Tiger Rattlesnake Spatial Ecology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pituophis Catenifer
COSEWIC Assessment and Status Report on the Gophersnake Pituophis catenifer Pacific Northwestern Gophersnake – P.c. catenifer Great Basin Gophersnake – P.C. deserticola Bullsnake – P.C. sayi in Canada EXTIRPATED - Pacific Northwestern Gophersnake – P.c. catenifer THREATENED - Great Basin Gophersnake – P.c. deserticola DATA DEFICIENT - Bullsnake – P.c. sayi 2002 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION DES ENDANGERED WILDLIFE IN ESPÈCES EN PÉRIL CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: Please note: Persons wishing to cite data in the report should refer to the report (and cite the author(s)); persons wishing to cite the COSEWIC status will refer to the assessment (and cite COSEWIC). A production note will be provided if additional information on the status report history is required. COSEWIC 2002. COSEWIC assessment and status report on the Gophersnake Pituophis catenifer in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 33 pp. Waye, H., and C. Shewchuk. 2002. COSEWIC status report on the Gophersnake Pituophis catenifer in Canada in COSEWIC assessment and status report on the Gophersnake Pituophis catenifer in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Ếgalement disponible en français sous le titre Évaluation et Rapport du COSEPAC sur la situation de la couleuvre à nez mince (Pituophis catenifer) au Canada Cover illustration: Gophersnake — Illustration by Sarah Ingwersen, Aurora, Ontario. -
Proquest Dissertations
Ecology and conservation of the twin- spotted rattlesnake, Crotalus pricei Item Type text; Thesis-Reproduction (electronic) Authors Prival, David Benjamin Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 01:08:24 Link to Item http://hdl.handle.net/10150/278752 INFORMATiON TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. -
Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47. -
Species Assessment for the Midget Faded Rattlesnake (Crotalus Viridis Concolor)
SPECIES ASSESSMENT FOR THE MIDGET FADED RATTLESNAKE (CROTALUS VIRIDIS CONCOLOR ) IN WYOMING prepared by 1 2 AMBER TRAVSKY AND DR. GARY P. BEAUVAIS 1 Real West Natural Resource Consulting, 1116 Albin Street, Laramie, WY 82072; (307) 742-3506 2 Director, Wyoming Natural Diversity Database, University of Wyoming, Dept. 3381, 1000 E. University Ave., Laramie, WY 82071; (307) 766-3023 prepared for United States Department of the Interior Bureau of Land Management Wyoming State Office Cheyenne, Wyoming October 2004 Travsky and Beauvais – Crotalus viridus concolor October 2004 Table of Contents INTRODUCTION ................................................................................................................................. 2 NATURAL HISTORY ........................................................................................................................... 2 Morphological Description........................................................................................................... 3 Taxonomy and Distribution ......................................................................................................... 4 Habitat Requirements ................................................................................................................. 6 General ............................................................................................................................................6 Area Requirements..........................................................................................................................7 -
Prairie Rattlesnake,Crotalus Viridis
COSEWIC Assessment and Status Report on the Prairie Rattlesnake Crotalus viridis in Canada SPECIAL CONCERN 2015 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2015. COSEWIC assessment and status report on the Prairie Rattlesnake Crotalus viridis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 69 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Production note: COSEWIC would like to acknowledge Jonathan Choquette and Adam Martinson for writing the status report on the Prairie Rattlesnake (Crotalus viridis) in Canada. This report was prepared under contract with Environment Canada and was overseen and edited by James P. Bogart, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Crotale des prairies (Crotalus viridis) au Canada. Cover illustration/photo: Prairie Rattlesnake — Prairie Rattlesnake (Crotalus viridis viridis) from Dinosaur Provincial Park, Alberta. Photo courtesy of Adam Martinson. Her Majesty the Queen in Right of Canada, 2015. Catalogue No. CW69-14/722-2015E-PDF ISBN 978-0-660-02619-0 COSEWIC Assessment Summary Assessment Summary – May 2015 Common name Prairie Rattlesnake Scientific name Crotalus viridis Status Special Concern Reason for designation The species has undergone declines since the 1930s, primarily resulting from large-scale habitat loss from cultivation and increased road mortality. -
