Red Giants in Open Clusters , XIV
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Desert Sky Observer
Desert Sky Observer Volume 32 Antelope Valley Astronomy Club Newsletter February 2012 Up-Coming Events February 10: Club Meeting* February 11: Moon Walk @ Prime Desert Woodlands February 13: Executive Board Meeting @ Don’s house February 18: Telescope Night and Star Party @ Devil's Punchbowl * Monthly meetings are held at the S.A.G.E. Planetarium on the Cactus School campus in Palmdale, the second Friday of each month. The meeting location is at the northeast corner of Avenue R and 20th Street East. Meetings start at 7 p.m. and are open to the public. Please note that food and drink are not allowed in the planetarium President Don Bryden Well I gave a star party and no one showed up! Not that I can blame them – it was raining and windy and cold – it even hailed! Still I dragged out the scope and got it ready to go. Briefly, between the clouds I looked at Jupiter and it was quite a treat. The Galilean moons were all tight to the planet either coming from just in front or behind. It gave a bejeweled look like a large ruby surrounded by four small diamonds. Even with the winds and clouds the sky was surprisingly steady and I went as high as 260x with ease, exposing the shadow of Europa transiting the planet. But soon more clouds came and inside we had a nice fire so I put the Artist's rendering DVD “400 Years of the Telescope” on and settled in for the night. My daughter had a few friends over after a skating party that afternoon and later when I went out for one more look they came out to see what was up. -
Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars. -
J Pionisrskis Lata Eieitronorriii W Toruniu
j Pionisrskis lata EiEitronorriii w Toruniu j Aktywność magnetyczna Słońca j Towarzyskie pJaneioidy Pawilon teleskopu Schmidta-Cassegraina w Piwnicach od strony południowo-zachodniej stu Mikołaja Kopernika prawie w komplecie — październik 2005 r. Szanowni i Drodzy Czytelnicy, Prenumeratorów naszego czasopisma spotyka w tym miesiącu nagroda — wszyscy otrzymują dwa zeszyty „ Uranii-Postępów Astronomii”. Jeden, to regularny zeszyt noszący datę marzec-kwiecień 2006 r., a drugi to bonus — specjalne wydanie „ Uranii”. Zawiera ono referaty wygłoszone na angielskojęzycznych sesjach w czasie Zjazdu Polskiego Towarzystwa fot. bauksza-WiiniewsltaA. Astronomicznego we wrześniu 2005 r. we Wrocławiu. Skupiają się one wokół dwóch zagadnień: gwiazd pulsujących (w tym astrosejsmologii) i fizyki Słońca. Autorzy są znakomitymi specjalistami tych dziedzin, a całość stanowi doskonały obraz problemów współczesnych astronomii w tych tematach. Komitet Organizacyjny Zjazdu znalazł pieniądze na wydanie materiałów zjazdowych i zrobienie prezentu naszym najwierniejszym Czytelnikom, za co jesteśmy mu bardzo wdzięczni. Nasz zwykły, polskojęzyczny nr 2 (722) otwiera, kreślone piórem niżej podpisanego, wspomnienie pionierskich lat astronomii w Toruniu, rodzącej się wraz z powstaniem Uniwersytetu Mikołaja Kopernika. Uniwersytet ten świętował w 2005 r. swoje 60-łecie. Uznaliśmy, że wypada też przypomnieć z tej okazji, jak to się narodził i rósł toruński ośrodek astronomiczny, który dzisiaj nosi miano Centrum Astronomii UMK. Następnie naszą uwagę kierujemy na najważniejszy obiekt nieba — Słońce. O badaniu naszej dziennej gwiazdy i procesach zachodzących w jej zewnętrznych warstwach opowiada hełiofizyk Paweł Rudawy z Wrocławia. Analizuje głównie zjawiska zachodzące między polem magnetycznym a plazmą słoneczną. Oddziaływania te leżą u podstaw zjawisk tzw. aktywności słonecznej, które są pilnie obserwowane nie tylko przez profesjonalnych astronomów, ale też i przez tysiące miłośników astronomii. -
Astronomy Astrophysics
