College Geometry an Introduction to the Modern Geometry of the Triangle and the Circle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Yet Another New Proof of Feuerbach's Theorem
Global Journal of Science Frontier Research: F Mathematics and Decision Sciences Volume 16 Issue 4 Version 1.0 Year 2016 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Yet Another New Proof of Feuerbach’s Theorem By Dasari Naga Vijay Krishna Abstract- In this article we give a new proof of the celebrated theorem of Feuerbach. Keywords: feuerbach’s theorem, stewart’s theorem, nine point center, nine point circle. GJSFR-F Classification : MSC 2010: 11J83, 11D41 YetAnother NewProofofFeuerbachsTheorem Strictly as per the compliance and regulations of : © 2016. Dasari Naga Vijay Krishna. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Notes Yet Another New Proof of Feuerbach’s Theorem 2016 r ea Y Dasari Naga Vijay Krishna 91 Abstra ct- In this article we give a new proof of the celebrated theorem of Feuerbach. Keywords: feuerbach’s theorem, stewart’s theorem, nine point center, nine point circle. V I. Introduction IV ue ersion I s The Feuerbach’s Theorem states that “The nine-point circle of a triangle is s tangent internally to the in circle and externally to each of the excircles”. I Feuerbach's fame is as a geometer who discovered the nine point circle of a XVI triangle. This is sometimes called the Euler circle but this incorrectly attributes the result. -
Configurations on Centers of Bankoff Circles 11
CONFIGURATIONS ON CENTERS OF BANKOFF CIRCLES ZVONKO CERINˇ Abstract. We study configurations built from centers of Bankoff circles of arbelos erected on sides of a given triangle or on sides of various related triangles. 1. Introduction For points X and Y in the plane and a positive real number λ, let Z be the point on the segment XY such that XZ : ZY = λ and let ζ = ζ(X; Y; λ) be the figure formed by three mj utuallyj j tangenj t semicircles σ, σ1, and σ2 on the same side of segments XY , XZ, and ZY respectively. Let S, S1, S2 be centers of σ, σ1, σ2. Let W denote the intersection of σ with the perpendicular to XY at the point Z. The figure ζ is called the arbelos or the shoemaker's knife (see Fig. 1). σ σ1 σ2 PSfrag replacements X S1 S Z S2 Y XZ Figure 1. The arbelos ζ = ζ(X; Y; λ), where λ = jZY j . j j It has been the subject of studies since Greek times when Archimedes proved the existence of the circles !1 = !1(ζ) and !2 = !2(ζ) of equal radius such that !1 touches σ, σ1, and ZW while !2 touches σ, σ2, and ZW (see Fig. 2). 1991 Mathematics Subject Classification. Primary 51N20, 51M04, Secondary 14A25, 14Q05. Key words and phrases. arbelos, Bankoff circle, triangle, central point, Brocard triangle, homologic. 1 2 ZVONKO CERINˇ σ W !1 σ1 !2 W1 PSfrag replacements W2 σ2 X S1 S Z S2 Y Figure 2. The Archimedean circles !1 and !2 together. -
Kaleidoscopic Symmetries and Self-Similarity of Integral Apollonian Gaskets
Kaleidoscopic Symmetries and Self-Similarity of Integral Apollonian Gaskets Indubala I Satija Department of Physics, George Mason University , Fairfax, VA 22030, USA (Dated: April 28, 2021) Abstract We describe various kaleidoscopic and self-similar aspects of the integral Apollonian gaskets - fractals consisting of close packing of circles with integer curvatures. Self-similar recursive structure of the whole gasket is shown to be encoded in transformations that forms the modular group SL(2;Z). The asymptotic scalings of curvatures of the circles are given by a special set of quadratic irrationals with continued fraction [n + 1 : 1; n] - that is a set of irrationals with period-2 continued fraction consisting of 1 and another integer n. Belonging to the class n = 2, there exists a nested set of self-similar kaleidoscopic patterns that exhibit three-fold symmetry. Furthermore, the even n hierarchy is found to mimic the recursive structure of the tree that generates all Pythagorean triplets arXiv:2104.13198v1 [math.GM] 21 Apr 2021 1 Integral Apollonian gaskets(IAG)[1] such as those shown in figure (1) consist of close packing of circles of integer curvatures (reciprocal of the radii), where every circle is tangent to three others. These are fractals where the whole gasket is like a kaleidoscope reflected again and again through an infinite collection of curved mirrors that encodes fascinating geometrical and number theoretical concepts[2]. The central themes of this paper are the kaleidoscopic and self-similar recursive properties described within the framework of Mobius¨ transformations that maps circles to circles[3]. FIG. 1: Integral Apollonian gaskets. -
