(51) International Patent Classification: C07D 223/06 (2006.01) A61K 31

Total Page:16

File Type:pdf, Size:1020Kb

(51) International Patent Classification: C07D 223/06 (2006.01) A61K 31 ( (51) International Patent Classification: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, C07D 223/06 (2006.01) A61K 31/55 (2006.01) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. C07D 223/10 (2006.01) A61P 25/00 (2006.01) (84) Designated States (unless otherwise indicated, for every C07D 487/04 (2006.01) A61P 25/24 (2006.01) kind of regional protection available) . ARIPO (BW, GH, C07D 487/14 {2006.01) GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (21) International Application Number: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, PCT/IB20 18/060078 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (22) International Filing Date: MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, 14 December 2018 (14. 12.2018) TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, (25) Filing Language: English KM, ML, MR, NE, SN, TD, TG). (26) Publication Language: English Declarations under Rule 4.17: (30) Priority Data: — as to applicant's entitlement to apply for and be granted a P1700522 15 December 2017 (15. 12.2017) HU patent (Rule 4.17(H)) P1800332 28 September 2018 (28.09.2018) HU Published: (71) Applicant: RICHTER GEDEON NYRT. [HU/HU]; — with international search report (Art. 21(3)) Gydmrdi t 19-21., 1103 Budapest (HU). (72) Inventors: BATA, Imre; Frankel Leo lit 7., 1027 Budapest (HU). SZELECZKY, Zsolt; Kanizsai u . 1., 1114 Budapest (HU). SZONDINE KORDAS, Krisztina; Rakosi lit 163., 1162 Budapest (HU). SZANT0, Gabor; Ormester u . 27, 1163 Budapest (HU). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (54) Title: TRICYCLIC COMPOUNDS AS VASOPRESSIN VIA RECEPTOR ANTAGONISTS (57) Abstract: The present invention relates to 5,6-dihydro-4H-[l,2,4]triazolo[4,3-a][l]benzazepine derivatives of general formula (I) and/or salts thereof and/or geometric isomers thereof and/or stereoisomers thereof and/or enantiomers thereof and/or racemates thereof and/or diastereomers thereof and/or biologically active metabolites thereof and/or prodrugs thereof and/or solvates thereof and/ or hydrates thereof and/or polymorphs thereof which are centrally and/or peripherally acting Via receptor modulators, particularly Via receptor antagonists. Additional subject of the present invention is the process for the preparation of the compounds and the intermediates of the preparation process as well. The invention also relates to the pharmaceutical compositions containing the compounds or together with one or more other active substances, as well as to the use in the treatment and/or prophylaxis of a disease or condition associated with Via receptor function. TRICYCLIC COMPOUNDS AS VASOPRESSIN V1 RECEPTOR ANTAGONISTS THE FIELD OF THE INVENTION The present invention relates to 5,6-dihydro-4H-[1,2,4]triazolo[4,3-a][1]benzazepine derivatives of the general formula ( ) and/or salts thereof and/or geometric isomers thereof and/or stereoisomers thereof and/or enantiomers thereof and/or racemates thereof and/or diastereomers thereof and/or biologically active metabolites thereof and/or prodrugs thereof and/or solvates thereof and/or hydrates thereof and/or polymorphs thereof which are centrally and/or peripherally acting Via receptor modulators, particularly Via receptor antagonists. Additional subject of the present invention is the process for the preparation of the compounds and the intermediates of the preparation process as well. The invention also relates to the pharmaceutical compositions containing the compounds and to the use thereof in the treatment and/or prophylaxis of a disease or condition associated with Via receptor function THE BACKGROUND OF THE INVENTION The vasopressin (antidiuretic hormone, ADH, CYIQNCPRG) is a 9-amino acid peptide hormone produced by the magnoceliular neurons of the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus and secreted directly into the posterior lobe of the pituitary gland where the hormone is stored until entering into the bloodstream in the periphery, the major role of vasopressin is in the contraction of blood vessels, as well as in glucose metabolism and in the regulation of excretion. For this reason, the conditions due to inappropriate secretion of vasopressin thus the lack of vasopressin may lead to pathological changes in the body, such as the central form of diabetes insipidus or abnormally low blood pressure (hypotension), while in the case of elevated levels of vasopressin or exogenous administration various forms of strengthening of the aggressive behaviour can be observed (Ferris et a ., BMC Neuroscience 2008, 9:1 11). Oxytocin (OXT, CY!QNGPLG) is a vasopressin-related peptide hormone, differing from that in one amino acid and its receptor is also related to vasopressin receptors. The effects of compounds on the oxytocin receptor show species-specific differences, but the oxytocin hormone itself is identical in the different mammalian species. Similarly, the vasopressin peptide is the same in ail mammals (except marsupials and pigs) and the effects exerted through its receptors may also show species-specific differences. The anxiolytic effect of oxytocin exerted in the central nervous system is well-known (Neumann ID. J Neuroendocrinal 2008, 20(6): 858-65), therefore the inhibition of the oxytocin receptor in the central nervous system can trigger anxiety as undesirable side effect. Three vasopressin receptors are distinguished, all of them are G-protein coupled receptors. The Via receptor (V1aR) is expressed centrally in the cerebral cortex, hippocampus and pituitary gland, furthermore peripherally in the liver, vascular smooth muscle, lung, uterus and testes (Frank et a , Eur J Pharmacol 2008, 583:226-42) The V b receptors (V1bR) are also can be found in the cortex, hippocampus and pituitary gland, and in the periphery they play an important role in the regulation of the pancreas and the adrenal glands. In contrast to this, the V2 receptor (V2R) is mainly localised on the periphery, in the kidneys where it increases water reabsorption, thereby exerting the antidiuretic effect of vasopressin (Robben et a! , Am J Physiol Renal Physiol 2007, 292(1): F253-60). Thus, due to changes in the regulation of water balance the effect on the V2 receptor may cause undesirable side effect. The secondary signalling pathway of Via and V1b receptors include the change of intracellular Ca2 concentration through phosphatidylinositol, whereas the V2 receptors activate adenylate cyclase enzyme and influence cAMP levels (Gouzenes et a ., J Physiol 1999, 5 17(Pt3):771-9; Tahara et a ., Pf!ugers Arch 1999, 437(2):219-26). An important role is attached to the Via receptors in the regulation of the circadian rhythm. One-third of the neurons in the suprachiasmatic nucleus (SCN) express vasopressin and the mRNA of Via receptors exhibit daily fluctuations in this brain region of which the highest values can be observed during night hours (de Vries and Miller, Prog Brain Res 1998, 119:3-20). Vasopressin shows sexual dimorphism in inducing behavioural effects, despite the fact that distribution and amount of the V1aR mRNAs do not differ in men and women (Szot et al., Brain Res Mol Brain Res 1994, 24(1-4):1-10) Experiments in mice have shown that the increased water absorption prior to their sleep period was triggered by their internal clock and not their physiological necessities (Gizowski et al., Nature 2016, 537(7622):685- 8). Sleep disorder is a major accompanying symptom of autism (Giickman, Neuroses Blobehav Rev 2010, 34(5): 755-68). Vasopressin acts as a neuromodulator in the brain, its elevated level can be detected in the amygdala under stress (Ebner et al., Eur J Neuroses 2002, 15(2):384-8) Such stressful life situations are well known to increase the likelihood of developing depression and anxiety (Kendier et a ., Arch Gen Psychiatry 2003, 60(8):789-96; Simon et al., Recent Pat CNS Drug Discov, 2008, 3(2):77-93; Egashira et al., J Pharmacol Sci 2009, 109(1):44-9; Bielsky et al., Neuropsychopharmacology 2004, 29(3):483-93). The expression of V1aR is high in the brain, especially in certain parts of the limbic system, such as the amygdala, the lateral septum and the hippocampus which play an important role in the development of anxiety Male V1aR gene knocked out mice exhibited reduced anxiety in the elevated plus maze, the open field and the light-dark box tests, but these differences could not be detected in females (Bielsky et a , Behav Brain Res 2005, 164(1):132-6). The male V1aR knockout mice did not show any phenotypic difference in motor performances. In normal light-dark-cycle experiments, V1aR KO mice showed no difference compared to their wild-type littermates, however, in the experiments carried out in continuous darkness the diurnal rhythm of Via knockout mice was shifted significantly (Egashira et al., Behav Brain Res 2007, 178(1):123-7). The V1aR KO mice showed modified activity in the prepu!se inhibition test, in the test which is accepted as animal model of sensory motor deficiency observed in most schizophrenic patients Egashira et a have shown decreased function in the social interaction test, which is suitable to measure socio-cognitive behaviour of the V1aR KO mice in both sexes, but it was not observed after the treatment with antagonist (Bleickard et a , Psychopharmacology (Berl) , 2009, 202:71 1-18).
