Star Cluster Α Δ L B C Hhmmss ± Ddmmss (') (') (Pc) (Pc) Berkeley 58

Total Page:16

File Type:pdf, Size:1020Kb

Star Cluster Α Δ L B C Hhmmss ± Ddmmss (') (') (Pc) (Pc) Berkeley 58 Table A.1. The list of the studied open clusters the new equatorial and galactic coordinates for epoch J2000.0, α and δ – the equatorial coordinates, l and b – the Galactic Longitude and Latitude, rlim – the limiting radius (angular), rcore – the core radius (angular), Rlim – the limiting radius (linear), Rcore – the core radius (linear), c – the concentration parameter. Star cluster αδ lbrlim rcore Rlim Rcore c hhmmss ddmmss ( ◦)(◦) (’) (’) (pc) (pc) Berkeley 58 000013±+605619 116.7498 -1.3168 11.9 0.8 2.04 0.16 9.32 1.22 1.60 0.23 0.76 Stock 18 000136+643724 117.6224 2.2666 6.0 ±0.4 0.37±0.03 2.17±0.27 0.14±0.02 1.20 Berkeley 104 000328+633546 117.6289 1.2194 5.2±0.5 0.51±0.04 7.39±1.20 0.73±0.10 1.01 Czernik 1 000744+612823 117.7376 -0.9571 1.7±0.2 0.26±0.03 0.88±0.16 0.14±0.02 0.81 Berkeley 1 000946+602851 117.8173 -1.9764 7.3±0.6 0.94±0.07 7.38±1.07 0.95±0.13 0.89 King 13 001019+611031 117.9946 -1.3017 15.6± 1.0 2.53±0.16 13.45± 1.70 2.18±0.27 0.79 Juchert-Saloran 1 001619+595758 118.5456 -2.6062 8.7 ±0.6 1.09±0.07 9.80 ±1.33 1.23±0.16 0.90 Berkeley 60 001744+605616 118.8484 -1.6665 8.4±0.8 1.10±0.08 11.01± 1.80 1.44±0.20 0.88 Mayer 1 002153+614502 119.4419 -0.9208 8.5±0.6 1.19±0.10 3.84 ±0.51 0.54±0.08 0.85 King 1 002201+642304 119.7577 1.6942 11.7± 1.0 2.04±0.17 4.63±0.69 0.80±0.12 0.76 NGC 103 002513+612037 119.7927 -1.3682 11.4±0.5 1.39±0.07 11.63± 1.24 1.42±0.16 0.91 Berkeley 2 002516+602321 119.7017 -2.3183 7.5 ±0.4 0.69±0.03 10.27±1.20 0.94±0.10 1.04 Stock 20 002517+623715 119.9301 -0.0984 8.1±0.7 0.99±0.07 4.37 ±0.62 0.53±0.07 0.91 NGC 129 003025+601248 120.3214 -2.5518 8.3±0.5 1.62±0.17 4.81±0.58 0.94±0.16 0.71 Stock 21 003032+575517 120.1492 -4.8374 8.63±0.36 1.35±0.12 4.37±0.44 0.68±0.10 0.81 NGC 133 003119+632303 120.6805 0.6004 2.36±0.36 0.25±0.04 0.90±0.19 0.10±0.02 0.97 NGC 136 003134+613030 120.5638 -1.272 8.32±0.36 0.80±0.04 7.70±0.83 0.74±0.09 1.02 King 14 003151+630851 120.7221 0.3598 16.4± 1.0 3.1±0.2 11.08± 1.37 2.08±0.26 0.73 King 15 003241+615207 120.7229 -0.9227 5.7 ±0.5 0.62±0.04 6.29 ±0.98 0.68±0.09 0.97 NGC 146 003300+631833 120.8632 0.5115 11.1± 1.0 2.01±0.17 9.34±1.41 1.69±0.25 0.74 Patchick 78 003309+650739 121.009 2.3241 3.9 ±0.6 0.76±0.07 1.73±0.37 0.34±0.05 0.71 NGC 189 003929+610618 121.4876 -1.7332 3.50±0.34 0.35±0.03 0.89±0.14 0.09±0.01 1.00 Stock 24 003947+615831 121.5632 -0.8655 7.2±0.6 0.86±0.06 4.91±0.75 0.59±0.08 0.92 Dias 1 004230+640241 121.9539 1.1899 8.5±0.5 1.03±0.06 4.84±0.61 0.59±0.07 0.92 King 16 004342+641106 122.0894 1.3259 9.7±1.0 1.44±0.11 5.76±0.96 0.85±0.12 0.83 Czernik 2 004358+601247 122.0032 -2.6452 8.3±1.0 1.81±0.24 3.76±0.70 0.82±0.16 0.66 Berkeley 4 004509+642329 122.2523 1.5279 6.7±0.7 0.69±0.05 