE ORIGINS OF LITHOLOGIC CYCLES IN THE GREENHORN AND NIOBRARA FORMATIONS 35-58 Celeste E. Burns, and Timothy J. Bralower CENOMANIAN-SANTONIAN CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY OF A TRANSECT OF CORES DRILLED ACROSS THE WESTERN INTERIOR SEAWAY ...... 59-77 Timothy J. Bralower and James A. Bergen FORAMINIFERAL PALEOECOLOGY AND PALEOCEANOGRAPHY OF THE GREENHORN
Recommended publications
  • Cranial Anatomy and Taxonomy of Dolichorhynchops Bonneri New
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 2008 Cranial anatomy and taxonomy of Dolichorhynchops bonneri new combination, a polycotylid (Sauropterygia: Plesiosauria) from the Pierre Shale of Wyoming and South Dakota F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Animal Sciences Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation O'Keefe, F. R. (2008). Cranial anatomy and taxonomy of Dolichorhynchops bonneri new combination, a polycotylid (Sauropterygia: Plesiosauria) from the Pierre Shale of Wyoming and South Dakota. Journal of Vertebrate Paleontology, 28(3), 664-676. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. CRANIAL ANATOMY AND TAXONOMY OF DOLICHORHYNCHOPS BONNERI NEW COMBINATION, A POLYCOTYLID (SAUROPTERYGIA: PLESIOSAURIA) FROM THE PIERRE SHALE OF WYOMING AND SOUTH DAKOTA F. ROBIN O’KEEFE ABSTRACT The taxonomic identity of two well-preserved polycotylid plesiosaur skeletons from the Pierre Shale of far northern Wyoming and southern South Dakota has been controversial since their discovery. Originally referred to Dolichorhynchops osborni, the material was almost immediate-ly christened Trinacromerum bonneri Adams 1997; more recently the material has been referred to Polycotylus. Recent preparation of the well-preserved skull of one specimen permits detailed examination of the cranial morphology of this animal for the first time, and allows for its inclusion in a cladistic analysis of the Polycotylidae.
    [Show full text]
  • Paleoecology of Late Cretaceous Methane Cold-Seeps of the Pierre Shale, South Dakota
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 10-2014 Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota Kimberly Cynthia Handle Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/355 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota by Kimberly Cynthia Handle A dissertation submitted to the Graduate Faculty in Earth and Environmental Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 i © 2014 Kimberly Cynthia Handle All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Earth and Environmental Sciences in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Neil H. Landman____________________________ __________________ __________________________________________ Date Chair of Examining Committee Harold C. Connolly, Jr.___ ____________________ __________________ __________________________________________ Date Deputy - Executive Officer Supervising Committee Harold C. Connolly, Jr John A. Chamberlain Robert F. Rockwell The City University of New York iii ABSTRACT The Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota By Kimberly Cynthia Handle Adviser: Neil H. Landman Most investigations of ancient methane seeps focus on either the geologic or paleontological aspects of these extreme environments.
    [Show full text]
  • Energy and Mineral Resources, Grand Staircase
    Circular 93 Utah Geological Survey Illustration Captions View figure: Circular 93 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15. A Preliminary Assessment of Energy and Table of Contents 1.Preface Mineral Resources within the Grand 2.Summary 3.Introduction Staircase - Escalante National Monument 4.Geology 5.Kaiparowits Plateau coal Compiled by M. Lee Allison, State Geologist field 6.Oil and Gas Potential Contributors: 7.Tar-sand Resources Robert E. Blackett, Editor 8.Non-fuel Minerals and Thomas C. Chidsey Jr., Oil and Gas Mining David E. Tabet, Coal and Coal-Bed Gas 9.Acknowledgments Robert W. Gloyn, Minerals 10.References Charles E. Bishop, Tar-Sands January 1997 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES CONTENTS PREFACE SUMMARY INTRODUCTION Background Purpose and Scope GEOLOGY Regional Structure Permian through Jurassic Stratigraphy Cretaceous and Tertiary Stratigraphy THE KAIPAROWITS PLATEAU COAL FIELD History of Mining and Exploration Coal Resources Coal Resources on School and Institutional Trust Lands Sulfur Content of Kaiparowits Coal Coal-bed Gas Resources Further Coal Resource Assessments Needed OIL AND GAS POTENTIAL Source Rocks Potential Reservoirs Trapping Mechanisms Exploration and Development Carbon Dioxide Further Oil and Gas Resource Assessments Needed TAR-SAND RESOURCES OF THE CIRCLE CLIFFS AREA NON-FUEL MINERALS AND MINING Manganese Uranium-Vanadium Zirconium-Titanium Gold Copper, Lead and Zinc Industrial and Construction Materials Mining Activity Further Non-Fuel Mineral Resource Assessments Needed ACKNOWLEDGMENTS REFERENCES APPENDIX A: Presidential proclamation APPENDIX B: Summary of the coal resource of Kaiparowits Plateau and its value APPENDIX C: Summary of coal resources on School and Institutional Trust Lands APPENDIX D: Authorized Federal Oil and Gas Leases in the monument ILLUSTRATIONS Figure 1.
