Machine Intelligence and Robotics: Report of the NASA Study Group

Total Page:16

File Type:pdf, Size:1020Kb

Machine Intelligence and Robotics: Report of the NASA Study Group 715-32 Machine Intelligence and Robotics: Report of the NASA Study Group FINAL REPORT March 1980 National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California Some Text for Senator Byrd’s Introduction [WVU, CMU, and other background material] I have been impressed with current ongoing research in Artificial Intelligence and Robotics at CMU and WVU and proposed activities in Space Robotics. Many of these have their origins in the Sagan-Reddy report on Machine Intelligence for Space. This report, published in 1980, stresses the importance of Al and Robotics for space many years before the Challenger disaster. It is clear to me that space based activities must increasingly use Al and Robotics, minimizing the danger to human life. The scope for such activities seems unlimited. It appears that rescue and repair robots in space can help in increasing the useful life of our communication satellites and knowledge-based simulation may eliminate costly errors in deployment of space systems. It appears that space exploration and space manufacturing types of activities are greatly enhanced through the use of Al and Robotics. The CMU-WVU Center will also have significant capabilities for research in man-machine systems, and software engineering for space systems. The realization of the importance of software has prompted me to help in the formation of SEI in Pittsburgh earlier and inspired me to initiate the Software Valley project in West Virginia to strengthen the technological base and facilitate commercial development. It appears to me that all such activities are central to our future successes in space. The CMU-WVU Center can play an important role and provide a valuable national service ensuring the success of our future space programs. It will also have important spin-off benefits for improving our competitiveness in the world market. This concept of space robotics is of tremendous national importance and I would be happy to help you in any way I can in realizing this plan. Now I would like to introduce the WVU and CMU members. PROPOSED AGENDA 10:00 The CMU-WVU Center for Space Robotics-Background, Concept, and National Opportunity: Senator Byrd 10:10 Introduction of CMU Team: Dr. Jordan, Provost, CMU Introduction of WVU Team: Dr. Franz, Provost, WVU 10:15 Research Opportunities in Space Robotics: Dr. R. Reddy 10:22 Relevant research at WVU: Dr. YVR Reddy 10:25 Space Robotics Research and Technology Plans at NASA: Dr. Calliday 10:30 Al and Robotics Research Goals of SDI: Dr. lanson 10:35 Strategic Computing Initiative and related Robotics research at DARPA and DOD: Dr. C. Kelly 10:40 Discussion 10:50 Concluding Remarks and Action Items: Senator Byrd 715-32 Machine Intelligence and Robotics: Report of the NASA Study Group FINAL REPORT March 1980 National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California Preface The NASA Office of Aeronautics and Space Technology (OAST) has established the goal of providing a technology base so that NASA can accomplish future missions with a several-orders-of-magnitude increase in mission effectiveness at reduced cost. To realize this goal, a highly focused program must be established advancing technologies that promise substantial increases in capability and/or substantial cost savings. The Study Group on Machine Intelligence and Robotics was established to assist NASA technology program planners to determine the potential in these areas. Thus, the Study Group had the following objectives: (1) To identify opportunities for the application of machine intelligence and robotics in NASA missions and systems. (2) To estimate the benefits of successful adoption of machine intelligence and robotics techniques and to prepare forecasts of their growth potential. (3) To recommend program options for research, advanced devel- opment, and implementation of machine intelligence and robot technology for use in program planning. (4) To broaden communication among NASA centers and uni- versities and other research organizations currently engaged in machine intelligence and robotics research. iii Foreword This publication, complete with appendant documentation, is the final report of the NASA Study Group on Machine Intelligence and Robotics. As you will note in the Introduction, Section I, the report tells why the Study Group was gathered together; and what the Group felt and hoped to do. You will see that Section II is a timely tutorial on machine intelligence and robotics inasmuch as both fields may be really neoteric to a lot of assiduous readers. NASA’s needs and the applications of machine intelligence and robotics in the space program