Non-Ionizing Radiations – Sources, Biological Effects, Emissions and Exposures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Observation of Strong Nonlinear Interactions in Parametric Down
Observation of strong nonlinear interactions in parametric down- conversion of x-rays into ultraviolet radiation Authors: S. Sofer1*, O. Sefi1*, E. Strizhevsky1, S.P. Collins2, B. Detlefs3, Ch.J. Sahle3, and S. Shwartz1 *S. Sofer and O. Sefi contributed equally to this work. Affiliations: 1Physics Department and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900 Israel 2 Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom 3 ESRF – The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France. Summary: Nonlinear interactions between x-rays and long wavelengths can be used as a powerful atomic scale probe for light-matter interactions and for properties of valence electrons. This probe can provide novel microscopic information in solids that existing methods cannot reveal, hence to advance the understanding of many phenomena in condensed matter physics. However, thus far, reported x-ray nonlinear effects were very small and their observations required tremendous efforts. Here we report the observation of unexpected strong nonlinearities in parametric down-conversion (PDC) of x-rays to long wavelengths in gallium arsenide (GaAs) and in lithium niobate (LiNbO3) crystals, with efficiencies that are about 4 orders of magnitude stronger than the efficiencies measured in any material studied before. These strong nonlinearities cannot be explained by any known theory and indicate on possibilities for the development of a new spectroscopy method that is orbital and band selective. In this work we demonstrate the ability to use PDC of x-rays to investigate the spectral response of materials in a very broad range of wavelengths from the infrared regime to the soft x-ray regime. -
Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids
energies Article Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids Michał Kozioł Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland; [email protected] Received: 26 March 2020; Accepted: 29 April 2020; Published: 1 May 2020 Abstract: This article presents the results of the analysis of energy distribution of optical radiation emitted by electrical discharges in insulating liquids, such as synthetic ester, natural ester, and mineral oil. The measurements of optical radiation were carried out on a system of needle–needle type electrodes and on a system for surface discharges, which were immersed in brand new insulating liquids. Optical radiation was recorded using optical spectrophotometry method. On the basis of the obtained results, potential possibilities of using the analysis of the energy distribution of optical radiation as an additional descriptor for the recognition of individual sources of electric discharges were indicated. The results can also be used in the design of various types of detectors, as well as high-voltage diagnostic systems and arc protection systems. Keywords: optical radiation; electrical discharges; insulating liquids; energy distribution 1. Introduction One of the characteristic features of electrical discharges is the emission to the space in which they occur, an electromagnetic wave with a very wide range. Such typical ranges of emitted radiation include ionizing radiation, such as X-rays, optical radiation, acoustic emission, and radio wave emission. Based on most of these emitted ranges, diagnostic methods were developed, which enables the detection and location of the source of electrical discharges, which is a great achievement in the diagnostics of high-voltage electrical insulating devices [1–4]. -
Protecting Workers from Ultraviolet Radiation
Protecting Workers from Ultraviolet Radiation Editors: Paolo Vecchia, Maila Hietanen, Bruce E. Stuck Emilie van Deventer, Shengli Niu International Commission on Non-Ionizing Radiation Protection In Collaboration with: International Labour Organization World Health Organization ICNIRP 14/2007 International Commission on Non-Ionizing Radiation Protection ICNIRP Cataloguing in Publication Data Protecting Workers from Ultraviolet Radiation Protection ICNIRP 14/2007 1. Ultraviolet Radiation 2. Biological effects 3. Non-Ionizing Radiation ISBN 978-3-934994-07-2 The International Commission on Non-Ionizing Radiation Protection welcomes requests for permission to reproduce or translate its publications, in part or full. Applications and enquiries should be addressed to the Scientific Secretariat, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. © International Commission on Non-Ionizing Radiation Protection 2007 Publications of the International Commission on Non-Ionizing Radiation Protection enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. ICNIRP Scientific Secretary Dr. G. Ziegelberger Bundesamt für Strahlenschutz Ingolstädter Landstraße 1 85764 Oberschleißheim Germany Tel: (+ 49 1888) 333 2156 Fax: (+49 1888) 333 2155 e-mail: [email protected] www.icnirp.org Printed by DCM, Meckenheim International Commission on Non-Ionizing Radiation Protection The International Commission on Non-Ionizing Radiation Protection (ICNIRP) is an independent scientific organization whose aims are to provide guidance and advice on the health hazards of non-ionizing radiation exposure. ICNIRP was established to advance non-ionizing radiation protection for the benefit of people and the environment. -
