Revision Final Thesis-For Submission

Total Page:16

File Type:pdf, Size:1020Kb

Revision Final Thesis-For Submission University of Alberta Chemical Synthesis and Biological Evaluation of Unusual Sulfur-Containing Peptides and Efforts Toward Chemical Synthesis of Crocin by Zedu Huang A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry ©Zedu Huang Fall, 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Abstract In order to minimize side reactions when preparing peptides containing a C- terminal cysteine residue, a method of protection of the carboxyl of the C-terminal cysteine as a cyclic ortho ester was developed. N-Fmoc-S-StBu cysteine cyclic ortho esters 31 (L) and 32 (D) were synthesized with excellent enantiomeric purity. This moiety was incorporated onto a solid support via a disulfide linkage, and model tripeptides (Gly- Phe-Cys) and the analgesic peptide, crotalphine, were synthesized with excellent diastereomeric purity. In the second chapter of this thesis, a structure-activity relationship (SAR) study of the crotalphine was developed. Eleven analogs were prepared to elucidate the essential structural features for the analgesic activity and identify an active analog with increased metabolic stability. The biological evaluation of these analogs is ongoing in the laboratory of our collaborators. The Vederas group discovered a new family of Class II bacteriocins, such as thuricin-β, featuring sulfur to α-carbon bridges. In the third chapter, efforts toward asymmetric synthesis of a bis-amino acid containing a thioether bridge were attempted. This bis-amino acid could be used as a standard to confirm the stereochemistry at the α- carbon of the modified residues using chiral GC-MS. Bis-amino acid derivative (126) was synthesized as a single diastereomer using chiral tricycloiminolactone 129 and efforts toward the removal of the auxiliary are ongoing. In the second part of the third chapter, a SAR study of thuricin-β was performed. The cysteine residues of thuricin-β were replaced by glycine, serine or alanine. All of the synthetic analogs were inactive against Bacillus firmus. In the future, cyclic analog 163, will be synthesized and evaluated for antimicrobial activity. Crocin is a major component of saffron and shows activity against various diseases. The last project of this thesis was towards chemical synthesis and biological evaluation of crocin and its analogs. The polyene acid 198 was synthesized in 10 steps from geranyl acetate. Attempts to attach this acid to β-D-glucose were unsuccessful. In the future, polyene ester 214 will be coupled to β-D-glucose or β-gentibiose. When the glycosylated products are obtained, they will be subjected to cross metathesis conditions to form crocin and its analogs. Acknowledgements I would like to thank my research supervisor, Professor John C. Vederas for his constant support, encouragement and understanding. As an excellent teacher and mentor, he has provided a stimulating learning environment. I have been inspired by his enthusiastic attitude towards science and his commitment to promoting independent thought. The time spent in his group has undoubtedly prepared me for the journey ahead. I would like to thank Drs. Jennifer Chaytor and David Dietrich for their careful proofreading of this manuscript. I am thankful to all the past and present members of the Vederas group who have contributed to a positive and enjoyable work environment. I would especially like to thank Dr. Darren Derksen for his collaboration in the cyclic ortho ester and crotalphine projects, Dr. David Dietrich for his collaboration in the crocin project, and Christopher Lohans for his collaboration in the tridecaptin A project. I would also like to thank Stephen Cochrane for his work on a collaborative research project not described in this thesis. I would like to thank my collaborators outside the Vederas group, Dr. M. Joanne Lemieux, Dr. Yara Cury, and Dr. Cory Brooks. Their excellent collaboration and support had enormous impacts on my research projects. I also want to thank all of the staff members from the service labs of the Department of Chemistry at the University of Alberta. Dr. Randy Whittal, Dr. Angie Morales-Izquierdo, Jing Zheng, Bela Reiz and Wayne Moffat all provided tremendous help. Lastly, but most importantly, thank you to my parents and sisters for their unconditional love and support. Whenever I felt frustrated or depressed, they were always ready to listen to me and cheer me up. Without these overseas conversations, I could not finish my PhD studies. Thanks to all of you for always believing in me and helping me realize my goals. Table of Contents Chapter 1 : Preparation and Use of Cysteine Cyclic Ortho Esters for Solid-Phase Peptide Synthesis ................................................... 1 1.1 Introduction .................................................................................................... 1 1.1.1 Fmoc-based solid phase peptide synthesis ........................................................ 1 1.1.2 Naturally occurring peptides containing C-terminal cysteine ........................... 6 1.1.3 Fmoc-based SPPS of peptides containing C-terminal cysteine ........................ 7 1.1.3.1 Epimerization and piperidine adduct formation during Fmoc-based SPPS 7 1.1.3.2 Established methods to prevent or reduce undesired side reactions during Fmoc-based SPPS of peptides containing a C-terminal cysteine residue ............. 