    [Show full text]
  • Late Cretaceous Stratigraphy of Black Mesa, Navajo and Hopi Indian Reservations, Arizona H
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/9 Late Cretaceous stratigraphy of Black Mesa, Navajo and Hopi Indian Reservations, Arizona H. G. Page and C. A. Repenning, 1958, pp. 115-122 in: Black Mesa Basin (Northeastern Arizona), Anderson, R. Y.; Harshbarger, J. W.; [eds.], New Mexico Geological Society 9th Annual Fall Field Conference Guidebook, 205 p. This is one of many related papers that were included in the 1958 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • MINERAL POTENTIAL REPORT for the Lands Now Excluded from Grand Staircase-Escalante National Monument
    United States Department ofthe Interior Bureau of Land Management MINERAL POTENTIAL REPORT for the Lands now Excluded from Grand Staircase-Escalante National Monument Garfield and Kane Counties, Utah Prepared by: Technical Approval: flirf/tl (Signature) Michael Vanden Berg (Print name) (Print name) Energy and Mineral Program Manager - Utah Geological Survey (Title) (Title) April 18, 2018 /f-P/2ft. 't 2o/ 8 (Date) (Date) M~zr;rL {Signature) 11 (Si~ ~.u.. "'- ~b ~ t:, "4 5~ A.J ~txM:t ;e;,E~ 't"'-. (Print name) (Print name) J.-"' ,·s h;c.-+ (V\ £uA.o...~ fk()~""....:r ~~/,~ L{ ( {Title) . Zo'{_ 2o l~0 +(~it71 ~ . I (Date) (Date) This preliminary repon makes information available to the public that may not conform to UGS technical, editorial. or policy standards; this should be considered by an individual or group planning to take action based on the contents ofthis report. Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding it!I suitability for a panicular use. The Utah Department ofNatural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users ofthis product. TABLE OF CONTENTS SUMMARY AND CONCLUSIONS ........................................................................................................... 4 Oil, Gas, and Coal Bed Methane ...........................................................................................................
    [Show full text]
  • Detailed Facies Analysis of the Upper Cretaceous
    Sedimentary Geology 364 (2018) 141–159 Contents lists available at ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Detailed facies analysis of the Upper Cretaceous Tununk Shale Member, Henry Mountains Region, Utah: Implications for mudstone depositional models in epicontinental seas Zhiyang Li ⁎, Juergen Schieber Department of Earth and Atmospheric Sciences, Indiana University, 1001 East 10th Street Bloomington, Indiana 47405, United States article info abstract Article history: Lower-Middle Turonian strata of the Tununk Shale Member of the greater Mancos Shale were deposited along Received 10 October 2017 the western margin of the Cretaceous Western Interior Seaway during the Greenhorn second-order sea Received in revised form 12 December 2017 level cycle. In order to examine depositional controls on facies development in this mudstone-rich succession, Accepted 13 December 2017 this study delineates temporal and spatial relationships in a process-sedimentologic-based approach. The Available online 22 December 2017 3-dimensional expression of mudstone facies associations and their stratal architecture is assessed through a Editor: Dr. B. Jones fully integrative physical and biologic characterization as exposed in outcrops in south-central Utah. Sedimento- logic characteristics from the millimeter- to kilometer-scale are documented in order to fully address the Keywords: complex nature of sediment transport mechanisms observed in this shelf muddy environment. Tununk Shale The resulting facies model developed from this characterization consists of a stack of four lithofacies packages Mudstone facies analysis including: 1) carbonate-bearing, silty and sandy mudstone (CSSM), 2) silt-bearing, calcareous mudstone Mudstone depositional model (SCM), 3) carbonate-bearing, silty mudstone to muddy siltstone (CMS), and 4) non-calcareous, silty and sandy Storm-dominated shelf mudstone (SSM).