EHC 238 Front Pages Final.Fm
This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the International Commission of Non- Ionizing Radiation Protection, the International Labour Organization, or the World Health Organization. Environmental Health Criteria 238 EXTREMELY LOW FREQUENCY FIELDS Published under the joint sponsorship of the International Labour Organization, the International Commission on Non-Ionizing Radiation Protection, and the World Health Organization. WHO Library Cataloguing-in-Publication Data Extremely low frequency fields. (Environmental health criteria ; 238) 1.Electromagnetic fields. 2.Radiation effects. 3.Risk assessment. 4.Envi- ronmental exposure. I.World Health Organization. II.Inter-Organization Programme for the Sound Management of Chemicals. III.Series. ISBN 978 92 4 157238 5 (NLM classification: QT 34) ISSN 0250-863X © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e- mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Applied Engineering Using Schumann Resonance for Earthquakes Monitoring
applied sciences Article Applied Engineering Using Schumann Resonance for Earthquakes Monitoring Jose A. Gazquez 1,2, Rosa M. Garcia 1,2, Nuria N. Castellano 1,2 ID , Manuel Fernandez-Ros 1,2 ID , Alberto-Jesus Perea-Moreno 3 ID and Francisco Manzano-Agugliaro 1,* ID 1 Department Engineering, University of Almeria, CEIA3, 04120 Almeria, Spain; [email protected] (J.A.G.); [email protected] (R.M.G.); [email protected] (N.N.C.); [email protected] (M.F.-R.) 2 Research Group of Electronic Communications and Telemedicine TIC-019, 04120 Almeria, Spain 3 Department of Applied Physics, University of Cordoba, CEIA3, Campus de Rabanales, 14071 Córdoba, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-950-015396; Fax: +34-950-015491 Received: 14 September 2017; Accepted: 25 October 2017; Published: 27 October 2017 Abstract: For populations that may be affected, the risks of earthquakes and tsunamis are a major concern worldwide. Therefore, early detection of an event of this type in good time is of the highest priority. The observatories that are capable of detecting Extremely Low Frequency (ELF) waves (<300 Hz) today represent a breakthrough in the early detection and study of such phenomena. In this work, all earthquakes with tsunami associated in history and all existing ELF wave observatories currently located worldwide are represented. It was also noticed how the southern hemisphere lacks coverage in this matter. In this work, the most suitable locations are proposed to cover these geographical areas. Also, ELF data processed obtained from the observatory of the University of Almeria in Calar Alto, Spain are shown. -
Ground Penetrating Abilities of a New Coherent Radio Wave And
TECHNICAL pApEr Ground penetrating abilities of a new coherent radio wave and microwave imaging spectrometer G C Stove, M J Robinson, G D C Stove, and A Odell, Adrock; J McManus, Department of Earth Sciences, University of St Andrews he early use of synthetic aperture each subsurface rock layer. The aim transmitted ADR beams typically pulsed electromagnetic radio radar (SAR) and light detection of this article is to report on tests operate within the frequency range waves, microwaves, millimetric, or Tand ranging (Lidar) systems from of the subsurface Earth penetration of 1-100MHz (Stove 2005). sub-millimetric radio waves from aircraft and space shuttles revealed capabilities of a new spectrometer In recent years, the technology materials which permit the applied the ability of the signals to penetrate as well as its ability to recognize for the production of laser light energy to pass through the material. the ground surface. Atomic dielectric many sedimentary, igneous and has become widely available, and The resonant energy response resonance (ADR) technology was metamorphic rock types in real- applications of this medium to can be measured in terms of energy, developed as an improvement over world conditions. the examination of materials are frequency, and phase relationships. SAR and ground penetrating radar Although GPRs are now constantly expanding. Although the The precision with which the (GPR) to achieve deeper penetration popular as non-destructive testing earlier applications concentrated process can be measured helps of the Earth’s subsurface through the tools, their analytical capabilities on the use of visible laser light, define the unique interactive atomic creation and use of a novel type of are rather restricted and imaging the development of systems using or molecular response behaviour of coherent beam. -
Through-The-Earth Electromagnetic Trapped Miner Location Systems. a Review