3.91±0.65 0.40±0.05 0.99 NGC 188 004656+851438 122.6076 4.3254 15.9± 0.6 3.46±0.16 9.59±0.89 2.09±0.21 0.66 Berkeley 61 004806+671142 122.6076 4.3254 5.7 ±0.6 0.54±0.04 6.38±1.08 0.60±0.08 1.03 King 2 005057+581147 122.8674 -4.6753 6.2±0.5 0.76±0.06 12.62± 1.78 1.55±0.21 0.91 IC 1590 005246+563710 123.1158 -6.2518 10.9± 0.6 1.19±0.05 7.28 ±0.84 0.79±0.08 0.96 Skiff J0058+68.4 005809+682931 123.55 5.6283 18.3±1.0 3.72±0.27 11.17± 1.30 2.27±0.30 0.69 Berkeley 62 010114+635604 124.0079 1.0832 9.8 ±1.0 1.69±0.15 7.8 ±1.3 1.34±0.21 0.77 Czernik 3 010309+624719 124.2704 -0.0527 5.0±0.6 0.41±0.03 4.09±0.78 0.34±0.05 1.08 NGC 366 010627+621304 124.6804 -0.603 9.3±0.4 0.96±0.04 6.08±0.70 0.63±0.07 0.99 Pfleiderer 1 010801+653846 124.6419 2.8294 6.5±0.5 0.91±0.08 14.78± 2.12 2.08±0.32 0.85 NGC 381 010820+613554 124.94 -1.2075 10.9± 0.5 1.42±0.09 3.66 ±0.38 0.48±0.06 0.88 NGC 433 011511+600735 125.8878 -2.609 14.5±0.6 2.21±0.14 7.37±0.78 1.13±0.14 0.82 NGC 436 011600+584854 126.1144 -3.9049 9.0 ±0.5 0.94±0.04 5.99±0.70 0.63±0.07 0.98 NGC 457 011934+581701 126.633 -4.3859 12.2± 0.6 1.50±0.09 7.98±0.84 0.98±0.11 0.91 NGC 559 012936+631754 127.2034 0.7435 12±1 1.60±0.09 8.27±1.21 1.10±0.13 0.88 NGC 581 013307+603953 128.0178 -1.7948 8.0 ±0.5 1.06±0.07 4.80±0.56 0.64±0.08 0.88 Czernik 4 013539+612735 128.1882 -0.96 2.56±0.24 0.21±0.02 1.53±0.25 0.13±0.02 1.09 Trumpler 1 013539+611705 128.2181 -1.1324 8.9±0.4 0.98±0.05 6.60±0.71 0.72±0.08 0.96 NGC 609 013622+643235 127.7378 2.0914 9.7±0.4 0.58±0.01 9.86±1.02 0.59±0.05 1.23 NGC 637 014307+640210 128.552 1.7297 6.6±0.3 0.45±0.01 4.79±0.54 0.33±0.03 1.17 NGC 654 014402+615324 129.0849 -0.3518 13.69± 0.45 1.45±0.06 11.84± 1.16 1.25±0.13 0.98 NGC 659 014420+604033 129.3668 -1.5334 12.1±0.5 1.6±0.1 9.17 ±0.95 1.18±0.14 0.89 NGC 663 014627+611232 129.5075 -0.9586 20.1±0.5 3.22±0.16 14.84± 1.32 2.38±0.27 0.80 Berkeley 5 014745+625626 129.2855 0.7656 4.8 ±0.6 0.45±0.04 8.70 ±1.68 0.82±0.13 1.03 Berkeley 6 015114+610352 130.1025 -0.9721 6±1 0.71±0.08 4.66±1.08 0.55±0.10 0.93 IC 166 015223+615147 130.051 -0.1634 17.8± 0.5 1.79±0.05 27.57± 2.57 2.77±0.26 1.00 Stock 4 015238+570418 131.2076 -4.8136 5.1 ±0.4 0.64±0.06 2.86 ±0.39 0.36±0.05 0.90 Berkeley 7 015409+622234 130.13 0.384 6±1 0.71±0.08 4.69±1.08 0.56±0.10 0.93 Czernik 5 015539+612105 130.5508 -0.5669 10.1± 0.6 1.24±0.06 4.33±0.52 0.53±0.06 0.91 NGC 744 015848+552743 132.4411 -6.1612 8.4 ±0.5 1.2±0.1 3.53±0.44 0.52±0.08 0.83 NGC 743 015857+601105 131.2352 -1.5941 3.6±0.4 0.48±0.04 ± ± Berkeley 8 020108+752919 127.3523 13.2184 15.5± 0.9 1.52±0.04 17.84 2.12 1.75 0.16 1.01 ± ± ± ± Table A.1. continued. Star cluster αδ lbrlim rcore Rlim Rcore c hhmmss ddmmss ( ◦)(◦) (’) (’) (pc) (pc) Czernik 6 020211±+625015 130.9055 1.0661 6.0 0.4 0.79 0.06 3.69 0.47 0.49 0.07 0.88 Czernik 7 020300+621517 131.1546 0.5309 3.8±0.3 0.46±0.04 2.46±0.36 0.30±0.04 0.92 Riddle 4 020724+601534 