State of Knowledge and Conservation of Endangered and Critically Endangered Lagomorphs Worldwide
THERYA, 2015, Vol. 6 (1): 11-30 DOI: 10.12933/therya-15-225, ISSN 2007-3364 Estado del conocimiento y conservación de lagomorfos en peligro y críticamente en peligro a nivel mundial State of knowledge and conservation of endangered and critically endangered lagomorphs worldwide Consuelo Lorenzo 1* , Tamara M. Rioja-Paradela 2 and Arturo Carrillo-Reyes 3 1El Colegio de La Frontera Sur, Unidad San Cristóbal. Carretera Panamericana y Periférico Sur s/n, Barrio de María Auxiliadora. San Cristóbal de Las Casas, Chiapas, 29290, México. E-mail: [email protected] (CL) 2Universidad de Ciencias y Artes de Chiapas. Libramiento Norte Poniente 1150, Colonia Lajas Maciel. Tuxtla Gutiérrez, Chiapas, 29000, México. E-mail: [email protected] (TMRP) 3Oikos: Conservación y Desarrollo Sustentable, A. C. Bugambilias 5, San Cristóbal de Las Casas, Chiapas, 29267, México. E-mail: [email protected] (ACR) *Corresponding author Introduction: Lagomorphs (rabbits, hares, and pikas) are widely distributed in every continent of the world, except Antarctica. They include 91 species: 31 rabbits of the genera Brachylagus , Bunolagus , Caprolagus , Nesolagus , Pentalagus , Poelagus , Prolagus , Pronolagus , Romerolagus, and Sylvilagus ; 32 hares of the genus Lepus and 28 pikas of the genus Ochotona . According to the International Union for Conservation of Nature (IUCN 2014), the list of threatened species of lagomorphs includes one extinct, three critically endangered, ten endangered, %ve near threatened, %ve vulnerable, 61 of least concern, and six with de%cient data. Although a rich diversity of lagomorphs and endemic species exists, some of the wild populations have been declining at an accelerated rate, product of human activities and climate change. -
VERTEBRATE ASSOCIATES of BLACK-TAILED PRAIRIE DOGS in OKLAHOMA 41 Vertebrate Associates of Black-Tailed Prairie Dogs in Oklahoma
VERTEBRATE ASSOCIATES OF BLACK-TAILED PRAIRIE DOGS IN OKLAHOMA 41 Vertebrate Associates of Black-Tailed Prairie Dogs in Oklahoma Jack D. Tyler Department of Biology, Cameron University, Lawton, OK 73505 John S. Shackford 429 E. Oak Cliff Drive, Edmond, OK 73034 During surveys of black-tailed prairie dog (Cynomys ludovicianus) towns in Oklahoma in 1966-1967 and 1986-1989, 72 vertebrate associates were regularly encountered as well as 25 others that were found less often. The status of several species had apparently changed during this 23-year interval. Six avian species appeared to have increased in number, but declines in populations of seven other birds, five mammals, and one reptile were indicated. ©2002 Oklahoma Academy of Science INTRODUCTION The black-tailed prairie dog (Cynomys afield at all seasons except during severe ludovicianus) originally ranged throughout cold spells, when prairie dogs were inactive. western Oklahoma (1,2). During the first We used several methods in attempting half of the 20th century, however, land- to locate Black-footed ferrets (Mustela owners eradicated most of the colonies, nigripes). These included examining prairie precipitating a drastic decline in prairie dog dog burrows for “trenching” (a ferret activity) numbers from millions [Bailey (1) estimated in winter,”“squeaking” while spotlighting at 800 million in Texas alone in 1905] to only a night, and inspecting unused irrigation pipes few thousand. The objectives of this study stacked near dogtowns with the aid of a were to document the occurrence of verte- flashlight. However, we found no evidence brate species found in Oklahoma prairie dog of this rare species in Oklahoma. -
Patterns in Protein Components Present in Rattlesnake Venom: a Meta-Analysis