Open File Report: 127-85 THROUGH-THE-EARTH ELECTROMAGNETIC TRAPPED MINER LOCATION SYSTEMS. A REVIEW By Walter E. Pittman, Jr., Ronald H. Church, and J. T. McLendon Tuscaloosa Research Center, Tuscaloosa, Ala. UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES Research at the Tuscaloosa Research Center is carried out under a memorandum of agreement between the Bureau of Mines, U. S. Department of the Interior, and the University of Alabama. CONTENTS .Page List of abbreviations ............................................. 3 Abstract .......................................................... 4 Introduction ...................................................... 4 Early efforts at through-the-earth communications ................. 5 Background studies of earth electrical phenomena .................. 8 ~ationalAcademy of Engineering recommendations ................... 10 Theoretical studies of through-the-earth transmissions ............ 11 Electromagnetic noise studies .................................... 13 Westinghouse - Bureau of Mines system ............................ 16 First phase development and testing ............................. 16 Second phase development and testing ............................ 17 Frequency-shift keying (FSK) beacon signaler .................... 19 Anomalous effects ................................................ 20 Field testing and hardware evolution .............................. 22 Research in communication techniques .............................. 24 In-mine communication systems .................................... -
Electromagnetic Spectrum
Electromagnetic Spectrum Why do some things have colors? What makes color? Why do fast food restaurants use red lights to keep food warm? Why don’t they use green or blue light? Why do X-rays pass through the body and let us see through the body? What has the radio to do with radiation? What are the night vision devices that the army uses in night time fighting? To find the answers to these questions we have to examine the electromagnetic spectrum. FASTER THAN A SPEEDING BULLET MORE POWERFUL THAN A LOCOMOTIVE These words were used to introduce a fictional superhero named Superman. These same words can be used to help describe Electromagnetic Radiation. Electromagnetic Radiation is like a two member team racing together at incredible speeds across the vast regions of space or flying from the clutches of a tiny atom. They travel together in packages called photons. Moving along as a wave with frequency and wavelength they travel at the velocity of 186,000 miles per second (300,000,000 meters per second) in a vacuum. The photons are so tiny they cannot be seen even with powerful microscopes. If the photon encounters any charged particles along its journey it pushes and pulls them at the same frequency that the wave had when it started. The waves can circle the earth more than seven times in one second! If the waves are arranged in order of their wavelength and frequency the waves form the Electromagnetic Spectrum. They are described as electromagnetic because they are both electric and magnetic in nature. -
A High-Power Source of Optical Radiation with Microwave Excitation
ISBN: 978-84-9048-719-8 DOI: http://dx.doi.org/10.4995/Ampere2019.2019.9761 A HIGH-POWER SOURCE OF OPTICAL RADIATION WITH MICROWAVE EXCITATION G. Churyumov1, 2, A. Denisov1, T. Frolova2, N. Wang1, J. Qiu1 11Harbin Institute of Technology, 92, West Dazhi Street, Nan Gang District, Harbin, China 2 Kharkiv National University of Radio Electronics, 14, Nauky Ave., 61166, Kharkiv, Ukraine [email protected] Keywords: microwave heating, magnetron, electrodeless sulfur lamp, plasma, microwave excitation 1. Introduction For more than 50 years, interest to the microwave heating technology has not weakened. In addition to the traditional areas of its application, which described in detail in [1], recently there has been an expansion of technological possibilities for the use of microwave energy associated with the impact of electromagnetic waves of the microwave range on various materials (sintering of metal and ceramic powders) and media, including plasma [2]. One such new direction is the creation of high-power and environmentally friendly sources of optical radiation on the basis of the electrodeless sulfur lamp with microwave excitation [2, 3]. As it is known, Michael Ury and his associates at Fusion Systems invented this radically new lamp in 1990, but the lamp was not ideal because of the complexity of its design [4]. Therefore, it was not put into production. However, every year the scientific interest was growing. An analysis of scientific publications shows that every 5 years a new country is joined to this issue. Now more than in 10 countries of all would including USA, Great Britain, South Korea, Netherlands, Germany, Russia, and so on where there are research teams that are carried out an investigation concerning the electrodeless lamps with microwave excitation. -
Chapter 37: Artificial Optical Radiation