132.2239 -1.2347 9.1±0.5 1.60±0.15 16.94± 2.18 2.97±0.50 0.76 NGC 869 021859+570910 134.6219 -3.7186 23.9± 1.3 3.33±0.17 14.67±1.69 2.05±0.23 0.86 Basel 10 021922+581807 134.287 -2.618 7.4 ±0.4 1.1±0.1 4.13 ±0.51 0.62±0.10 0.82 Berkeley 63 021927+634343 132.4866 2.5016 6.6±0.9 1.31±0.18 5.97±1.21 1.18±0.24 0.70 Berkeley 64 022143+655301 131.9838 4.6111 6.3±0.6 0.74±0.05 6.74±1.09 0.79±0.11 0.93 NGC 884 022202+570834 135.0154 -3.5882 17.8± 1.8 4.41±0.44 9.85±1.59 2.44±0.39 0.61 Teutsch 55 022912+620624 134.0959 1.3728 4.3 ±0.4 0.42±0.03 2.28±0.37 0.22±0.03 1.01 Tombaugh 4 022914+614723 134.2164 1.0795 10.3± 0.5 1.10±0.05 8.68±1.01 0.93±0.10 0.97 NGC 956 023211+443406 141.1985 -14.7007 5.4 ±0.5 0.82±0.08 ± ± IC 1805 023246+612624 134.7368 0.9126 6.7±0.6 0.81±0.06 3.46 0.54 0.42 0.06 0.92 Czernik 8 023307+584458 135.8035 -1.5579 10.0± 0.5 1.08±0.05 5.68±0.67 0.62±0.07 0.97 Czernik 9 023332+595307 135.4177 -0.4882 7.8 ±1.0 1.05±0.09 4.83±0.95 0.65±0.10 0.87 NGC 957 023332+573504 136.3008 -2.613 11.6± 0.5 1.7±0.1 7.44±0.82 1.07±0.14 0.84 Czernik 10 023354+601103 135.3452 -0.1947 8.40 ±0.46 1.22±0.09 5.72±0.72 0.83±0.12 0.84 King 4 023603+590119 136.0474 -1.1599 9.0±0.8 1.3±1.0 7.45±1.16 1.08±0.86 0.84 Czernik 11 023639+594002 135.8639 -0.5365 4.2±0.5 0.70±0.09 2.62±0.48 0.43±0.09 0.78 Berkeley 65 023906+602358 135.8526 0.2569 7.5±0.5 0.81±0.05 4.52±0.61 0.49±0.06 0.97 Czernik 12 023920+545501 138.097 -4.7463 5.1±0.4 0.45±0.03 2.54±0.35 0.22±0.03 1.05 NGC 1027 024243+613400 135.7752 1.5014 11.0± 0.9 1.9±0.2 4.51±0.65 0.78±0.13 0.76 Czernik 13 024425+621907 135.642 2.268 3.15 ±0.24 0.29±0.02 3.10±0.44 0.29±0.04 1.04 Teutsch 162 024726+615832 136.1073 2.108 6.7±0.7 0.89±0.08 4.36±0.78 0.58±0.09 0.88 IC 1848 025108+602411 137.197 0.8895 16.7± 0.6 1.71±0.05 11.01± 1.09 1.13±0.10 0.99 Collinder 34 025925+603343 138.0314 1.498 8.8 ±0.6 1.03±0.06 2.79 ±0.36 0.32±0.04 0.93 Berkeley 66 030402+584448 139.4132 0.1841 8.5±0.5 0.99±0.05 12.64± 1.62 1.47±0.18 0.93 NGC 1193 030557+442313 146.8132 -12.1585 9.0±0.4 0.51±0.01 11.44±1.17 0.65±0.05 1.24 NGC 1220 031142+532028 143.0426 -3.964 7.3±0.6 0.44±0.02 5.16 ±0.76 0.31±0.03 1.22 Trumpler 3 031155+631019 138.0278 4.4944 8.2±1.0 1.7±0.2 1.48±0.27 0.31±0.05 0.68 King 5 031445+524147 165.9355 -47.1396 14.7± 1.0 1.67±0.07 9.70±1.29 1.10±0.12 0.94 NGC 1245 031453+471400 146.6759 -8.9174 22.2±0.9 4.48±0.13 17.27± 1.68 3.49±0.30 0.69 Czernik 14 031703+583641 140.9393 0.9263 5.26 ±0.34 0.52±0.03 4.46 ±0.60 0.44±0.06 1.01 Czernik 15 032311+521326 145.112 -3.9894 8.1±0.5 1.02±0.07 6.04±0.76 0.76±0.10 0.90 King 6 032750+562707 143.3291 -0.0956 14.3± 0.7 3.28±0.35 2.55±0.28 0.59±0.10 0.64 Czernik 16 033113+523600 145.9173 -2.9914 5.85 ±0.36 1.04±0.12 3.88±0.50 0.69±0.13 0.75 NGC 1342 033138+372234 154.9521 -15.3426 12.5± 0.6 2.39±0.22 1.57±0.17 0.30±0.05 0.72 Berkeley 9 033237+523927 146.0584 -2.8223 16.2±0.9 1.52±0.04 6.58±0.78 