A&A 468, 151–161 (2007) Astronomy DOI: 10.1051/0004-6361:20077073 & c ESO 2007 Astrophysics Towards absolute scales for the radii and masses of open clusters A. E. Piskunov1,2,3, E. Schilbach1, N. V. Kharchenko1,3,4, S. Röser1, and R.-D. Scholz3 1 Astronomisches Rechen-Institut, Mönchhofstraße 12-14, 69120 Heidelberg, Germany e-mail: [apiskunov;elena;nkhar;roeser]@ari.uni-heidelberg.de 2 Institute of Astronomy of the Russian Acad. Sci., 48 Pyatnitskaya Str., 109017 Moscow, Russia e-mail: [email protected] 3 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [apiskunov;nkharchenko;rdscholz]@aip.de 4 Main Astronomical Observatory, 27 Academica Zabolotnogo Str., 03680 Kiev, Ukraine e-mail: [email protected] Received 10 January 2007 / Accepted 19 February 2007 ABSTRACT Aims. In this paper we derive tidal radii and masses of open clusters in the nearest kiloparsecs around the Sun. Methods. For each cluster, the mass is estimated from tidal radii determined from a fitting of three-parameter King profiles to the observed integrated density distribution. Different samples of members are investigated. Results. For 236 open clusters, all contained in the catalogue ASCC-2.5, we obtain core and tidal radii, as well as tidal masses. The distributions of the core and tidal radii peak at about 1.5 pc and 7–10 pc, respectively. A typical relative error of the core radius lies between 15% and 50%, whereas, for the majority of clusters, the tidal radius was determined with a relative accuracy better than 20%. Most of the clusters have tidal masses between 50 and 1000 m, and for about half of the clusters, the masses were obtained with a relative error better than 50%. -
February 14, 2015 7:00Pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, February 14, 2015 7:00pm at the Herrett Center for Arts & Science Colleagues, College of Southern Idaho. Public Star Party Follows at the It’s that time of year when obstacles appear in the sky. In particular, this year is Centennial Obs. loaded with fog. It got in the way of letting us see the dance of the Jovian moons late last month, and it’s hindered our views of other unique shows. Still, members Club Officers reported finding enough of a clear sky to let us see Comet Lovejoy, and some great photos by members are popping up on the Facebook page. Robert Mayer, President This month, however, is a great opportunity to see the benefit of something [email protected] getting in the way. Our own Chris Anderson of the Herrett Center has been using 208-312-1203 the Centennial Observatory’s scope to do work on occultation’s, particularly with asteroids. This month’s MVAS meeting on Feb. 14th will give him the stage to Terry Wofford, Vice President show us just how this all works. [email protected] The following weekend may also be the time the weather allows us to resume 208-308-1821 MVAS-only star parties. Feb. 21 is a great window for a possible star party; we’ll announce the location if the weather permits. However, if we don’t get that Gary Leavitt, Secretary window, we’ll fall back on what has become a MVAS tradition: Planetarium night [email protected] at the Herrett Center. -
TAAS Monthly Observing Challenge December 2015 Deep Sky Object
TAAS Monthly Observing Challenge December 2015 Deep Sky Object NGC 772 (GX) Aries ra: 01h 59m 20.1s dec: +19° 00’ 26” Magnitude (visual) = 10.3 Size = 7.2’ x 4.3’ Position angle = 130° Description: NGC 772 (also known as Arp 78) is an unbarred spiral galaxy approximately 130 million light-years away in the constellation Aries. Around 200,000 light years in diameter, NGC 772 is twice the size of the Milky Way Galaxy, and is surrounded by several satellite galaxies – including the dwarf elliptical, NGC 770 – whose tidal forces on the larger galaxy have likely caused the emergence of a single elongated outer spiral arm that is much more developed than the others arms. Halton Arp includes NGC 772 in his Atlas of Peculiar Galaxies as Arp 78, where it is described as a "Spiral galaxy with a small high-surface brightness companion". Two supernovae (SN 2003 hl & SN 2003 iq) have been observed in NGC 772. Source: https://www.wikipedia.org/wiki/NGC_772 AL: Herschel 400 Challenge Object NGC 2371 / 2372 (PN) Gemini ra: 07h 25m 34.8s dec: +29° 29’ 22” Magnitude (visual) = 11.2 Size = 62” Description: NGC 2371-2 is a dual lobed planetary nebula located in the constellation Gemini. Visually, it appears like it could be two separate objects; therefore, two entries were given to the planetary nebula by William Herschel in the "New General Catalogue", so it may be referred to as NGC 2371, NGC 2372, or variations on this name. Source: https://www.wikipedia.org/wiki/NGC_2371-2 AL: Herschel 400, Planetary Nebula Binocular Object NGC 1807 (OC) Taurus ra: 05h 10m 46.0s dec: +16° 31’ 00” Magnitude (visual) = 7.0 Size = 12’ Description: NGC 1807 is an open cluster at the border of the constellations Taurus and Orion near the open cluster NGC 1817. -