10 1.1.3.2.1 Use of trityl resin ............................................................................... 10 1.1.3.2.2 Side-chain anchoring strategy ............................................................ 11 1.1.4 Serine cyclic ortho esters ................................................................................. 12 1.2 Project objectives: Fmoc-based SPPS of peptides containing C-terminal cysteine residues without epimerization or piperidine adduct formation by the protection of the carboxyl group as a cyclic ortho ester .................................... 15 1.3 Results and discussion .................................................................................. 17 1.3.1 Synthesis and chiral HPLC analyses of cysteine cyclic ortho esters ............... 17 1.3.2 Synthesis and evaluation of epimerization of model tripeptides ..................... 21 1.3.3 Synthesis and evaluation of epimerization of natural crotalphine (2) and its D- Cys1 diastereomer (53) ............................................................................................. 26 1.3.4 Synthesis and evaluation of epimerization of all-D crotalphine ...................... 33 1.4 Conclusions and future directions ................................................................ 36 Chapter 2 : Structure-Activity Relationship Study of Crotalphine and Efforts Toward Racemic Crystallization of Crotalphine ........ 38 2.1 Introduction .................................................................................................. 38 2.1.1 Crotalphine and pain relief .............................................................................. 38 2.1.2 Structure-activity relationship study of crotalphine ........................................ 40 2.1.3 Racemic crystallization of peptides ................................................................. 44 2.2 Project objectives: Structure-activity relationship study of crotalphine and efforts toward the racemic crystallization of crotalphine ................................... 46 2.3 Results and discussion .................................................................................. 47 2.3.1 Synthesis of crotalphine analogs ...................................................................... 47 2.3.2 Biological evaluation of crotalphine analogs ................................................... 50 2.3.3 Racemic crystallization study of crotalphine ................................................... 50 2.4 Conclusions and future directions ................................................................ 51 Chapter 3 : Study of New Bacteriocins Featuring Sulfur to α- Carbon Bridges .............................................................................. 53 3.1 Introduction .................................................................................................. 53 3.1.1 New members of Class II bacteriocins featuring sulfur to α-carbon bridges . 53 3.1.2 Structural elucidation of peptides containing sulfur to α-carbon bridges ........ 56 3.1.3 Mechanism of formation of sulfur to α-carbon bridges ................................... 57 3.1.4 Chemical synthesis of sulfur to α-carbon bridges ........................................... 60 3.1.5 Structure-activity relationship study of bacteriocins featuring sulfur to α- carbon bridges ........................................................................................................... 60
Recommended publications
  • Structure¬タモactivity Relationship Study at C9 Position of Kaitocephalin
    Bioorganic & Medicinal Chemistry Letters 26 (2016) 3543–3546 Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com/locate/bmcl Structure–activity relationship study at C9 position of kaitocephalin Yoko Yasuno a, Makoto Hamada a, Yuya Yoshida a, Keiko Shimamoto b, Yasushi Shigeri c, ⇑ Toshifumi Akizawa d, Motomi Konishi d, Yasufumi Ohfune a, Tetsuro Shinada a, a Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan b Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1, Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan c National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan d Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan article info abstract Article history: Kaitocephalin (KCP) isolated from Eupenicillium shearii PF1191 is an unusual amino acid natural product Received 17 May 2016 in which serine, proline, and alanine moieties are liked with carbon–carbon bonds. KCP exhibits potent Revised 8 June 2016 and selective binding affinity for one of the ionotropic glutamate receptor subtypes, NMDA receptors Accepted 9 June 2016 (K = 7.8 nM). In this study, new structure–activity relationship studies at C9 of KCP were implemented. Available online 11 June 2016 i Eleven new KCP analogs with different substituents at C9 were prepared and employed for binding affin- ity tests using native ionotropic glutamate receptors. Replacement of the 3,5-dichloro-4-hydroxybenzoyl Keywords: group of KCP with a 3-phenylpropionyl group resulted in significant loss of binding affinity for NMDARs Ionotropic glutamate receptors (K = 1300 nM), indicating an indispensable role of the aromatic ring of KCP in the potent and selective Kaitocephalin i Natural product binding to NMDARs.