    [Show full text]
  • Late Cretaceous Stratigraphy and Vertebrate Faunas of the Markagunt, Paunsaugunt, and Kaiparowits Plateaus, Southern Utah
    GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 3 2016 LATE CRETACEOUS STRATIGRAPHY AND VERTEBRATE FAUNAS OF THE MARKAGUNT, PAUNSAUGUNT, AND KAIPAROWITS PLATEAUS, SOUTHERN UTAH Alan L. Titus, Jeffrey G. Eaton, and Joseph Sertich A Field Guide Prepared For SOCIETY OF VERTEBRATE PALEONTOLOGY Annual Meeting, October 26 – 29, 2016 Grand America Hotel Salt Lake City, Utah, USA Post-Meeting Field Trip October 30–November 1, 2016 © 2016 Utah Geological Association. All rights reserved. For permission to copy and distribute, see the following page or visit the UGA website at www.utahgeology.org for information. Email inquiries to [email protected]. GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 3 2016 Editors UGA Board Douglas A. Sprinkel Thomas C. Chidsey, Jr. 2016 President Bill Loughlin [email protected] 435.649.4005 Utah Geological Survey Utah Geological Survey 2016 President-Elect Paul Inkenbrandt [email protected] 801.537.3361 801.391.1977 801.537.3364 2016 Program Chair Andrew Rupke [email protected] 801.537.3366 [email protected] [email protected] 2016 Treasurer Robert Ressetar [email protected] 801.949.3312 2016 Secretary Tom Nicolaysen [email protected] 801.538.5360 Bart J. Kowallis Steven Schamel 2016 Past-President Jason Blake [email protected] 435.658.3423 Brigham Young University GeoX Consulting, Inc. 801.422.2467 801.583-1146 UGA Committees [email protected] [email protected] Education/Scholarship
    [Show full text]
  • In the US Western Interior
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses March 2016 Oceanic Anoxia Event 2 (~94 Ma) in the U.S. Western Interior Sea: High Resolution Foraminiferal Record of the Development of Anoxia in a Shallow Epicontinental Sea Amanda L. Parker University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 Part of the Geology Commons, and the Paleontology Commons Recommended Citation Parker, Amanda L., "Oceanic Anoxia Event 2 (~94 Ma) in the U.S. Western Interior Sea: High Resolution Foraminiferal Record of the Development of Anoxia in a Shallow Epicontinental Sea" (2016). Masters Theses. 331. https://doi.org/10.7275/7948196 https://scholarworks.umass.edu/masters_theses_2/331 This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. OCEANIC ANOXIA EVENT 2 (~94 MA) IN THE U.S. WESTERN INTERIOR SEA: HIGH RESOLUTION FORAMINIFERAL RECORD OF THE DEVELOPMENT OF ANOXIA IN A SHALLOW EPICONTINENTAL SEA A Thesis Presented by AMANDA L. PARKER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE February 2016 Geosciences ! OCEANIC ANOXIA EVENT 2 (~94 MA) IN THE U.S. WESTERN INTERIOR SEA: HIGH RESOLUTION FORAMINIFERAL RECORD OF THE DEVELOPMENT OF ANOXIA IN A SHALLOW EPICONTINENTAL SEA A Thesis Presented by AMANDA L. PARKER Approved as to style and content by: _________________________________________ R.
    [Show full text]
  • Upper Cretaceous Marine and Brackish Water Strata at Grand Staircase-Escalante National Monument, Utah Geological Society of America Field Trip Road Log, May 2002
    UPPER CRETACEOUS MARINE AND BRACKISH WATER STRATA AT GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT, UTAH GEOLOGICAL SOCIETY OF AMERICA FIELD TRIP ROAD LOG, MAY 2002 Slick Rock Bench. This view north toward Wiggler Wash shows steep dip of Entrada through Straight Cliffs Formations in Kaibab anticline. Canaan Peak and Table Cliff Plateau can be seen on the far horizon T.S. Dyman1, W.A. Cobban1, L.E. Davis3, R.L. Eves4, G.L. Pollock2 J.D. Obradovich1, A.L. Titus5, K.I. Takahashi 1, T.C. Hester1, and D. Cantu2 1U.S. Geological Survey, Denver, CO 80225 (e-mail: [email protected]) 2Bryce Canyon National History Association, Bryce Canyon, UT 84717 3St. Johns University, Collegeville, MN 56321 4Southern Utah University, Cedar City, UT 84720 5Grand Staircase-Escalante National Monument, Kanab, UT 84741 171 UPPER CRETACEOUS MARINE AND BRACKISH WATER STRATA AT GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT, UTAH GEOLOGICAL SOCIETY OF AMERICA FIELD TRIP ROAD LOG, MAY 2002 T.S. Dyman1, W.A. Cobban1, L.E. Davis3, R.L. Eves4, G.L. Pollock2 J.D. Obradovich1, A.L. Titus5, K.I. Takahashi 1, T.C. Hester1, and D. Cantu2 1U.S. Geological Survey, Denver, CO 80225 (e-mail: [email protected]) 2Bryce Canyon National History Association, Bryce Canyon, UT 84717 3St. Johns University, Collegeville, MN 56321 4Southern Utah University, Cedar City, UT 84720 5Grand Staircase-Escalante National Monument, Kanab, UT 84741 INTRODUCTION Mid-Cretaceous strata in southwestern Utah (figures 1 and 2) are transitional from shelf to nonmarine rocks in the foreland basin along the tectonically active western margin of the Western Interior basin.