0.62±0.06 1.03 NGC 1348 033409+512405 146.9792 -3.7102 12.9±0.8 2.15±0.15 6.21±0.78 1.04±0.14 0.78 Berkeley 10 033942+663002 138.6202 8.9003 13.9±1.4 2.4±0.2 7.96±1.30 1.36±0.18 0.77 IC 348 034437+320934 160.5011 -17.7984 15.9±0.6 1.57±0.05 1.24±0.14 0.12±0.01 1.01 Juchert 11 034721+535418 147.0799 -0.5069 8.70 ±0.46 0.89±0.04 7.68±0.99 0.79±0.10 0.99 Tombaugh 5 034807+590434 143.958 3.6182 15.8± 0.8 4.1±0.4 5.31±0.59 1.37±0.22 0.59 NGC 1444 034924+523708 148.1189 -1.3247 6.2 ±0.4 0.81±0.07 1.96±0.27 0.26±0.04 0.88 Czernik 17 035217+615840 142.5283 6.1976 4.2±0.3 0.39±0.03 3.11±0.45 0.29±0.04 1.03 Juchert 9 035519+582319 145.1188 3.675 6.32±0.34 0.71±0.05 6.00±0.71 0.67±0.09 0.95 King 7 035907+514704 149.7983 -1.0192 19.2± 0.8 1.77±0.04 14.16± 1.60 1.30±0.13 1.04 NGC 1498 040018-120054 203.6225 -43.3297 3.43 ±0.42 0.26±0.03 ± ± NGC 1496 040429+523949 149.84 0.1835 8.6±0.5 0.89±0.05 3.46 0.41 0.36 0.04 0.98 NGC 1502 040750+621929 143.6771 7.6525 18.3± 0.7 3.61±0.27 2.64±0.26 0.52±0.07 0.71 NGC 1513 040942+493028 152.5649 -1.6071 16.8±0.6 3.6±0.3 6.68±0.67 1.43±0.21 0.67 NGC 1528 041530+511144
Recommended publications
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • Astronomy Astrophysics
    A&A 468, 151–161 (2007) Astronomy DOI: 10.1051/0004-6361:20077073 & c ESO 2007 Astrophysics Towards absolute scales for the radii and masses of open clusters A. E. Piskunov1,2,3, E. Schilbach1, N. V. Kharchenko1,3,4, S. Röser1, and R.-D. Scholz3 1 Astronomisches Rechen-Institut, Mönchhofstraße 12-14, 69120 Heidelberg, Germany e-mail: [apiskunov;elena;nkhar;roeser]@ari.uni-heidelberg.de 2 Institute of Astronomy of the Russian Acad. Sci., 48 Pyatnitskaya Str., 109017 Moscow, Russia e-mail: [email protected] 3 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [apiskunov;nkharchenko;rdscholz]@aip.de 4 Main Astronomical Observatory, 27 Academica Zabolotnogo Str., 03680 Kiev, Ukraine e-mail: [email protected] Received 10 January 2007 / Accepted 19 February 2007 ABSTRACT Aims. In this paper we derive tidal radii and masses of open clusters in the nearest kiloparsecs around the Sun. Methods. For each cluster, the mass is estimated from tidal radii determined from a fitting of three-parameter King profiles to the observed integrated density distribution. Different samples of members are investigated. Results. For 236 open clusters, all contained in the catalogue ASCC-2.5, we obtain core and tidal radii, as well as tidal masses. The distributions of the core and tidal radii peak at about 1.5 pc and 7–10 pc, respectively. A typical relative error of the core radius lies between 15% and 50%, whereas, for the majority of clusters, the tidal radius was determined with a relative accuracy better than 20%. Most of the clusters have tidal masses between 50 and 1000 m, and for about half of the clusters, the masses were obtained with a relative error better than 50%.