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 September 2020 doi:10.20944/preprints202009.0012.v1 Article Patterns in Protein Components Present in Rattlesnake Venom: A Meta-Analysis Anant Deshwal1*, Phuc Phan2*, Ragupathy Kannan3, Suresh Kumar Thallapuranam2,# 1 Division of Biology, University of Tennessee, Knoxville 2 Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 3 Department of Biological Sciences, University of Arkansas, Fort Smith, Arkansas # Correspondence: [email protected] * These authors contributed equally to this work Abstract: The specificity and potency of venom components gives them a unique advantage in development of various pharmaceutical drugs. Though venom is a cocktail of proteins rarely is the synergy and association between various venom components studied. Understanding the relationship between various components is critical in medical research. Using meta-analysis, we found underlying patterns and associations in the appearance of the toxin families. For Crotalus, Dis has the most associations with the following toxins: PDE; BPP; CRL; CRiSP; LAAO; SVMP P-I & LAAO; SVMP P-III and LAAO. In Sistrurus venom CTL and NGF had most associations. These associations can be used to predict presence of proteins in novel venom and to understand synergies between venom components for enhanced bioactivity. Using this approach, the need to revisit classification of proteins as major components or minor components is highlighted. The revised classification of venom components needs to be based on ubiquity, bioactivity, number of associations and synergies. The revised classification will help in increased research on venom components such as NGF which have high medical importance. Keywords: Rattlesnake; Crotalus; Sistrurus; Venom; Toxin; Association Key Contribution: This article explores the patterns of appearance of venom components of two rattlesnake genera: Crotalus and Sistrurus to determine the associations between toxin families. -
Prairie Rattlesnake
Prairie Rattlesnake - Crotalus viridis Abundance: Vulnerable Status: NSS4 (Bc) NatureServe: G5 S5 Population Status: Widely distributed, populations appear stable, but are known declines due to humans directly killing. Limiting Factor: Human: disturbances and direct killing continue to result in additional loss. Comment: Changed to SGCN species. Classification changed to NSS4 (Bc). Due to increasing threats. Most populations appear stable, but individuals typically killed upon sight and have led to population declines. Increasing human population will likely result in additional Prairie Rattlesnake population declines. Introduction In Wyoming, Prairie Rattlesnakes occur in all counties east of the Continental Divide and in Carbon County west of the Divide. The Prairie Rattlesnake’s diet consists of rodents such as ground squirrels, prairie dogs, chipmunks and cottontail rabbits, as well as amphibians, lizards, other snakes, and birds. They hunt during the cooler parts of the day (Baxter and Stone 1985). Prairie Rattlesnakes bear 4 to 21 live young in August or September (Baxter and Stone 1985). Females generally reproduce biennially, but some may reproduce annually or triennially (Ernst and Ernst 2003). They overwinter in large aggregations in deep underground crevices, prairie dog burrows, or other abandoned mammal burrows and usually emerge in April or May. Not averse to water, Prairie Rattlesnakes are occasionally found swimming in large reservoirs (Baxter and Stone 1985). Habitat Prairie Rattlesnakes can be found in the plains, foothills, scarp woodlands, and near granite or limestone outcrops (Baxter and Stone 1985). They are often found near rocky outcrops, talus slopes, rocky stream courses, and ledges (Stebbins 2003). They were formerly abundant in shortgrass plains, where they favor black-tailed prairie dog towns, though populations in these areas have declined (Baxter and Stone 1985). -
Crotalus Cerastes (Hallowell, 1854) (Squamata, Viperidae)