Circles in Areals
Circles in areals 23 December 2015 This paper has been accepted for publication in the Mathematical Gazette, and copyright is assigned to the Mathematical Association (UK). This preprint may be read or downloaded, and used for any non-profit making educational or research purpose. Introduction August M¨obiusintroduced the system of barycentric or areal co-ordinates in 1827[1, 2]. The idea is that one may attach weights to points, and that a system of weights determines a centre of mass. Given a triangle ABC, one obtains a co-ordinate system for the plane by placing weights x; y and z at the vertices (with x + y + z = 1) to describe the point which is the centre of mass. The vertices have co-ordinates A = (1; 0; 0), B = (0; 1; 0) and C = (0; 0; 1). By scaling so that triangle ABC has area [ABC] = 1, we can take the co-ordinates of P to be ([P BC]; [PCA]; [P AB]), provided that we take area to be signed. Our convention is that anticlockwise triangles have positive area. Points inside the triangle have strictly positive co-ordinates, and points outside the triangle must have at least one negative co-ordinate (we are allowed negative masses). The equation of a line looks like the equation of a plane in Cartesian co-ordinates, but note that the equation lx + ly + lz = 0 (with l 6= 0) is not satisfied by any point (x; y; z) of the Euclidean plane. We use such equations to describe the line at infinity when doing projective geometry. -
A Generalization of the Conway Circle
Forum Geometricorum b Volume 13 (2013) 191–195. b b FORUM GEOM ISSN 1534-1178 A Generalization of the Conway Circle Francisco Javier Garc´ıa Capitan´ Abstract. For any point in the plane of the triangle we show a conic that be- comes the Conway circle in the case of the incenter. We give some properties of the conic and of the configuration of the six points that define it. Let ABC be a triangle and I its incenter. Call Ba the point on line CA in the opposite direction to AC such that ABa = BC = a and Ca the point on line BA in the opposite direction to AB such that ACa = a. Define Cb, Ab and Ac, Bc cyclically. The six points Ab, Ac, Bc, Ba, Ca, Cb lie in a circle called the Conway circle with I as center and squared radius r2 + s2 as indicated in Figure 1. This configuration also appeared in Problem 6 in the 1992 Iberoamerican Mathematical Olympiad. The problem asks to establish that the area of the hexagon CaBaAbCbBcAc is at least 13∆(ABC) (see [4]). Ca Ca Ba Ba a a a a A A C0 B0 I I r Ab Ac Ab Ac b B s − b s − c C c b B s − b s − c C c c c Bc Bc Cb Cb Figure 1. The Conway circle Figure 2 Figure 2 shows a construction of these points which can be readily generalized. The lines BI and CI intersect the parallel of BC through A at B0 and C0. -
Coaxal Pencil of Circles and Spheres in the Pavillet Tetrahedron
17TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS ©2016 ISGG 4–8 AUGUST, 2016, BEIJING, CHINA COAXAL PENCILS OF CIRCLES AND SPHERES IN THE PAVILLET TETRAHEDRON Axel PAVILLET [email protected] ABSTRACT: After a brief review of the properties of the Pavillet tetrahedron, we recall a theorem about the trace of a coaxal pencil of spheres on a plane. Then we use this theorem to show a re- markable correspondence between the circles of the base and those of the upper triangle of a Pavillet tetrahedron. We also give new proofs and new point of view of some properties of the Bevan point of a triangle using solid triangle geometry. Keywords: Tetrahedron, orthocentric, coaxal pencil, circles, spheres polar 2 Known properties We first recall the notations and properties (with 1 Introduction. their reference) we will use in this paper (Fig.1). • The triangle ABC is called the base trian- gle and defines the base plane (horizontal). The orthocentric tetrahedron of a scalene tri- angle [12], named the Pavillet tetrahedron by • The incenter, I, is called the apex of the Richard Guy [8, Ch. 5] and Gunther Weiss [16], tetrahedron. is formed by drawing from the vertices A, B and 0 0 0 C of a triangle ABC, on an horizontal plane, • The other three vertices (A ,B ,C ) form a three vertical segments AA0 = AM = AL = x, triangle called the upper triangle and define BB0 = BK = BM = y, CC0 = CL = CK = z, a plane called the upper plane. where KLM is the contact triangle of ABC. We As a standard notation, all points lying on the denote I the incenter of ABC, r its in-radius, base plane will have (as much as possible) a 0 0 0 and consider the tetrahedron IA B C . -
Strophoids, a Family of Cubic Curves with Remarkable Properties