    [Show full text]
  • Comprehensive Review on the Interaction Between Natural Compounds and Brain Receptors: Benefits and Toxicity
    European Journal of Medicinal Chemistry 174 (2019) 87e115 Contents lists available at ScienceDirect European Journal of Medicinal Chemistry journal homepage: http://www.elsevier.com/locate/ejmech Review article Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity * Ana R. Silva a, Clara Grosso b, , Cristina Delerue-Matos b,Joao~ M. Rocha a, c a Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal b REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politecnico do Porto, Rua Dr. Antonio Bernardino de Almeida, 431, P-4249-015, Porto, Portugal c REQUIMTE/LAQV, Grupo de investigaçao~ de Química Organica^ Aplicada (QUINOA), Laboratorio de polifenois alimentares, Departamento de Química e Bioquímica (DQB), Faculdade de Ci^encias da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, P-4169-007, Porto, Portugal article info abstract Article history: Given their therapeutic activity, natural products have been used in traditional medicines throughout the Received 6 December 2018 centuries. The growing interest of the scientific community in phytopharmaceuticals, and more recently Received in revised form in marine products, has resulted in a significant number of research efforts towards understanding their 10 April 2019 effect in the treatment of neurodegenerative diseases, such as Alzheimer's (AD), Parkinson (PD) and Accepted 11 April 2019 Huntington (HD). Several studies have shown that many of the primary and secondary metabolites of Available online 17 April 2019 plants, marine organisms and others, have high affinities for various brain receptors and may play a crucial role in the treatment of diseases affecting the central nervous system (CNS) in mammalians.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau Et Al
    US 20150202317A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau et al. (43) Pub. Date: Jul. 23, 2015 (54) DIPEPTDE-BASED PRODRUG LINKERS Publication Classification FOR ALPHATIC AMNE-CONTAINING DRUGS (51) Int. Cl. A647/48 (2006.01) (71) Applicant: Ascendis Pharma A/S, Hellerup (DK) A638/26 (2006.01) A6M5/9 (2006.01) (72) Inventors: Harald Rau, Heidelberg (DE); Torben A 6LX3/553 (2006.01) Le?mann, Neustadt an der Weinstrasse (52) U.S. Cl. (DE) CPC ......... A61K 47/48338 (2013.01); A61 K3I/553 (2013.01); A61 K38/26 (2013.01); A61 K (21) Appl. No.: 14/674,928 47/48215 (2013.01); A61M 5/19 (2013.01) (22) Filed: Mar. 31, 2015 (57) ABSTRACT The present invention relates to a prodrug or a pharmaceuti Related U.S. Application Data cally acceptable salt thereof, comprising a drug linker conju (63) Continuation of application No. 13/574,092, filed on gate D-L, wherein D being a biologically active moiety con Oct. 15, 2012, filed as application No. PCT/EP2011/ taining an aliphatic amine group is conjugated to one or more 050821 on Jan. 21, 2011. polymeric carriers via dipeptide-containing linkers L. Such carrier-linked prodrugs achieve drug releases with therapeu (30) Foreign Application Priority Data tically useful half-lives. The invention also relates to pharma ceutical compositions comprising said prodrugs and their use Jan. 22, 2010 (EP) ................................ 10 151564.1 as medicaments. US 2015/0202317 A1 Jul. 23, 2015 DIPEPTDE-BASED PRODRUG LINKERS 0007 Alternatively, the drugs may be conjugated to a car FOR ALPHATIC AMNE-CONTAINING rier through permanent covalent bonds.