    [Show full text]
  • Open Clusters in Gaia
    Sede Amministrativa: Università degli Studi di Padova Dipartimento di Fisica e Astronomia “G. Galilei” Corso di Dottorato di Ricerca in Astronomia Ciclo XXX OPEN CLUSTERS IN GAIA ERA Coordinatore: Ch.mo Prof. Giampaolo Piotto Supervisore: Dr.ssa Antonella Vallenari Dottorando: Francesco Pensabene i Abstract Context. Open clusters (OCs) are optimal tracers of the Milky Way disc. They are observed at every distance from the Galactic center and their ages cover the entire lifespan of the disc. The actual OC census contain more than 3000 objects, but suffers of incom- pleteness out of the solar neighborhood and of large inhomogeneity in the parameter deter- minations present in literature. Both these aspects will be improved by the on-going space mission Gaia . In the next years Gaia will produce the most precise three-dimensional map of the Milky Way by surveying other than 1 billion of stars. For those stars Gaia will provide extremely precise measure- ment of proper motions, parallaxes and brightness. Aims. In this framework we plan to take advantage of the first Gaia data release, while preparing for the coming ones, to: i) move the first steps towards building a homogeneous data base of OCs with the high quality Gaia astrometry and photometry; ii) build, improve and test tools for the analysis of large sample of OCs; iii) use the OCs to explore the prop- erties of the disc in the solar neighborhood. Methods and Data. Using ESO archive data, we analyze the photometry and derive physical parameters, comparing data with synthetic populations and luminosity functions, of three clusters namely NGC 2225, NGC 6134 and NGC 2243.
    [Show full text]
  • Characterising Open Clusters in the Solar Neighbourhood with the Tycho-Gaia Astrometric Solution? T
    A&A 615, A49 (2018) Astronomy https://doi.org/10.1051/0004-6361/201731251 & © ESO 2018 Astrophysics Characterising open clusters in the solar neighbourhood with the Tycho-Gaia Astrometric Solution? T. Cantat-Gaudin1, A. Vallenari1, R. Sordo1, F. Pensabene1,2, A. Krone-Martins3, A. Moitinho3, C. Jordi4, L. Casamiquela4, L. Balaguer-Núnez4, C. Soubiran5, and N. Brouillet5 1 INAF-Osservatorio Astronomico di Padova, vicolo Osservatorio 5, 35122 Padova, Italy e-mail: [email protected] 2 Dipartimento di Fisica e Astronomia, Università di Padova, vicolo Osservatorio 3, 35122 Padova, Italy 3 SIM, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal 4 Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, 08028 Barcelona, Spain 5 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, UMR 5804, 33615 Pessac, France Received 26 May 2017 / Accepted 29 January 2018 ABSTRACT Context. The Tycho-Gaia Astrometric Solution (TGAS) subset of the first Gaia catalogue contains an unprecedented sample of proper motions and parallaxes for two million stars brighter than G 12 mag. Aims. We take advantage of the full astrometric solution available∼ for those stars to identify the members of known open clusters and compute mean cluster parameters using either TGAS or the fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4) proper motions, and TGAS parallaxes. Methods. We apply an unsupervised membership assignment procedure to select high probability cluster members, we use a Bayesian/Markov Chain Monte Carlo technique to fit stellar isochrones to the observed 2MASS JHKS magnitudes of the member stars and derive cluster parameters (age, metallicity, extinction, distance modulus), and we combine TGAS data with spectroscopic radial velocities to compute full Galactic orbits.