    [Show full text]
  • Grand Staircase-Escalante National Monument
    UTAH GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT 20th Anniversary Science Summary 2006 - 2016 Learning from the Land GRAND STAIRCASE ESCALANTE National Monument YEARS 201996 - 2016 Learning from the Land United States Department of the Interior Bureau of Land Management The mission of the National Landscape Conservation System (NLCS) is to conserve, protect, and restore nationally significant landscapes recognized for their outstanding cultural, ecological, and scientific values. The views, opinions, and data of the authors expressed herein do not necessarily state or reflect those of the Department of the Interior (DOI), Bureau of Land Management (BLM), Grand Staircase Escalante Partners (GSENM), or any agency or entity thereof. Any use of trade, product, or firm names in this publication is strictly for descriptive purposes and does not imply endorsement by the Federal Government. Printed by Grand Staircase Escalante Partners, August 2016 Copies available from: Grand Staircase Escalante Partners 745 East Hwy 89, Kanab, UT 84741 (435) 644-1308 gsenm.org Learning from the Land Grand Staircase-Escalante National Monument Science Summary 2006 - 2016 Science Symposium August 2 - 4, 2016 Kanab and Escalante, Utah Printed by Grand Staircase Escalante Partners, August 2016 Acknowledgements The Bureau of Land Management would like to express its appreciation to all who participated in the third Learning from the Land science symposium. Many thanks to all who took the time to prepare and make presentations or lead field trips, as well as those who attended sessions. The symposium was a success thanks to the involvement and support of many people, organizations, and businesses including Garfield and Kane counties, Grand Staircase Escalante Partners (GSEP), and Glen Canyon Natural History Association (GCNHA).
    [Show full text]
  • 1 Statement for the Record P. David
    Statement for the Record P. David Polly, Immediate Past President Society of Vertebrate Paleontology U.S. House Committee on Natural Resources Forgotten Voices: The Inadequate Review and Improper Alteration of Our National Monuments March 13, 2019 Chairman Grijalva, Ranking Member Bishop, and Members of the Committee, thank you for the opportunity to submit testimony into the record regarding the impacts on science caused by the proposed reduction of Grand Staircase-Escalante and Bears Ears National Monuments. About the Society of Vertebrate Paleontology I am a paleontologist and professor of Earth and Atmospheric Sciences at Indiana University. I represent the Society of Vertebrate Paleontology (SVP), as its Immediate Past President. SVP is the largest professional organization of paleontologists in the world and has over 2,200 members. Our mission is to advance the science of vertebrate paleontology; to support and encourage the discovery, conservation, and protection of vertebrate fossils and fossil sites; and to foster an appreciation and understanding of vertebrate fossils and fossil sites by the general public. SVP works with regulators and legislators around the world to keep scientifically important vertebrate fossils in the public trust because they provide the primary evidence for the history of vertebrate animals on our planet. We have a long, fruitful history of collaboration with the State of Utah, the Department of Interior, the US Forest Service, and the US Congress regarding protection of vertebrate fossils on state and federal public lands. We have worked especially closely with our federal partners on what is now known as the Paleontological Resources Preservation Act (PRPA) of 2009.
    [Show full text]
  • Western Interior Seaway
    () . Paleogeo.graphy of the Late Cretaceous of the Western Interior otMfddle North America+­ j?'oal .Blstribution anct,Sedimen~cumulation By Laura N. Robinson Roberts and Mark A. Kirschbaum U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1561 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1995 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or finn names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Roberts, Laura N. Robinson. Paleogeography of the Late Cretaceous of the western interior of middle North America : coal distribution and sediment accumulation I by Laura N. Robinson Roberts and Mark A. Kirschbaum. p. em.- (U.S. Geological Survey professional paper ; 1561) Includes bibliographical references. Supt. of Docs. no.: I 19.16: 1561 1. Paleogeography-Cretaceous. 2. Paleogeography-West (U.S.). 3. Coal­ Geology-West (U.S.). I. Kirschbaum, Mark A. II. Title. III. Series. QE50 1.4.P3R63 1995 553.2'1'0978-dc20 94-39032 CIP CONTENTS Abstract........................................................................................................................... 1" Introduction ................................................................................................................... Western Interior Seaway ... .. ... ... ... .. .. ..
    [Show full text]