    [Show full text]
  • Carotenoids in Algae: Distributions, Biosyntheses and Functions
    Mar. Drugs 2011, 9, 1101-1118; doi:10.3390/md9061101 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Carotenoids in Algae: Distributions, Biosyntheses and Functions Shinichi Takaichi Department of Biology, Nippon Medical School, Kosugi-cho, Nakahara, Kawasaki 211-0063, Japan; E-Mail: takaichi@nms.ac.jp; Tel.: +81-44-733-3584; Fax: +81-44-733-3584 Received: 2 May 2011; in revised form: 31 May 2011 / Accepted: 8 June 2011 / Published: 15 June 2011 Abstract: For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b6f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized. Keywords: algal phylogeny; biosynthesis of carotenoids; distribution of carotenoids; function of carotenoids; pigment-protein complex 1.
    [Show full text]
  • Natural Compounds and Neuroprotection: Mechanisms of Action and Novel Delivery Systems ELENI BAGLI 1,2 , ANNA GOUSSIA 3, MARILITA M
    in vivo 30 : 535-548 (2016) Review Natural Compounds and Neuroprotection: Mechanisms of Action and Novel Delivery Systems ELENI BAGLI 1,2 , ANNA GOUSSIA 3, MARILITA M. MOSCHOS 4, NIKI AGNANTIS 3 and GEORGIOS KITSOS 2 1Institute of Molecular Biology and Biotechnology - FORTH, Division of Biomedical Research, Ioannina, Greece; 2Department of Ophthalmology, University of Ioannina, Ioannina, Greece; 3Department of Pathology, University of Ioannina, Ioannina, Greece; 4Department of Ophthalmology, University of Athens, Athens, Greece Abstract. Neurodegeneration characterizes pathologic pathological events, including oxidative stress, mitochondrial conditions, ranging from Alzheimer’s disease to glaucoma, dysfunction, inflammation and protein aggregation (2, 3). with devastating social and economic effects. It is a The increasing knowledge of the cellular and molecular complex process implicating a series of molecular and events underlying the degenerative process has greatly cellular events, such as oxidative stress, mitochondrial stimulated research for identifying compounds capable of dysfunction, protein misfolding, excitotoxicity and stopping or, at least, slowing the progress of neural inflammation. Natural compounds, because of their broad deterioration. spectrum of pharmacological and biological activities, Natural compounds are complex chemical multiple-target could be possible candidates for the management of such molecules found mainly in plants and microorganisms (4). multifactorial morbidities. However, their therapeutic These agents
    [Show full text]
  • Pigment-Based Chloroplast Types in Dinoflagellates
    Vol. 465: 33–52, 2012 MARINE ECOLOGY PROGRESS SERIES Published September 28 doi: 10.3354/meps09879 Mar Ecol Prog Ser Pigment-based chloroplast types in dinoflagellates Manuel Zapata1,†, Santiago Fraga2, Francisco Rodríguez2,*, José L. Garrido1 1Instituto de Investigaciones Marinas, CSIC, c/ Eduardo Cabello 6, 36208 Vigo, Spain 2Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390 Vigo, Spain ABSTRACT: Most photosynthetic dinoflagellates contain a chloroplast with peridinin as the major carotenoid. Chloroplasts from other algal lineages have been reported, suggesting multiple plas- tid losses and replacements through endosymbiotic