are discussed for you in Sections III and IV. Section V discusses the generic topic, Technological Opportunities, in two subsections, A, Trends in Technology, B, Relevant Technologies, and a third subsection, which is an Appendix on Relevant Tech- nologies. (Don’t skip any of these subsections, especially the third, because if you look there, you will find detailed discussions of the conclusions and recommendations which the Group made on each specific machine intelligence and robotics subject or topic. After 25 hundred man-hours, the Study Group and the workshop participants arrived at a few prenotions concerning the state of the art situation as it exists in NASA with regard to the machine intelligence and the robotics fields. The study members and work- shop participants then conclude that four things may be better in NASA if four recom- mended items are adopted—as they so wrote in Section VI. Appendix A tells who the Study Group people are, their organizations, interests, backgrounds, and some accomplishments. The appendix itemizes what the workshop subjects or topics were; and where and when the study actions were done at five locations in the United States. The people-participants (and what they talked about) are also listed for you in Appendix A. Appendixes B (Minsky, 1961), C (Newell, 1969), D (Nilsson, 1974), E (Feigenbaum, 1978), and F (Newell, 1970) are those references which the Group feels will provide support for their conclusions and recommendations. The Study Group hopes you will read—and that you will find the report valuable and useful for the 1980s. Carl Sagan, Chairman Raj Reddy, Vice Chairman Ewald Heer, Executive Secretary iv Machine Intelligence and Robotics Members of the NASA Study Group June 1977-September 1979 Dr. Carl Sagan (Chairman) Dr. Elliott C. Levinthal David Duncan Professor of Adjunct Professor of Genetics Astronomy and Space Sciences Stanford University School of Medicine Cornell University Dr. Jack Minker, Department Chairman Dr. Raj Reddy (Vice Chairman) and Professor of Computer Science Professor of Computer Science University of Maryland Carnegie-Mellon University Dr. Marvin Minsky Dr. Ewald Heer (Executive Secretary) Donner Professor of Science Program Manager for Autonomous Systems Massachusetts Institute of Technology and Space Mechanics Jet Propulsion Laboratory Dr. Donald A. Norman Professor of Psychology Dr. James S. Albus University of California at San Diego Project Manager for Sensor and Computer Control Technology Dr. Charles J. Rieger National Bureau of Standards Associate Professor of Computer Science University of Maryland Dr. Robert M. Balzer, Project Leader and Associate Professor of Computer Science Dr. Thomas B. Sheridan University of Southern California Professor of Engineering and Applied Psychology Dr. Thomas O. Binford, Research Associate Massachusetts Institute of Technology Artificial Intelligence Laboratory Dr. William M. Whitney Department of Computer Science Stanford University Manager for Information Systems Research Jet Propulsion Laboratory Dr. Ralph C. Gonzalez Dr. Patrick H. Winston, Director Professor of Electrical Engineering Artificial Intelligence Laboratory and Computer Science Massachusetts Institute of Technology University of Tennessee Dr. Stephen Yerazunis Dr. Peter E. Hart, Director Associate Dean of Engineering Artificial Intelligence Center Rennsselaer Polytechnic Institute SRI International Ex-Officio Members: Dr. John Hill, Staff Member Artificial Intelligence Center Dr. William B. Gevarter SRI International Program Manager for Guidance and Control NASA Headquarters B. Gentry Lee Manager of Mission Operations Stanley R. Sadin, Program Manager and Engineering, Galileo Project Space Systems Studies and Planning Jet Propulsion Laboratory NASA Headquarters v Acknowledgments The Study Group on Machine Intelligence and Robotics is grateful to a very large number of NASA personnel and other scientists and engineers for essential help in this study. The Study Group especially appreciates the contributions by the following indi- viduals at the various workshop meetings. Albee, Arden L. Manson, Simon V. Alsberg, Harold B. McCandless, Samuel W. Avizienis, Algirdas A. McGhee, Robert B. Blanchard, David McReynolds, Stephen R. Burke, James D. Mead, Carver A. Milgram, David Calio, Anthony J. Mills, Harlan Carey, Ted Mitchell, Q. R. Casler, V. Chapman, Robert D. Newell, Allen Claussen, B. A. Norris, Henry W. Clarke, Victor C. Nudd, Graham Cohen, Danny O’Leary, Brian Cook, Henry Paine, Garrett Crum, Earle M. Perlis, Alan Cunningham, Robert Popma, Dan C. Cutts, James Porter, James des Jardins, Richard Powell, Robert V. Dobrotin, Boris M. Quann, John J. Dudley, Hugh J. Ratner, Justin Ebersole, Michael Rasool, Ichtiaque S. Elachi, Charles Rennels, David A. Fero, Lester K. Rose,