Hellmuth STACHEL STROPHOIDS, A FAMILY OF CUBIC CURVES WITH REMARKABLE PROPERTIES Abstract: Strophoids are circular cubic curves which have a node with orthogonal tangents. These rational curves are characterized by a series or properties, and they show up as locus of points at various geometric problems in the Euclidean plane: Strophoids are pedal curves of parabolas if the corresponding pole lies on the parabola’s directrix, and they are inverse to equilateral hyperbolas. Strophoids are focal curves of particular pencils of conics. Moreover, the locus of points where tangents through a given point contact the conics of a confocal family is a strophoid. In descriptive geometry, strophoids appear as perspective views of particular curves of intersection, e.g., of Viviani’s curve. Bricard’s flexible octahedra of type 3 admit two flat poses; and here, after fixing two opposite vertices, strophoids are the locus for the four remaining vertices. In plane kinematics they are the circle-point curves, i.e., the locus of points whose trajectories have instantaneously a stationary curvature. Moreover, they are projections of the spherical and hyperbolic analogues. For any given triangle ABC, the equicevian cubics are strophoids, i.e., the locus of points for which two of the three cevians have the same lengths. On each strophoid there is a symmetric relation of points, so-called ‘associated’ points, with a series of properties: The lines connecting associated points P and P’ are tangent of the negative pedal curve. Tangents at associated points intersect at a point which again lies on the cubic. For all pairs (P, P’) of associated points, the midpoints lie on a line through the node N. -
Barycentric Coordinates in Olympiad Geometry
Barycentric Coordinates in Olympiad Geometry Max Schindler∗ Evan Cheny July 13, 2012 I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail. Abstract In this paper we present a powerful computational approach to large class of olympiad geometry problems{ barycentric coordinates. We then extend this method using some of the techniques from vector computations to greatly extend the scope of this technique. Special thanks to Amir Hossein and the other olympiad moderators for helping to get this article featured: I certainly did not have such ambitious goals in mind when I first wrote this! ∗Mewto55555, Missouri. I can be contacted at igoroogenfl[email protected]. yv Enhance, SFBA. I can be reached at [email protected]. 1 Contents Title Page 1 1 Preliminaries 4 1.1 Advantages of barycentric coordinates . .4 1.2 Notations and Conventions . .5 1.3 How to Use this Article . .5 2 The Basics 6 2.1 The Coordinates . .6 2.2 Lines . .6 2.2.1 The Equation of a Line . .6 2.2.2 Ceva and Menelaus . .7 2.3 Special points in barycentric coordinates . .7 3 Standard Strategies 9 3.1 EFFT: Perpendicular Lines . .9 3.2 Distance Formula . 11 3.3 Circles . 11 3.3.1 Equation of the Circle . 11 4 Trickier Tactics 12 4.1 Areas and Lines . 12 4.2 Non-normalized Coordinates . 13 4.3 O, H, and Strong EFFT . 13 4.4 Conway's Formula . 14 4.5 A Few Final Lemmas . 15 5 Example Problems 16 5.1 USAMO 2001/2 . -
On a Construction of Hagge
Forum Geometricorum b Volume 7 (2007) 231–247. b b FORUM GEOM ISSN 1534-1178 On a Construction of Hagge Christopher J. Bradley and Geoff C. Smith Abstract. In 1907 Hagge constructed a circle associated with each cevian point P of triangle ABC. If P is on the circumcircle this circle degenerates to a straight line through the orthocenter which is parallel to the Wallace-Simson line of P . We give a new proof of Hagge’s result by a method based on reflections. We introduce an axis associated with the construction, and (via an areal anal- ysis) a conic which generalizes the nine-point circle. The precise locus of the orthocenter in a Brocard porism is identified by using Hagge’s theorem as a tool. Other natural loci associated with Hagge’s construction are discussed. 1. Introduction One hundred years ago, Karl Hagge wrote an article in Zeitschrift fur¨ Mathema- tischen und Naturwissenschaftliche Unterricht entitled (in loose translation) “The Fuhrmann and Brocard circles as special cases of a general circle construction” [5]. In this paper he managed to find an elegant extension of the Wallace-Simson theorem when the generating point is not on the circumcircle. Instead of creating a line, one makes a circle through seven important points. In 2 we give a new proof of the correctness of Hagge’s construction, extend and appl§ y the idea in various ways. As a tribute to Hagge’s beautiful insight, we present this work as a cente- nary celebration. Note that the name Hagge is also associated with other circles [6], but here we refer only to the construction just described. -