    [Show full text]
  • 108 Afocal Procedure, 105 Age of Globular Clusters, 25, 28–29 O
    Index Index Achromats, 70, 73, 79 Apochromats (APO), 70, Averted vision Adhafera, 44 73, 79 technique, 96, 98, Adobe Photoshop Aquarius, 43, 99 112 (software), 108 Aquila, 10, 36, 45, 65 Afocal procedure, 105 Arches cluster, 23 B1620-26, 37 Age Archinal, Brent, 63, 64, Barkhatova (Bar) of globular clusters, 89, 195 catalogue, 196 25, 28–29 Arcturus, 43 Barlow lens, 78–79, 110 of open clusters, Aricebo radio telescope, Barnard’s Galaxy, 49 15–16 33 Basel (Bas) catalogue, 196 of star complexes, 41 Aries, 45 Bayer classification of stellar associations, Arp 2, 51 system, 93 39, 41–42 Arp catalogue, 197 Be16, 63 of the universe, 28 Arp-Madore (AM)-1, 33 Beehive Cluster, 13, 60, Aldebaran, 43 Arp-Madore (AM)-2, 148 Alessi, 22, 61 48, 65 Bergeron 1, 22 Alessi catalogue, 196 Arp-Madore (AM) Bergeron, J., 22 Algenubi, 44 catalogue, 197 Berkeley 11, 124f, 125 Algieba, 44 Asterisms, 43–45, Berkeley 17, 15 Algol (Demon Star), 65, 94 Berkeley 19, 130 21 Astronomy (magazine), Berkeley 29, 18 Alnilam, 5–6 89 Berkeley 42, 171–173 Alnitak, 5–6 Astronomy Now Berkeley (Be) catalogue, Alpha Centauri, 25 (magazine), 89 196 Alpha Orionis, 93 Astrophotography, 94, Beta Pictoris, 42 Alpha Persei, 40 101, 102–103 Beta Piscium, 44 Altair, 44 Astroplanner (software), Betelgeuse, 93 Alterf, 44 90 Big Bang, 5, 29 Altitude-Azimuth Astro-Snap (software), Big Dipper, 19, 43 (Alt-Az) mount, 107 Binary millisecond 75–76 AstroStack (software), pulsars, 30 Andromeda Galaxy, 36, 108 Binary stars, 8, 52 39, 41, 48, 52, 61 AstroVideo (software), in globular clusters, ANR 1947
    [Show full text]
  • A RAVE Investigation on Galactic Open Clusters II
    A&A 600, A106 (2017) Astronomy DOI: 10.1051/0004-6361/201630012 & c ESO 2017 Astrophysics A RAVE investigation on Galactic open clusters II. Open cluster pairs, groups and complexes? C. Conrad1,??, R.-D. Scholz1, N. V. Kharchenko1; 2; 3, A. E. Piskunov1; 2; 4, S. Röser2, E. Schilbach2, R. S. de Jong1, O. Schnurr1, M. Steinmetz1, E. K. Grebel2, T. Zwitter5, O. Bienaymé6, J. Bland-Hawthorn7, B. K. Gibson8, G. Gilmore9, G. Kordopatis1, A. Kunder1, J. F. Navarro10, Q. Parker11, W. Reid12, G. Seabroke13, A. Siviero14, F. Watson15, and R. Wyse16 1 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [email protected] 2 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12−14, 69120 Heidelberg, Germany 3 Main Astronomical Observatory, 27 Academica Zabolotnogo Str., 03680 Kiev, Ukraine 4 Russian Academy of Science, Institute of Astronomy, 48 Pyatnitskaya, 109017 Moscow, Russia 5 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia 6 Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, 67000 Strasbourg, France 7 Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia 8 Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK 9 Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA, UK 10 Department of Physics and Astronomy, University of Victoria,
    [Show full text]
  • Open Clusters in APOGEE and GALAH Combining Gaia and Ground-Based Spectroscopic Surveys?
    A&A 623, A80 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834546 & c ESO 2019 Astrophysics Open clusters in APOGEE and GALAH Combining Gaia and ground-based spectroscopic surveys? R. Carrera1, A. Bragaglia2, T. Cantat-Gaudin3, A. Vallenari1, L. Balaguer-Núñez3, D. Bossini1, L. Casamiquela4, C. Jordi3, R. Sordo1, and C. Soubiran4 1 INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy e-mail: [email protected] 2 INAF-Osservatorio di Astrofisica e Scienza dello Spazio, via P. Gobetti 93/3, 40129 Bologna, Italy 3 Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, 08028 Barcelona, Spain 4 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France Received 31 October 2018 / Accepted 26 January 2019 ABSTRACT Context. Open clusters are ideal laboratories to investigate a variety of astrophysical topics, from the properties of the Galactic disc to stellar-evolution models. Knowing their metallicity and possibly detailed chemical abundances is therefore important. However, the number of systems with chemical abundances determined from high-resolution spectroscopy remains small. Aims. Our aim is to increase the number of open clusters with radial velocities and chemical abundances determined from high- resolution spectroscopy using publicly available catalogues of surveys in combination with Gaia data. Methods. Open cluster stars have been identified in the APOGEE and GALAH spectroscopic surveys by cross-matching their latest data releases with stars for which high-probability astrometric membership has been derived in many clusters on the basis of the Gaia second data release.