Recommended publications
  • Stanford University Medical Experimental Computer Resource (SUMEX) Records SC1248
    http://oac.cdlib.org/findaid/ark:/13030/c8s46z8g Online items available Guide to the Stanford University Medical Experimental Computer Resource (SUMEX) Records SC1248 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives January 2018 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Guide to the Stanford University SC1248 1 Medical Experimental Computer Resource (SUMEX) Records SC... Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Stanford University Medical Experimental Computer Resource (SUMEX) records Identifier/Call Number: SC1248 Physical Description: 33 Linear Feet Date (inclusive): 1975-1991 Special Collections and University Archives materials are stored offsite and must be paged 48 hours in advance. For more information on paging collections, see the department's website: http://library.stanford.edu/spc. Conditions Governing Access Materials are open for research use. Audio-visual materials are not available in original format, and must be reformatted to a digital use copy. Conditions Governing Use All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes.
    [Show full text]
  • Out There Somewhere Could Be a PLANET LIKE OURS the Breakthroughs We’Ll Need to find Earth 2.0 Page 30
    September 2014 Out there somewhere could be A PLANET LIKE OURS The breakthroughs we’ll need to find Earth 2.0 Page 30 Faster comms with lasers/16 Real fallout from Ukraine crisis/36 NASA Glenn chief talks tech/18 A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS Engineering the future Advanced Composites Research The Wizarding World of Harry Potter TM Bloodhound Supersonic Car Whether it’s the world’s fastest car With over 17,500 staff worldwide, and 2,800 in or the next generation of composite North America, we have the breadth and depth of capability to respond to the world’s most materials, Atkins is at the forefront of challenging engineering projects. engineering innovation. www.na.atkinsglobal.com September 2014 Page 30 DEPARTMENTS EDITOR’S NOTEBOOK 2 New strategy, new era LETTER TO THE EDITOR 3 Skeptical about the SABRE engine INTERNATIONAL BEAT 4 Now trending: passive radars IN BRIEF 8 A question mark in doomsday comms Page 12 THE VIEW FROM HERE 12 Surviving a bad day ENGINEERING NOTEBOOK 16 Demonstrating laser comms CONVERSATION 18 Optimist-in-chief TECH HISTORY 22 Reflecting on radars PROPULSION & ENERGY 2014 FORUM 26 Electric planes; additive manufacturing; best quotes Page 38 SPACE 2014 FORUM 28 Comet encounter; MILSATCOM; best quotes OUT OF THE PAST 44 CAREER OPPORTUNITIES 46 Page 16 FEATURES FINDING EARTH 2.0 30 Beaming home a photo of a planet like ours will require money, some luck and a giant telescope rich with technical advances. by Erik Schechter COLLATERAL DAMAGE 36 Page 22 The impact of the Russia-Ukrainian conflict extends beyond the here and now.
    [Show full text]
  • The Cedar Programming Environment: a Midterm Report and Examination
    The Cedar Programming Environment: A Midterm Report and Examination Warren Teitelman The Cedar Programming Environment: A Midterm Report and Examination Warren Teitelman t CSL-83-11 June 1984 [P83-00012] © Copyright 1984 Xerox Corporation. All rights reserved. CR Categories and Subject Descriptors: D.2_6 [Software Engineering]: Programming environments. Additional Keywords and Phrases: integrated programming environment, experimental programming, display oriented user interface, strongly typed programming language environment, personal computing. t The author's present address is: Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Ca. 94043. The work described here was performed while employed by Xerox Corporation. XEROX Xerox Corporation Palo Alto Research Center 3333 Coyote Hill Road Palo Alto, California 94304 1 Abstract: This collection of papers comprises a report on Cedar, a state-of-the-art programming system. Cedar combines in a single integrated environment: high-quality graphics, a sophisticated editor and document preparation facility, and a variety of tools for the programmer to use in the construction and debugging of his programs. The Cedar Programming Language is a strongly-typed, compiler-oriented language of the Pascal family. What is especially interesting about the Ce~ar project is that it is one of the few examples where an interactive, experimental programming environment has been built for this kind of language. In the past, such environments have been confined to dynamically typed languages like Lisp and Smalltalk. The first paper, "The Roots of Cedar," describes the conditions in 1978 in the Xerox Palo Alto Research Center's Computer Science Laboratory that led us to embark on the Cedar project and helped to define its objectives and goals.