Three Points Related to the Incenter and Excenters of a Triangle
Three points related to the incenter and excenters of a triangle B. Odehnal Abstract In the present paper it is shown that certain normals to the sides of a triangle ∆ passing through the excenters and the incenter are concurrent. The triangle ∆S built by these three points has the incenter of ∆ for its circumcenter. The radius of the circumcircle is twice the radius of the circumcircle of ∆. Some other results concerning ∆S are stated and proved. Mathematics Subject Classification (2000): 51M04. Keywords: incenter, PSfragexcenters,replacemenortho center,ts orthoptic triangle, Feuerbach point, Euler line. A B C 1 Introduction a b c Let ∆ := fA; B; Cg be a triangle in the Euclidean plane. The side lengths of α ∆ shall be denoted by c := AB, b := ACβ and a := BC. The interior angles \ \ \ enclosed by the edges of ∆ are β := ABγC, γ := BCA and α := CAB, see Fig. 1. A1 wγ C A2 PSfrag replacements wβ wα C I A B a wα b wγ γ wβ α β A3 A c B Figure 1: Notations used in the paper. It is well-known that the bisectors wα, wβ and wγ of the interior angles of ∆ are concurrent in the incenter I of ∆. The bisectors wβ and wγ of the exterior angles at the vertices A and B and wα are concurrent in the center A1 of the excircle touching ∆ along BC from the outside. 1 S3 nA2 (BC) nI (AB) nA1 (AC) A1 C A2 n (AB) PSfrag replacements I A1 nA2 (AB) B A nI (AC) S2 nI (BC) S1 nA3 (BC) nA3 (AC) A3 Figure 2: Three remarkable points occuring as the intersection of some normals. -
Icons of Mathematics an EXPLORATION of TWENTY KEY IMAGES Claudi Alsina and Roger B
AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL 45 Icons of Mathematics AN EXPLORATION OF TWENTY KEY IMAGES Claudi Alsina and Roger B. Nelsen i i “MABK018-FM” — 2011/5/16 — 19:53 — page i — #1 i i 10.1090/dol/045 Icons of Mathematics An Exploration of Twenty Key Images i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page ii — #2 i i c 2011 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2011923441 Print ISBN 978-0-88385-352-8 Electronic ISBN 978-0-88385-986-5 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY-FIVE Icons of Mathematics An Exploration of Twenty Key Images Claudi Alsina Universitat Politecnica` de Catalunya Roger B. Nelsen Lewis & Clark College Published and Distributed by The Mathematical Association of America i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Frank Farris, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Thomas M. Halverson Patricia B. Humphrey Michael J. McAsey Michael J. Mossinghoff Jonathan Rogness Thomas Q. Sibley i i i i i i “MABK018-FM” — 2011/5/16 — 19:53 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical As- sociation of America was established through a generous gift to the Association from Mary P. -
A Conic Through Six Triangle Centers
Forum Geometricorum b Volume 2 (2002) 89–92. bbb FORUM GEOM ISSN 1534-1178 A Conic Through Six Triangle Centers Lawrence S. Evans Abstract. We show that there is a conic through the two Fermat points, the two Napoleon points, and the two isodynamic points of a triangle. 1. Introduction It is always interesting when several significant triangle points lie on some sort of familiar curve. One recently found example is June Lester’s circle, which passes through the circumcenter, nine-point center, and inner and outer Fermat (isogonic) points. See [8], also [6]. The purpose of this note is to demonstrate that there is a conic, apparently not previously known, which passes through six classical triangle centers. Clark Kimberling’s book [6] lists 400 centers and innumerable collineations among them as well as many conic sections and cubic curves passing through them. The list of centers has been vastly expanded and is now accessible on the internet [7]. Kimberling’s definition of triangle center involves trilinear coordinates, and a full explanation would take us far afield. It is discussed both in his book and jour- nal publications, which are readily available [4, 5, 6, 7]. Definitions of the Fermat (isogonic) points, isodynamic points, and Napoleon points, while generally known, are also found in the same references. For an easy construction of centers used in this note, we refer the reader to Evans [3]. Here we shall only require knowledge of certain collinearities involving these points. When points X, Y , Z, . are collinear we write L(X,Y,Z,...) to indicate this and to denote their common line.