Open Clusters in Gaia
Sede Amministrativa: Università degli Studi di Padova Dipartimento di Fisica e Astronomia “G. Galilei” Corso di Dottorato di Ricerca in Astronomia Ciclo XXX OPEN CLUSTERS IN GAIA ERA Coordinatore: Ch.mo Prof. Giampaolo Piotto Supervisore: Dr.ssa Antonella Vallenari Dottorando: Francesco Pensabene i Abstract Context. Open clusters (OCs) are optimal tracers of the Milky Way disc. They are observed at every distance from the Galactic center and their ages cover the entire lifespan of the disc. The actual OC census contain more than 3000 objects, but suffers of incom- pleteness out of the solar neighborhood and of large inhomogeneity in the parameter deter- minations present in literature. Both these aspects will be improved by the on-going space mission Gaia . In the next years Gaia will produce the most precise three-dimensional map of the Milky Way by surveying other than 1 billion of stars. For those stars Gaia will provide extremely precise measure- ment of proper motions, parallaxes and brightness. Aims. In this framework we plan to take advantage of the first Gaia data release, while preparing for the coming ones, to: i) move the first steps towards building a homogeneous data base of OCs with the high quality Gaia astrometry and photometry; ii) build, improve and test tools for the analysis of large sample of OCs; iii) use the OCs to explore the prop- erties of the disc in the solar neighborhood. Methods and Data. Using ESO archive data, we analyze the photometry and derive physical parameters, comparing data with synthetic populations and luminosity functions, of three clusters namely NGC 2225, NGC 6134 and NGC 2243. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
The List of Possible Double and Multiple Open Clusters Between Galactic Longitudes 240O and 270O
The list of possible double and multiple open clusters between galactic longitudes 240o and 270o Juan Casado Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Catalonia, Spain Email: [email protected] Abstract This work studies the candidate double and multiple open clusters (OCs) in the galactic sector from l = 240o to l = 270o, which contains the Vela-Puppis star formation region. To do that, we have searched the most recent and complete catalogues of OCs by hand to get an extensive list of 22 groups of OCs involving 80 candidate members. Gaia EDR3 has been used to review some of the candidate OCs and look for new OCs near the candidate groups. Gaia data also permitted filtering out most of the field sources that are not member stars of the OCs. The plotting of combined colour-magnitude diagrams of candidate pairs has allowed, in several cases, endorsing or discarding their link. The most likely systems are formed by OCs less than 0.1 Gyr old, with only one eccentric OC in this respect. No probable system of older OCs has been found. Preliminary estimations of the fraction of known OCs that form part of groups (9.4 to 15%) support the hypothesis that the Galaxy and the Large Magellanic Cloud are similar in this respect. The results indicate that OCs are born in groups like stars are born in OCs. Keywords Binary open clusters; Open cluster groups; Open cluster formation; Gaia; Manual search; Large Magellanic Cloud. 1. Introduction Open clusters are formed in giant molecular clouds and there is observational evidence suggesting that they can form in groups (Camargo et al. -
197 6Apjs. . .30. .451H the Astrophysical Journal Supplement Series, 30:451-490, 1976 April © 1976. the American Astronomical S