    [Show full text]
  • Scenarios for Using the ARPANET at the International Conference On
    VAlirc NIC 11863 SCENARIOS for using the ARPANET at the INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION Washington, D.C. October 24—26, 1972 ARPA Network Information Center Stanford Research Institute Menlo Park, California 94025 , 11?>o - 3 £: 3c? - 16 $<}0-l!:}o 3 - & i 3o iW |{: 3 cp - 3 NIC 11863 SCENARIOS for using the ARPANET at the INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION Washington, D.C. October 24—26, 1972 ARPA Network Information Center Stanford Research Institute Menlo Park, California 94025 SCENARIOS FOR USING THE ARPANET AT THE ICCC We intend that the following scenarios be used by individuals to browse the ARPA Computer Network (ARPANET) in its current early stage of development and thereby to introduce themselves to some possibilities in computer communication. The scenarios include only a few of the existing ARPANET resources. They were chosen for this booklet (somewhat haphazardly) to exhibit variety and sophistication, while retaining simplicity. The scenarios are by no means complete or perfect. We have tried to make them accurate, but are certain that they contain errors. The scenarios are, therefore, only one kind of tool for experiencing computer communication. We assume that you will attend the various showings of film and videotape, pay close attention at the several scheduled demonstrations of specific resources, approach the ARPANET aggressively yourself using these scenarios, and unhesitatingly call upon the ICCC Special Project People for the advice and encouragement you are sure to need. The account numbers and passwords provided in these scenarios were generated spe­ cifically for the ICCC. It is hoped that some of them will remain available after the ICCC for continued browsing.
    [Show full text]
  • Computer Chess Methods
    COMPUTER CHESS METHODS T.A. Marsland Computing Science Department, University of Alberta, EDMONTON, Canada T6G 2H1 ABSTRACT Article prepared for the ENCYCLOPEDIA OF ARTIFICIAL INTELLIGENCE, S. Shapiro (editor), D. Eckroth (Managing Editor) to be published by John Wiley, 1987. Final draft; DO NOT REPRODUCE OR CIRCULATE. This copy is for review only. Please do not cite or copy. Acknowledgements Don Beal of London, Jaap van den Herik of Amsterdam and Hermann Kaindl of Vienna provided helpful responses to my request for de®nitions of technical terms. They and Peter Frey of Evanston also read and offered constructive criticism of the ®rst draft, thus helping improve the basic organization of the work. In addition, my many friends and colleagues, too numerous to mention individually, offered perceptive observations. To all these people, and to Ken Thompson for typesetting the chess diagrams, I offer my sincere thanks. The experimental work to support results in this article was possible through Canadian Natural Sciences and Engineering Research Council Grant A7902. December 15, 1990 COMPUTER CHESS METHODS T.A. Marsland Computing Science Department, University of Alberta, EDMONTON, Canada T6G 2H1 1. HISTORICAL PERSPECTIVE Of the early chess-playing machines the best known was exhibited by Baron von Kempelen of Vienna in 1769. Like its relations it was a conjurer's box and a grand hoax [1, 2]. In contrast, about 1890 a Spanish engineer, Torres y Quevedo, designed a true mechanical player for king-and-rook against king endgames. A later version of that machine was displayed at the Paris Exhibition of 1914 and now resides in a museum at Madrid's Polytechnic University [2].