37 Artificial Optical Radiation Safety Scope 1 Artificial optical radiation (AOR) is electromagnetic radiation emitted by non-natural sources in the wavelength range 100 nm to 1 mm. It includes coherent (laser) and non- coherent (broadband) optical radiation but not all of this radiation is in the visible region1. Hazards from exposure to optical radiation are wavelength dependent, and it is convenient to breakdown the spectrum broadly into three regions namely ultra-violet (UV) radiation; visible radiation; and infra-red (IR) radiation. Both the UV and IR regions may be further broken down into 3 subdivisions. This Chapter details the requirements for the keeping, using and disposal of equipment emitting AOR, or equipment containing components which emit AOR. Table 1 Optical radiation wavelength regions Optical radiation wavelength regions CIE Definition ICNIRP/IEC/ACGIH definition Region λ(nm) λ (nm) UV-C 100 - 280 180 - 280 UV-B 280 - 315 280 - 315 UV-A 315 - 380 315 - 400 Visible 380 - 760 400 - 700 IR-A 760 - 1400 700 - 1400 IR-B 1400 - 3000 1400 - 3000 IR-C 3000 - 1000000 3000 - 1000000 NOTES (1) CIE - International Commission on Illumination. (2) ICNIRP - International Commission on Non Ionising Radiation Protection. (3) IEC - International Electro-technical Committee. (4) ACGIH - American Congress of Government Industrial Hygienists. 1 Generally, AOR is not considered to be a type of ionising radiation. However, parts of the ultraviolet (UV) spectrum furthest from the visible region have some ionising properties. 1 JSP 392 Pt 2 Chapter 37 (V1.1 Dec 2020) Statutory Requirements 2 The Control of Artificial Optical Radiation at Work Regulations 2010 (CAOR 10) applies directly. -
HHE Report No. HETA-98-0224-2714, the Trane
ThisThis Heal Healthth Ha Hazzardard E Evvaluaaluationtion ( H(HHHEE) )report report and and any any r ereccoommmmendendaatitonsions m madeade herein herein are are f orfor t hethe s sppeeccifiicfic f afacciliilityty e evvaluaaluatedted and and may may not not b bee un univeriverssaalllyly appappliliccabable.le. A Anyny re reccoommmmendaendatitoionnss m madeade are are n noot tt oto be be c consonsideredidered as as f ifnalinal s statatetemmeenntsts of of N NIOIOSSHH po polilcicyy or or of of any any agen agenccyy or or i ndindivivididuualal i nvoinvolvlved.ed. AdditionalAdditional HHE HHE repor reportsts are are ava availilabablele at at h htttptp:/://ww/wwww.c.cddcc.gov.gov/n/nioiosshh/hhe/hhe/repor/reportsts ThisThis HealHealtthh HaHazzardard EEvvaluaaluattionion ((HHHHEE)) reportreport andand anyany rreeccoommmmendendaattiionsons mmadeade hereinherein areare fforor tthehe ssppeecciifficic ffaacciliilittyy eevvaluaaluatteded andand maymay notnot bbee ununiiververssaallllyy appappapplililicccababablle.e.le. A AAnynyny re rerecccooommmmmmendaendaendattitiooionnnsss m mmadeadeade are areare n nnooott t t totoo be bebe c cconsonsonsiideredderedidered as asas f fifinalnalinal s ssttataatteteemmmeeennnttstss of ofof N NNIIOIOOSSSHHH po popolliilccicyyy or oror of ofof any anyany agen agenagencccyyy or oror i indndindiivviviiddiduuualalal i invonvoinvollvvlved.ed.ed. AdditionalAdditional HHEHHE reporreporttss areare avaavaililabablele atat hhtttpp::///wwwwww..ccddcc..govgov//nnioiosshh//hhehhe//reporreporttss This Health Hazard Evaluation (HHE) report and any recommendations made herein are for the specific facility evaluated and may not be universally applicable. Any recommendations made are not to be considered as final statements of NIOSH policy or of any agency or individual involved. Additional HHE reports are available at http://www.cdc.gov/niosh/hhe/reports HETA 98–0224–2714 The Trane Company Ft. -
Critical Thinking Activity: the Electromagnetic Spectrum
Student Sheet 1 CRITICAL THINKING ACTIVITY: THE ELECTROMAGNETIC SPECTRUM There are many kinds of energy in the universe. The energy given off from the sun is radiant energy, scientifically called electromagnetic radiation. Produced by nuclear reactions at the core of the sun, this energy streams from the surface of the sun in waves of different lengths. The shortest and longest wavelengths are invisible to our eyes, but the medium wavelengths are the visible radiation we call sunlight. Most of the sun’s energy is released in these visible wavelengths. All substances have kinetic energy that is expressed by vibrations of their atoms or molecules. The vibrations result in radiation. The electromagnetic (EM) spectrum is a name given to all of the different types of radiation. Electromagnetic radiation is energy that spreads out as it travels. Visible light radiation that comes from a lamp in someone’s house or radio wave radiation that comes from a radio station are two types of electromagnetic radiation. Other examples of EM radiation are microwaves, infrared and ultraviolet radiation, X- rays and gamma rays. Hotter, more energetic objects and events create higher energy radiation than cool objects. Only extremely hot objects or particles moving at very high speeds can create high-energy radiation like X-rays and gamma rays. 1 Student Sheet 2 A common assumption is that radio waves are completely different than X-rays and gamma rays. They are produced in very different ways, and we detect them in different ways. However, radio waves, visible light, X-rays, and all the other parts of the electromagnetic spectrum are fundamentally the same.