.451H The Astrophysical Journal Supplement Series, 30:451-490, 1976 April .30. © 1976. The American Astronomical Society. All rights reserved. Printed in U.S.A. 6ApJS. 197 EVOLVED STARS IN OPEN CLUSTERS Gretchen L. H. Harris* David Dunlap Observatory, Richmond Hill, Ontario Received 1974 September 16; revised 1975 June 18 ABSTRACT Radial-velocity observations and MK classifications have been used to study evolved stars in 25 open clusters. Published data on stars in 72 additional clusters are rediscussed and com- bined with the observations friade in this investigation to yield positions in the Hertzsprung- Russell diagram for 559 evolved stars in 97 clusters. Ages for the parent clusters were estimated from the main-sequence turnoff points, earliest spectral types, and bluest stars in the clusters themselves. The evolved stars were sorted into six age groups ranging from 4 x 106 yr to 4 x 108 yr, and the composite H-R diagram for each age group was then used to study the evolutionary tracks for stars of various masses. The observational results were found to be in reasonably good agreement with recent theoretical computations. The composite color-magnitude diagrams were found to be strikingly different from those of the rich open clusters in the Magellanic Clouds. At a given age the red giants in the Small Magellanic Cloud and the Large Magellanic Cloud clusters are brighter and bluer than their galactic counterparts. It is suggested that these effects may be accounted for by differences in metal abundance. Subject headings: clusters: open — galaxies: Magellanic Clouds — radial velocities — stars : evolution — stars : late-type — stars : spectral classification 1. -
Stellar Chromospheric Activity and Age Relation from Open Clusters in the LAMOST Survey
Publications 12-12-2019 Stellar Chromospheric Activity and Age Relation from Open Clusters in the LAMOST Survey Jiajun Zhang University of Chinese Academy of Sciences, Terry Oswalt Embry-Riddle Aeronautical University, [email protected] Jingkun Zhao University of Chinese Academy of Sciences, Xiangsong Fang National Astronomical Observatories Gang Zhao Chinese Academy of Sciences, See next page for additional authors Follow this and additional works at: https://commons.erau.edu/publication Part of the Stars, Interstellar Medium and the Galaxy Commons Scholarly Commons Citation Zhang, J., Oswalt, T., Zhao, J., Fang, X., Zhao, G., Liang, X., Ye, X., & Zhong, J. (2019). Stellar Chromospheric Activity and Age Relation from Open Clusters in the LAMOST Survey. The Astrophysical Journal, 887(1). Retrieved from https://commons.erau.edu/publication/1383 This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Authors Jiajun Zhang, Terry Oswalt, Jingkun Zhao, Xiangsong Fang, Gang Zhao, Xilong Liang, Xianhao Ye, and Jing Zhong This article is available at Scholarly Commons: https://commons.erau.edu/publication/1383 Draft version October 1, 2019 Typeset using LATEX default style in AASTeX62 Stellar chromospheric activity and age relation from open clusters in the LAMOST Survey Jiajun Zhang,1, 2 Jingkun Zhao,1 Terry D. Oswalt,3 Xiangsong Fang,4, 5 Gang Zhao,1, 2 Xilong Liang,1, 2 Xianhao Ye,1, 2 and Jing Zhong6 1Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China. -
Open Clusters
Open Clusters Open clusters (also known as galactic clusters) are of tremendous importance to the science of astronomy, if not to astrophysics and cosmology generally. Star clusters serve as the "laboratories" of astronomy, with stars now all at nearly the same distance and all created at essentially the same time. Each cluster thus is a running experiment, where we can observe the effects of composition, age, and environment. We are hobbled by seeing only a snapshot in time of each cluster, but taken collectively we can understand their evolution, and that of their included stars. These clusters are also important tracers of the Milky Way and other parent galaxies. They help us to understand their current structure and derive theories of the creation and evolution of galaxies. Just as importantly, starting from just the Hyades and the Pleiades, and then going to more distance clusters, open clusters serve to define the distance scale of the Milky Way, and from there all other galaxies and the entire universe. However, there is far more to the study of star clusters than that. Anyone who has looked at a cluster through a telescope or binoculars has realized that these are objects of immense beauty and symmetry. Whether a cluster like the Pleiades seen with delicate beauty with the unaided eye or in a small telescope or binoculars, or a cluster like NGC 7789 whose thousands of stars are seen with overpowering wonder in a large telescope, open clusters can only bring awe and amazement to the viewer. These sights are available to all.