Recommended publications
  • SYNTHESIS and STRUCTURE ACTIVITY STUDIES of NOVEL H3-RECEPTOR HISTAMINE ANTAGONISTS. a Thesis Presented in Partial Fulfilment Of
    1 SYNTHESIS AND STRUCTURE ACTIVITY STUDIES OF NOVEL H3-RECEPTOR HISTAMINE ANTAGONISTS. A thesis presented in partial fulfilment of the requirements for the Doctor of Philosophy Degree of the University of London SEYED KIUMARS HOSSEINI Department of Chemistry University College London September 1991 Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that the copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior consent of the author. Signature: Date..^*^^~ ProQuest Number: 10609847 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609847 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 2 Acknowledgements I would like to express my gratitude for the guidance and generous support of Prof. C. R. Ganellin and for the financial support of Bioproject in association with Centre Paul Broca de rinserm, Paris. Thanks to Prof.
    [Show full text]
  • Optumrx Brand Pipeline Forecast
    RxOutlook® 1st Quarter 2019 OptumRx brand pipeline forecast Route of Regulatory Estimated Specialty Orphan Drug name Generic name Company Drug class Therapeutic use administration status release date drug drug 2019 Possible launch date Ophthalmological DS-300 DS-300 Eton undisclosed SC Filed NDA 2019 unknown N disease anti-sclerostin Evenity romosozumab Amgen Osteoporosis SC Filed NDA 2/2019 Y N monoclonal antibody tetrahydrofolate iclaprim iclaprim Motif Bio Bacterial infections IV Filed NDA 2/13/2019 Y Y dehydrogenase inhibitor tazarotene/ IDP-118 Valeant retinoid/ corticosteroid Psoriasis TOP Filed NDA 2/15/2019 N N halobetasol adenosine deaminase Mavenclad cladribine Merck/ Teva resistant Multiple sclerosis PO Filed NDA 2/15/2019 Y N deoxyadenosine analog Lotemax Gel loteprednol Valeant corticosteroid Ocular inflammation OP Filed NDA 2/25/2019 N N Nex Gen etabonate turoctocog alfa glyco-PEGylated factor NN-7088 Novo Nordisk Hemophilia IV/SC Filed BLA 2/27/2019 Y N pegol VIII derivative selective sphingosine-1 BAF-312 siponimod Novartis phosphate receptor Multiple sclerosis PO Filed NDA 3/1/2019 Y N agonist midazolam midazolam UCB benzodiazepine Seizures Intranasal Filed NDA 3/1/2019 N Y (USL-261) XeriSol glucagon Xeris glucagon analog Diabetes mellitus SC Filed NDA 3/1/2019 N N Glucagon optum.com/optumrx 1 RxOutlook® 1st Quarter 2019 Route of Regulatory Estimated Specialty Orphan Drug name Generic name Company Drug class Therapeutic use administration status release date drug drug dopamine receptor JZP-507 sodium oxybate Jazz Narcolepsy
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • 42711 IPEG Programmaboekje
    19 th Biennial Conference 19th Biennial Conference October 26th – 30th 2016 October 26 Nijmegen, the Netherlands th – 30 th 2016 Nijmegen, the Netherlands 2016 Nijmegen, 42711 IPEG programmaboekje omslag.indd 1 06-10-16 17:52 The “International Pharmaco-EEG Society, Association for Electrophysiological Brain Research in Preclinical and Clinical Pharmacology and Related Fields” (IPEG) is a non-profit organization, established in 1980 and composed of scientists and researchers actively involved in electrophysiological brain research in preclinical and