events. The pigment composition of 64 dino- flagellate species (122 strains) was analysed by using high-performance liquid chromatography. In addition to chlorophyll (chl) a, both chl c2 and divinyl protochlorophyllide occurred in chl c-con- taining species. Chl c1 co-occurred with chl c2 in some peridinin-containing (e.g. Gambierdiscus spp.) and fucoxanthin-containing dinoflagellates (e.g. Kryptoperidinium foliaceum). Chl c3 occurred in dinoflagellates whose plastids contained 19’-acyloxyfucoxanthins (e.g. Karenia miki- motoi). Chl b was present in green dinoflagellates (Lepidodinium chlorophorum). Based on unique combinations of chlorophylls and carotenoids, 6 pigment-based chloroplast types were defined: Type 1: peridinin/dinoxanthin/chl c2 (Alexandrium minutum); Type 2: fucoxanthin/ 19’-acyloxy fucoxanthins/4-keto-19’-acyloxy-fucoxanthins/gyroxanthin diesters/chl c2, c3, mono - galac to syl-diacylglycerol-chl c2 (Karenia mikimotoi); Type 3: fucoxanthin/19’-acyloxyfucoxan- thins/gyroxanthin diesters/chl c2, c3 (Karlodinium veneficum); Type 4: fucoxanthin/chl c1, c2 (K. foliaceum); Type 5: alloxanthin/chl c2/phycobiliproteins (Dinophysis tripos); Type 6: neoxanthin/ violaxanthin/a major unknown carotenoid/chl b (Lepidodinium chlorophorum).
    [Show full text]
  • Mechanisms of Protective Effects of Astaxanthin in Nonalcoholic Fatty Liver Disease
    Gao et al. Hepatoma Res 2021;7:30 Hepatoma Research DOI: 10.20517/2394-5079.2020.150 Opinion Open Access Mechanisms of protective effects of astaxanthin in nonalcoholic fatty liver disease Ling-Jia Gao, Yu-Qin Zhu, Liang Xu School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China. Correspondence to: Liang Xu, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Wenzhou 325035, Zhejiang, China. E-mail: wanzhe1023@126.com How to cite this article: Gao LJ, Zhu YQ, Xu L. Mechanisms of protective effects of astaxanthin in nonalcoholic fatty liver disease. Hepatoma Res 2021;7:30. https://dx.doi.org/10.20517/2394-5079.2020.150 Received: 20 Nov 2020 First Decision: 24 Dec 2020 Revised: 29 Dec 2020 Accepted: 6 Jan 2021 Available online: 9 Apr 2021 Academic Editor: Stefano Bellentani Copy Editor: Miao Zhang Production Editor: Jing Yu Abstract Nonalcoholic fatty liver disease is a major contributor to chronic liver disease worldwide, and 10%-20% of nonalcoholic fatty liver progresses to nonalcoholic steatohepatitis (NASH). Astaxanthin is a kind of natural carotenoid, mainly derived from microorganisms and marine organisms. Due to its special chemical structure, astaxanthin has strong antioxidant activity and has become one of the hotspots of marine natural product research. Considering the unique chemical properties of astaxanthin and the complex pathogenic mechanism of NASH, astaxanthin is regarded as a significant drug for the prevention and treatment of NASH. Thus, this review comprehensively describes the mechanisms and the utility of astaxanthin in the prevention and treatment of NASH from seven aspects: antioxidative stress, inhibition of inflammation and promotion of M2 macrophage polarization, improvement in mitochondrial oxidative respiration, regulation of lipid metabolism, amelioration of insulin resistance, suppression of fibrosis, and liver tumor formation.