    [Show full text]
  • Arxiv:1801.10042V2 [Astro-Ph.GA] 8 Feb 2018
    Astronomy & Astrophysics manuscript no. article_arXiv ©ESO 2018 February 9, 2018 Characterising open clusters in the solar neighbourhood with the Tycho-Gaia Astrometric Solution T. Cantat-Gaudin1, A. Vallenari1, R. Sordo1, F. Pensabene1; 2, A. Krone-Martins3, A. Moitinho3, C. Jordi4, L. Casamiquela4, L. Balaguer-Núnez4, C. Soubiran5, and N. Brouillet5 1 INAF-Osservatorio Astronomico di Padova, vicolo Osservatorio 5, 35122 Padova, Italy 2 Dipartimento di Fisica e Astronomia, Università di Padova, vicolo Osservatorio 3, 35122 Padova, Italy 3 SIM, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, P-1749-016 Lisboa, Portugal 4 Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E-08028 Barcelona, Spain 5 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, UMR 5804, 33615 Pessac, France Received date / Accepted date ABSTRACT Context. The Tycho-Gaia Astrometric Solution (TGAS) subset of the first Gaia catalogue contains an unprecedented sample of proper motions and parallaxes for two million stars brighter than G ∼ 12 mag. Aims. We take advantage of the full astrometric solution available for those stars to identify the members of known open clusters and compute mean cluster parameters using either TGAS or the fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4) proper motions, and TGAS parallaxes. Methods. We apply an unsupervised membership assignment procedure to select high probability cluster members, we use a Bayesian/Markov Chain Monte Carlo technique to fit stellar isochrones to the observed 2MASS JHKS magnitudes of the member stars and derive cluster parameters (age, metallicity, extinction, distance modulus), and we combine TGAS data with spectroscopic radial velocities to compute full Galactic orbits.
    [Show full text]
  • Open Cluster Kinematics with Gaia DR2 ? C
    Astronomy & Astrophysics manuscript no. OC_kinematics_V4 c ESO 2019 March 1, 2019 Open cluster kinematics with Gaia DR2 ? C. Soubiran1, T. Cantat-Gaudin2, M. Romero-Gomez2, L. Casamiquela1, C. Jordi2, A. Vallenari3, T. Antoja2, L. Balaguer-Núñez2, D. Bossini3, A. Bragaglia4, R. Carrera3, A. Castro-Ginard2, F. Figueras2, U. Heiter6, D. Katz7, A. Krone-Martins5, J.-F. Le Campion1, A. Moitinho5, and R. Sordo3 1 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France e-mail: [email protected] 2 Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E-08028 Barcelona, Spain 3 INAF-Osservatorio Astronomico di Padova, vicolo Osservatorio 5, 35122 Padova, Italy 4 INAF-Osservatorio di Astrofisica e Scienza dello Spazio, via Gobetti 93/3, 40129 Bologna, Italy 5 CENTRA, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, P-1749-016 Lisboa, Portugal 6 Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden 7 GEPI, Observatoire de Paris, Université PSL, CNRS, 5 Place Jules Janssen, 92190 Meudon, France Received March 1, 2019, accepted ABSTRACT Context. Open clusters are very good tracers of the evolution of the Galactic disc. Thanks to Gaia, their kinematics can be investigated with an unprecedented precision and accuracy. Aims. The distribution of open clusters in the 6D phase space is revisited with Gaia DR2. Methods. The weighted mean radial velocity of open clusters was determined, using the most probable members available from a previous astrometric investigation that also provided mean parallaxes and proper motions. Those parameters, all derived from Gaia DR2 only, were combined to provide the 6D phase-space information of 861 clusters.