clinical pharmacology, neurotoxicology and related areas of interest. my.thesis nl for the design of your Thesis & to show your Thesis 42711 IPEG programmaboekje omslag.indd 2 06-10-16 17:52 IPEG 2016 in Nijmegen | 1 Welcome to Nijmegen, dear attendants of the 19th IPEG meeting. Nijmegen, a 2000 year old city; Nijmegen, a Roman and a medieval city; Nijmegen, the home town of the first catholic university funded by the Faithfull to improve education of a suppressed part of the Netherlands; Nijmegen, the city that heavily suffered in WWII; Nijmegen, the home town of the Donders Institute. Nijmegen, as we hope and trust, your home town for the upcoming IPEG meeting. As you all know, electrophysiological brain research has a long tradition going back as far as 1875 when the first report on the animal electroencephalogram (EEG) was published by Caton. The often forgotten Polish physiologist Adolf Beck was also a EEG pioneer many years before Hans Berger’s initial reports. Beck recorded electrical potentials in several brain areas evoked by peripheral sensory stimuli. Using this technique, Beck localised various centres in the brain of several animal species and described desynchronization in electrical brain potentials.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • 19Th Biennial IPEG Meeting Nijmegen, the Netherlands
    Neuropsychiatric Electrophysiology 2016, 2(Suppl 1):8 DOI 10.1186/s40810-016-0021-4 MEETINGABSTRACTS Open Access 19th biennial IPEG Meeting Nijmegen, The Netherlands. 26-30 October 2016 Published: 29 November 2016 Training course measures. This will be illustrated by means of pertinent examples. These include elucidating the mechanisms of stimulant action re- A1 mediating deficient impulse control and the role of the cannabinoid Thalamocortical sleep oscillations system in human working memory, as well as drug effects on Igor Timofeev1,2 sensory gating and specific aspects of visual-spatial attention. Other 1Department of Psychiatry and Neuroscience, Université Laval, Québec, examples concern the added sensitivity of EEG and ERP measures, Canada; 2Centre de recherche de l’Institut universitaire en santé mentale relative to that of performance measures, in detecting effects of alco- de Québec (CRIUSMQ), Université Laval, Québec, Canada hol, and more generally in monitoring and predicting vigilance and Neuropsychiatric Electrophysiology 2016, 2(Suppl 1):A1 the ability to detect external signals in the immediate future. Rela- tions between brain signals and cognitive competences are revealed In waking and sleeping states, thalamocortical system generates a by either comparing different individuals, or moment-to-moment variety of oscillations ranging from 0.1 Hz to hundreds of Hz. Most of fluctuations within individuals, or differences in state (e.g., drug- them are present during NREM sleep, but slower activities prevail in induced) within individuals. this state of vigilance. Thalamocortical network is organized in a loop in which thalamocortical cells excite reticular thalamic and neocor- tical cells, reticular thalamic cells inhibit thalamocortical cells and A3 corticothalamic cells excite thalamocortical and reticular thalamic EEG and ERP as key techniques for functional brain alterations cells.