Herpetology Notes, volume 9: 55-58 (2016) (published online on 17 February 2016) Arboreal behaviours of Crotalus cerastes (Hallowell, 1854) (Squamata, Viperidae) Andrew D. Walde1,*, Andrea Currylow2, Angela M. Walde1 and Joel Strong3 Crotalus cerastes (Hallowell, 1854) is a small study area has no uninterrupted sandy areas outside of horned rattlesnake that ranges throughout most of the ephemeral washes, and no dune-like habitats. It is in deserts of southwestern United States, and south into this scrub-like habitat that we made three observations northern Mexico (Ernst and Ernst, 2003). This species of the previously undocumented arboreal behaviour of is considered to be a psammophilous (sand-dune) C. cerastes. specialist, typically inhabiting loose sand habitats and On 7 April 2005 at 1618h, we observed an adult C. dune blowouts (Ernst and Ernst, 2003). Although C. cerastes coiled in an A. dumosa shrub approximately 25 cerastes is primarily a nocturnal snake, it is known to cm above the ground (Fig. 1 A). The air temperature be active diurnally in the spring, and to bask in early was 21 °C and ground temperature was 27 °C. The morning or late afternoon (Ernst and Ernst, 2003). snake did not attempt to flee at our approach, but did This rattlesnake species exhibits a unique style of reposition slightly in the branches. A second observation locomotion known as sidewinding, from which it occurred on 18 April 2005 at 1036h, when we observed derives its common name, Sidewinder. Sidewinding is another adult C. cerastes extending the anterior third of believed to be an adaptation to efficiently move in loose its body beyond the top of an A. -
Terrestrial Vertebrate Communities at Black-Tailed Prairie Dog (Cynomys Ludovicianus) Towns
Biological Conservation 115 (2003) 89–100 www.elsevier.com/locate/biocon Terrestrial vertebrate communities at black-tailed prairie dog (Cynomys ludovicianus) towns Mark V. Lomolinoa,*, Gregory A. Smithb,1 aDepartment of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA bDepartment of Zoology and Oklahoma Biological Survey, University of Oklahoma, Norman, OK 73019, USA Received 1 June 2002; received in revised form 10 January 2003; accepted 11 February 2003 Abstract We capitalized on a regional-scale, anthropogenic experiment—the reduction of black-tailed prairie dog (Cynomys ludovicianus) towns across the Great Plains of North America—to test the hypothesis that decline of this species has led to declines in diversity of native grassland vertebrates of this region. We compared species richness and species composition of non-volant mammals, reptiles and amphibians at 36 prairie dog towns and 36 paired sites in the Panhandle Region of Oklahoma during the summers and falls of 1997, 1998 and 1999. We detected 30 species of mammals, 18 species of reptiles and seven species of amphibians. Comparisons between communities at prairie dog towns and paired sites in the adjacent landscape indicated that while richness per se was not necessarily higher in towns, they did harbor significantly more rare and imperiled species. Species that were positively associated with prairie dog towns during one or both seasons (summer and fall) included badgers (Taxidea taxus), eastern cottontails (Sylvilagus -
Feeding Ecology of Four Sympatric Owls
FEEDING ECOLOGY OF FOUR SYMPATRIC OWLS CARL D. MARTI ’ Department of Fishery and Wildlife Biology Colorado State University Fort Collins, Colorado 80521 Four species of owls, Great Horned (Bubo deciduous trees attract them for nesting and virginianus), Long-eared ( Asia otus) , Burrow- roosting. ing (Speotyto cunicularia), and Barn (Tyto A number of other vertebrate predators are alba), which occur together on the short-grass present in this area whose diets may overlap prairie and farmland of north-central Colorado, with those of the four owl species. Other avian were selected for a study of feeding ecology. predators are the Golden Eagle (Aquila The purpose of this study was to assess the chrysaetos), Marsh Hawk ( Circus cyaneus), overlap in foods of the four owls and to Red-tailed Hawk ( Buteo jamuicensis) , Swain- examine feeding mechanisms which allow sons’ Hawk ( B. swainsoni), Rough-legged them to coexist. Primary objectives were (1) Hawk (B. Zagopus), Ferruginous Hawk (B. to analyze and compare the food habits of regalis), American Kestrel ( Falco sparverius), each owl species considering frequency of Prairie Falcon (F. mexicanus), and Logger- occurrence of prey species and biomass con- head Shrike ( Lanius ludovicianus) . Mam- tributed by each prey species, and (2) to malian predators include red fox (Vulpes describe and evaluate the primary factors f&a), coyote (Canis latrans), raccoon (Pro- involved in capture of prey by the four owl cyan Zotor), American badger (Taxidea taxus), species. striped skunk (Mephitis mephitis), and long- Few studies have been attempted in relation tailed weasel (Mustela frenatu). The more to the feeding of owls in this geographic area abundant reptilian predators are the gopher and none was a long-term study.