    [Show full text]
  • Genes Functioned in Kleptoplastids of Dinophysis Are Derived From
    www.nature.com/scientificreports OPEN Genes functioned in kleptoplastids of Dinophysis are derived from haptophytes rather than from Received: 30 October 2018 Accepted: 5 June 2019 cryptophytes Published: xx xx xxxx Yuki Hongo1, Akinori Yabuki2, Katsunori Fujikura 2 & Satoshi Nagai1 Toxic dinofagellates belonging to the genus Dinophysis acquire plastids indirectly from cryptophytes through the consumption of the ciliate Mesodinium rubrum. Dinophysis acuminata harbours three genes encoding plastid-related proteins, which are thought to have originated from fucoxanthin dinofagellates, haptophytes and cryptophytes via lateral gene transfer (LGT). Here, we investigate the origin of these plastid proteins via RNA sequencing of species related to D. fortii. We identifed 58 gene products involved in porphyrin, chlorophyll, isoprenoid and carotenoid biosyntheses as well as in photosynthesis. Phylogenetic analysis revealed that the genes associated with chlorophyll and carotenoid biosyntheses and photosynthesis originated from fucoxanthin dinofagellates, haptophytes, chlorarachniophytes, cyanobacteria and cryptophytes. Furthermore, nine genes were laterally transferred from fucoxanthin dinofagellates, whose plastids were derived from haptophytes. Notably, transcription levels of diferent plastid protein isoforms varied signifcantly. Based on these fndings, we put forth a novel hypothesis regarding the evolution of Dinophysis plastids that ancestral Dinophysis species acquired plastids from haptophytes or fucoxanthin dinofagellates, whereas LGT from cryptophytes occurred more recently. Therefore, the evolutionary convergence of genes following LGT may be unlikely in most cases. Plastids in photosynthetic dinofagellates are classifed into fve types according to their origin1. Plastids in most photosynthetic dinofagellates are bound by three membranes and contain peridinin as the major carotenoid. Although peridinin is considered to have originated from an endosymbiotic red alga1, this hypothesis remains controversial2.
    [Show full text]
  • Photooxidative Stress-Inducible Orange and Pink Water-Soluble
    ARTICLE https://doi.org/10.1038/s42003-020-01206-7 OPEN Photooxidative stress-inducible orange and pink water-soluble astaxanthin-binding proteins in eukaryotic microalga ✉ Shinji Kawasaki1,2 , Keita Yamazaki2, Tohya Nishikata2, Taichiro Ishige3, Hiroki Toyoshima2 & Ami Miyata2 1234567890():,; Lipid astaxanthin, a potent antioxidant known as a natural sunscreen, accumulates in eukaryotic microalgae and confers photoprotection. We previously identified a photo- oxidative stress-inducible water-soluble astaxanthin-binding carotenoprotein (AstaP) in a eukaryotic microalga (Coelastrella astaxanthina Ki-4) isolated from an extreme environment. The distribution in eukaryotic microalgae remains unknown. Here we identified three novel AstaP orthologs in a eukaryotic microalga, Scenedesmus sp. Oki-4N. The purified proteins, named AstaP-orange2, AstaP-pink1, and AstaP-pink2, were identified as secreted fasciclin 1 proteins with potent O2 quenching activity in aqueous solution, which are characteristics shared with Ki-4 AstaP. Nonetheless, the absence of glycosylation in the AstaP-pinks, the presence of a glycosylphosphatidylinositol (GPI) anchor motif in AstaP-orange2, and highly acidic isoelectric points (pI = 3.6–4.7), differed significantly from that of AstaP-orange1 (pI = 10.5). These results provide unique examples on the use of water-soluble forms of astaxanthin in photosynthetic organisms as novel strategies for protecting single cells against severe photooxidative stresses. 1 Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan. 2 Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan. 3 NODAI Genome Research Centre, Tokyo University of ✉ Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
    [Show full text]
  • Putative Benefits of Microalgal Astaxanthin on Exercise and Human Health Marcelo P
    Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy Putative benefits of microalgal astaxanthin 21(2): 283-289, Mar./Apr. 2011 on exercise and human health Marcelo P. Barros,*,1 Sandra C. Poppe,1 Tácito P. Souza-Junior2 1Programa de Pós-graduação Ciências do Movimento Humano, Instituto de Ciências da Atividade Física e Esporte, Universidade Cruzeiro do Sul, Brazil, 2Departmento de Educação Física, Setor de Ciências Biológicas, Article Universidade Federal do Paraná, Brazil. Received 22 Dec 2010 Abstract: Astaxanthin (ASTA) is a pinkish-orange carotenoid produced by Accepted 20 Jan 2011 microalgae, but also commonly found in shrimp, lobster and salmon, which Available online 22 Apr 2011 accumulate ASTA from the aquatic food chain. Numerous studies have addressed the benefits of ASTA for human health, including the inhibition of LDL oxidation, UV- photoprotection and prophylaxis of bacterial stomach ulcers. ASTA is recognized as Keywords: a powerful scavenger of reactive oxygen species (ROS), especially those involved algae in lipid peroxidation. Both aerobic and anaerobic exercise are closely related to antioxidant overproduction of ROS in muscle tissue. Post-exercise inflammatory processes can astaxanthin even exacerbate the oxidative stress imposed by exercise. Thus, ASTA is suggested carotenoid here as a putative nutritional alternative/coadjutant for antioxidant therapy to exercise afford additional protection to muscle tissues against oxidative damage induced by oxidative stress exercise, as well as for an (overall) integrative redox re-balance and general human health. ISSN 0102-695X doi: 10.1590/S0102-695X2011005000068 Biosynthesis and biological properties of astaxanthin carbon backbone precursors - such as β-carotene and canthaxanthin - from algal food sources (Anderson et Carotenoids belong to a large class of al., 2003).
    [Show full text]
  • Vol 32 No. 3.Cdr
    Chemistry in Sri Lanka ISSN 1012 - 8999 The Tri-Annual Publication of the Institute of Chemistry Ceylon Founded in 1971, Incorporated by Act of Parliament No. 15 of 1972 Successor to the Chemical Society of Ceylon, founded on 25th January 1941 Vol. 32 No. 3 September 2015 Pages Council 2015/2016 02 Outline of our Institute 02 Chemistry in Sri Lanka 02 Committees 2015/2016 03 Message from the President 04 Cover Page 04 Guest Editorial: Role of Professional Chemists for National Development 05 Presidential Address: Chemical Sciences in Food Safety and Food Security 06 Call for Nominations for Institute of Chemistry Gold Medal 2016 08 Forty Fourth Annual Sessions and Seventy Fourth Anniversary Celebrations 2015 Chief Guest’s Address: Chemical Sciences in Food Safety and Security 09 Guest of Honour’s Address: Chemists and Professionalism 11 Theme Seminar on “The Role of Chemistry in Food Safety and Food Security” Chief Guest’s Address: Food Safety 12 Food Security and Water Quality 14 Dr. C L De Silva Gold Medal Award 2015 Exploring Endolichenic Fungi in Sri Lanka as a Potential Treasure Trove for Bioactive Small Molecules; A Journey through the Fascinating World of endolichenic fungi 19 Chandrasena Memorial Award 2015 Lichens as a Treasure Chest of Bioactive Metabolites 30 Kandiah Memorial Graduateship Award 2015 Time Course Variation of Nutraceuticals and Antioxidant Activity during Steeping of CTC Black Tea (Camellia sinensis L.) Manufactured in Sri Lanka 34 Guest Articles The Asymmetric [C+NC+CC] Coupling Reaction: Development and Application
    [Show full text]
  • Organic & Biomolecular Chemistry
    Organic & Biomolecular Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/obc Page 1 of 5 OrganicPlease & Biomoleculardo not adjust margins Chemistry Journal Name COMMUNICATION (7 S)-Kaitocephalin as a potent NMDA receptor selective ligand Yoko Yasuno a, Makoto Hamada a, Masanori Kawasaki a, Keiko Shimamoto b, Yasushi, Shigeri c, Received 00th January 20xx, Toshifumi Akizawa d, Motomi Konishi d, Yasufumi, Ohfune a, Tetsuro Shinada a* Accepted 00th January 20xx Manuscript DOI: 10.1039/x0xx00000x www.rsc.org/ Structure-activity relationship (SAR) study of kaitocephalin known from the glutamate overstimulation using NMDA antagonists to be a potent naturally occuring NMDA receptor ligand was has become a promising strategy for drug discovery of these performed.
    [Show full text]