    [Show full text]
  • Us 2018 / 0296525 A1
    UN US 20180296525A1 ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2018/ 0296525 A1 ROIZMAN et al. ( 43 ) Pub . Date: Oct. 18 , 2018 ( 54 ) TREATMENT OF AGE - RELATED MACULAR A61K 38 /1709 ( 2013 .01 ) ; A61K 38 / 1866 DEGENERATION AND OTHER EYE (2013 . 01 ) ; A61K 31/ 40 ( 2013 .01 ) DISEASES WITH ONE OR MORE THERAPEUTIC AGENTS (71 ) Applicant: MacRegen , Inc ., San Jose , CA (US ) (57 ) ABSTRACT ( 72 ) Inventors : Keith ROIZMAN , San Jose , CA (US ) ; The present disclosure provides therapeutic agents for the Martin RUDOLF , Luebeck (DE ) treatment of age - related macular degeneration ( AMD ) and other eye disorders. One or more therapeutic agents can be (21 ) Appl. No .: 15 /910 , 992 used to treat any stages ( including the early , intermediate ( 22 ) Filed : Mar. 2 , 2018 and advance stages ) of AMD , and any phenotypes of AMD , including geographic atrophy ( including non -central GA and Related U . S . Application Data central GA ) and neovascularization ( including types 1 , 2 and 3 NV ) . In certain embodiments , an anti - dyslipidemic agent ( 60 ) Provisional application No . 62/ 467 ,073 , filed on Mar . ( e . g . , an apolipoprotein mimetic and / or a statin ) is used 3 , 2017 . alone to treat or slow the progression of atrophic AMD Publication Classification ( including early AMD and intermediate AMD ) , and / or to (51 ) Int. CI. prevent or delay the onset of AMD , advanced AMD and /or A61K 31/ 366 ( 2006 . 01 ) neovascular AMD . In further embodiments , two or more A61P 27 /02 ( 2006 .01 ) therapeutic agents ( e . g ., any combinations of an anti - dys A61K 9 / 00 ( 2006 . 01 ) lipidemic agent, an antioxidant, an anti- inflammatory agent, A61K 31 / 40 ( 2006 .01 ) a complement inhibitor, a neuroprotector and an anti - angio A61K 45 / 06 ( 2006 .01 ) genic agent ) that target multiple underlying factors of AMD A61K 38 / 17 ( 2006 .01 ) ( e .
    [Show full text]
  • The Effect of the Roots of Empathy Program on the Use of Psychotropic Medications Among Youth in Manitoba
    The effect of the Roots of Empathy program on the use of psychotropic medications among youth in Manitoba by Lindsey Dahl A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of MASTER OF SCIENCE Department of Community Health Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine University of Manitoba Winnipeg Copyright © 2017 by Lindsey Dahl Abstract Background: Psychotropic medications prescriptions to youth have increased. Roots of Empathy (ROE) is a social and emotional learning program that may influence the use of psychotropic medication. Methods: Administrative data was analyzed in a matched sample of children who received ROE during 2002/03 to 2012/13. Kaplan-Meier survival curves and Cox proportional hazard models were used to estimate the association between ROE and psychotropic medication dispensations. Results: Few significant differences were observed. Children who received ROE in kindergarten to grade 3 had a lower adjusted hazard for an anxiolytic dispensation. Children who received ROE in grade 7 to 8 had a higher hazard for an antipsychotic dispensation. Males who received the program had an increased hazard for an antipsychotic dispensation. Conclusion: There was no consistent differences in the likelihood of being dispensed a psychotropic medication between children who received ROE and children who did not in Manitoba. ii Acknowledgments I would like to first thank my thesis advisor Dr. Randy Fransoo of the Department of Community Health Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine at the University of Manitoba. Right from our initial meeting, Dr.
    [Show full text]
  • Integrating Treatment for Autism Spectrum Disorders Through the Life Cycle
    Integrating Treatment for Autism Spectrum Disorders Through the Life Cycle Robert L Hendren, DO Professor of Psychiatry and Behavioral Science Idaho Autism Summit November 2, 2019 Faculty Disclosure • Grants — Curemark, Roche, Otsuka • Advisory Board — Curemark, BioMarin, Janssen, Axial Biotherapeutics • Honoraria/Royalties: Oxford University Press, Taylor & Francis • Dr. Hendren does intend to discuss the use of off- label/unapproved use of drugs Learning Objectives • Identify successes and challenges in the developmental progression through the life cycle for people with developmental disabilities and their families • Identify and effectively treat comorbid medical, emotional and behavioral symptoms associated with autism spectrum disorders (ASD) • Consider integrating biomedical treatments for ASD including conventional psychotropic medication and what has been referred to as CAM/CIM into a comprehensive program. 