    [Show full text]
  • Open Clusters in APOGEE and GALAH
    Astronomy & Astrophysics manuscript no. apogee_galah_astroph c ESO 2019 January 29, 2019 Open clusters in APOGEE and GALAH Combining Gaia and ground-based spectroscopic surveys R. Carrera1, A. Bragaglia2, T. Cantat-Gaudin3, A. Vallenari1, L. Balaguer-Núñez3, D. Bossini1, L. Casamiquela4, C. Jordi3, R. Sordo1, and C. Soubiran4 1 INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy e-mail: [email protected] 2 INAF-Osservatorio di Astrofisica e Scienza dello Spazio, via P. Gobetti 93/3, 40129 Bologna, Italy 3 Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E-08028 Barcelona, Spain 4 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, F-33615 Pessac, France Received ; accepted ABSTRACT Context. Open clusters are ideal laboratories to investigate a variety of astrophysical topics, from the properties of the Galactic disk to stellar evolutionary models. Knowing their metallicity and possibly detailed chemical abundances is therefore important. However, the number of systems with chemical abundances determined from high resolution spectroscopy is still small. Aims. To increase the number of open clusters with radial velocities and chemical abundances determined from high resolution spectroscopy we used publicly available catalogues of surveys in combination with Gaia data. Methods. Open cluster stars have been identified in the APOGEE and GALAH spectroscopic surveys by cross-matching their latest data releases with stars for which high-probability astrometric membership has been derived in many clusters on the basis of the Gaia second data release. Results. Radial velocities have been determined for 131 and 14 clusters from APOGEE and GALAH data, respectively.
    [Show full text]
  • A RAVE Investigation on Galactic Open Clusters II
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HKU Scholars Hub A RAVE investigation on Galactic open clusters II. Open cluster Title pairs, groups and complexes Conrad, C; Scholz, RD; Kharchenko, NV; Piskunov, AE; Röser, S; Schilbach, E; de Jong, RS; Schnurr, O; Steinmetz, M; Grebel, Author(s) EK; Zwitter, T; Bienaymé, O; Bland-Hawthorn, J; Gibson, BK; Gilmore, G; Kordopatis, G; Kunder, A; Navarro, JF; Parker, QA; Reid, W; Seabroke, G; Siviero, A; Watson, F; Wyse, R Citation Astronomy & Astrophysics, 2017, v. 600, p. A106:1-15 Issued Date 2017 URL http://hdl.handle.net/10722/241781 The original publication is available at [journal web site] or Credit: Author, A&A, vol., page, year, reproduced with Rights permission, © ESO; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. A&A 600, A106 (2017) Astronomy DOI: 10.1051/0004-6361/201630012 & c ESO 2017 Astrophysics A RAVE investigation on Galactic open clusters II. Open cluster pairs, groups and complexes? C. Conrad1,??, R.-D. Scholz1, N. V. Kharchenko1; 2; 3, A. E. Piskunov1; 2; 4, S. Röser2, E. Schilbach2, R. S. de Jong1, O. Schnurr1, M. Steinmetz1, E. K. Grebel2, T. Zwitter5, O. Bienaymé6, J. Bland-Hawthorn7, B. K. Gibson8, G. Gilmore9, G. Kordopatis1, A. Kunder1, J. F. Navarro10, Q. Parker11, W. Reid12, G. Seabroke13, A. Siviero14, F. Watson15, and R. Wyse16 1 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [email protected] 2 Astronomisches
    [Show full text]
  • 250+ Deep-Sky Objects Visible with 7X35 Binoculars and the Naked-Eye
    6726 1 Scott N. Harrington 2nd edition September, 2018 2 To my family, Who were always understanding of my excursions under the stars. To the late Jack Horkheimer, a.k.a. Star Gazer, Whose television show kept this young astronomer inspired during those crucial first years. I’ll never stop “looking up”. And in memory of my dog Nell, who kept me company many long evenings – especially the one just before she passed away peacefully at the age of fifteen. I owe her a thanks for helping me with my observations by making this young astronomer feel safe at night. You will always be my favorite of our dogs. 3 Acknowledgements Below is a list of books that I read (most for the first time) in the last few years. They were all deeply influential in helping me discover many of the toughest objects that fill out my list. I would like to note that one I have not read, but greatly look forward to doing so, is Richard P. Wilds Bright & Dark Nebulae: An Observers Guide to Understanding the Clouds of the Milky Way Galaxy. Atlas of the Messier Objects by Ronald Stoyan The Backyard Astronomer’s Guide* by Terence Dickinson and Alan Dyer Cosmic Challenge – The Ultimate Observing List for Amateurs by Philip S. Harrington Deep-Sky Companions: The Caldwell Objects by Stephen James O’Meara Deep-Sky Companions: Hidden Treasures by Stephen James O'Meara Deep-Sky Companions: The Messier Objects by Stephen James O’Meara Deep-Sky Companions: The Secret Deep by Stephen James O’Meara Deep-Sky Wonders by Sue French Observing Handbook and Catalogue of Deep-Sky Objects by Christian B.
    [Show full text]