2010 1 in 68; 2014 1 in 59 CDC Prevalence of Autism • Possible explanations include – Diagnostic expansion and substitution – Better reporting – Increased recognition – Increasing acceptability – Immigration for services – Environmental toxins – Infectious and immune vulnerability – Epigenetic processes Rutter M. Acta Pediatr. 2005;94(1):2-15. Centers for Disease Control and Prevention. Autism Spectrum Disorders. www.cdc.gov/ncbddd/autism. Accessed June 16, 2015. Hagerman R, Hendren RL (Eds). Treatment of Neurodevelopmental Disorders: Targeting Neurobiological Mechanisms. Oxford University Press; 2014. ASD Genetic Etiology (Levels 1 & 2) • Multiple genes: NRXN12q, 7q11.23, 15q11-13, 16p11.2, SHANK 3, 2, NLGN4, MTHFR 677>T, SEMA5A, 2Q22.1, GRIN2B, 5P14.1, CDH9, 10, FRX, PTEN • Identical twins: 60% to 90% – Fraternal twins: 0% to 36% – Siblings: 4% to 19% • Clear genetic etiology accounts for 25% of autism cases • Hundreds of genetic mutations, some de novo, lead to many ways to develop and treat autism • Is Precision Medicine Possible? Weiss KM, Issues Science and Technology in 2017 Levy D, et al.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Pharmacological Management of Autism Spectrum Disorders
    Pharmacological Management of Autism Spectrum Disorders Lightin the Way 2018 David Ermer Md Pharmacotherapy common in Autism Spectrum iIlnesses (ASDs) ◼ 45% of children and adolescents with ASDs treated with psychotropic medications ◼ 75% of adults with ASDs treated with psychotropic medications Research into Psychotropic Medications in ASD’s is Relatively New ◼ Before 2006 there were no FDA approved medications for use in Autism ◼ With the increased incidence of ASDs being reported, there is increased interest from the pharmaceutical industry Treatment Strategies for Pharmacologic Intervention ◼ Pharmacologic treatments are available and significantly beneficial ◼ Educational and behavioral supports are the mainstays of treatment ◼ It is essential to integrate behavioral and pharmacologic treatments Realistic Expectations Must be Set ◼ Expectation that symptoms remit more quickly with pharmacologic treatment over behavioral treatments ◼ Expectation that response will be more complete with pharmacologic treatments ◼ “magic bullets” Must Optimize Environment ◼ Evaluate school setting ◼ Work with caregivers on home environment ◼ Pharmacologic strategies ineffective in unsupportive and inadequate environments Parental Collaboration is Essential ◼ Monitor patient and provide information to provider ◼ Administer medication ◼ Observe side effects ◼ Note emotional and behavioral effects ◼ Collaborate their information with school Focus on Symptom Clusters ◼ Most of the core symptoms are likely to remain ◼ Must focus on specific measurable symptoms
    [Show full text]
  • In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs As Inverse H1 Receptor Agonists
    0022-3565/07/3221-172–179$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 322, No. 1 Copyright © 2007 by The American Society for Pharmacology and Experimental Therapeutics 118869/3215703 JPET 322:172–179, 2007 Printed in U.S.A. In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs as Inverse H1 Receptor Agonists R. A. Bakker,1 M. W. Nicholas,2 T. T. Smith, E. S. Burstein, U. Hacksell, H. Timmerman, R. Leurs, M. R. Brann, and D. M. Weiner Department of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.A.B., H.T., R.L.); ACADIA Pharmaceuticals Inc., San Diego, California (R.A.B., M.W.N., T.T.S., E.S.B., U.H., M.R.B., D.M.W.); and Departments of Pharmacology (M.R.B.), Neurosciences (D.M.W.), and Psychiatry (D.M.W.), University of California, San Diego, California Received January 2, 2007; accepted March 30, 2007 Downloaded from ABSTRACT The human histamine H1 receptor (H1R) is a prototypical G on this screen, we have reported on the identification of 8R- protein-coupled receptor and an important, well characterized lisuride as a potent stereospecific partial H1R agonist (Mol target for the development of antagonists to treat allergic con- Pharmacol 65:538–549, 2004). In contrast, herein we report on jpet.aspetjournals.org ditions. Many neuropsychiatric drugs are also known to po- a large number of varied clinical and chemical classes of drugs tently antagonize this receptor, underlying aspects of their side that are active in the central nervous system that display potent effect profiles.
    [Show full text]