    [Show full text]
  • Information Technology R&D: Critical Trends And
    Information Technology R&D: Critical Trends and Issues February 1985 NTIS order #PB85-245660 — Recommended Citation: Information Technology and R&D: Critical Trends and Issues (Washington, DC: U.S. Congress, Office of Technology Assessment, OTA-CIT-268, February 1985). Library of Congress Catalog Card Number 84-601150 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402 Foreword New computer and communications technologies are obviously transforming American life. They are the basis of many of the changes in our telecommunica- tions system and also a new wave of automation on the farm, in manufacturing and transportation, and in the office. They are changing the form and delivery of government services such as education and the judicial system. Information products and services have become a major and still rapidly growing component of our economy. A strong U.S. research and development effort has, in the past, been the source of much of this new technology. However, recent events, such as the restructur- ing of the U.S. telecommunications industry and the emergence of strong foreign competition for some technologies, have changed the environment for R&D. Con- sequently, the House Committee on Science and Technology, the House Commit- tee on Energy and Commerce, and its Subcommittee on Telecommunications, Con- sumer Protection, and Finance asked OTA to conduct an assessment of the current state of R&D in these critical areas. In this report, OTA examines four specific areas of research as case studies: computer architecture, artificial intelligence, fiber optics, and software engineer- ing. It discusses the structure and orientation of some selected foreign programs.
    [Show full text]
  • An Interview with Oliver Selfridge1
    An Interview with Oliver Selfridge1 Oliver Selfridge was born in 1926 in London. He studied Mathematics at MIT under Norbert Wiener and went on to write important early papers on pattern recognition and machine learning. His 1958 paper on the Pandemonium system is regarded as one of the classics of machine intelligence. He has worked at MIT Lincoln Laboratory, BBN and GTE Laboratories where he was a Chief Scientist. He has served on various advisory panels to the White House and numerous national committees. As well as his scientific writings, he has authored several books for children2. This is an edited transcript of an interview conducted on the 8th May 2006. Phil Husbands: Could you start by saying a little about your early years? Were there any particular influences from home or school that put you on the road to a career in science and engineering? Oliver Selfridge: Well, an important part of my education was my father. Without knowing any mathematics himself, he was wildly enthusiastic about my interest in it, which started at quite an early age: seven or eight. As was usual in England back then, I went away to school when I was ten. At the age of thirteen, I entered Malvern College, one of the (so-called) public schools. I remember we spent the year of 1940 in Blenheim Palace because the Royal Radar Establishment (RRE) had taken over the school. While at Malvern I covered calculus to the standard you’d reach after the first two years of a degree at MIT. One of the great things about education back then, and I am not sure that it’s true any more, is that if you were good in one subject they’d move you ahead in that subject.
    [Show full text]
  • Copy of Scan258
    Ninetieth Annual Commencement June 8) 1984 CALIFORNIA INSTITUTE OF TECHNOLOGY CALIFORNIA INSTITUTE OF TECHNOLOGY Ninetieth Annual Commencement FRIDAY MORNING AT TEN O'CLOCK JUNE EIGHTH, NINETEEN EIGHTY-FOUR The Commencemen t Ceremony These tribal rites have a very long history. They go back to the ceremony of initiation for new university teachers in mediaeval Europe. It was then customary for s tudents, after an appropriate apPfl'nticeship to learning and the prcsl~ntation of a thesis as their masterpiece, to be admi tted to the Guild of Masters of Arts and granted the license to teach. In the ancient University of Bologna this right was granted by authority of the Pope and in the name o f the Iioly Trini ty. We do not this day claim such hig h authori ty. As in any other g uild, whether craft Of merchant, the master's status was crucial. In theory at I~ ast, it sepa rated the men from th e boys, the competent from the incom­ petent, O n the way to hi s mas ter's degree, a student migh t coll ect a bachelor's degree in recognition of the faci that he was half-trained, Of p.utially equ ipped . The doctor's degree was somewha t different. Originall y indis tinguishable from the mas ters, the docto rs g radually emerged by a process of escalation into a supermagisterial role-first of all in the higher facu lties of theo logy, law, and medicine. It wi ll come as no surprise that the lawyers had a pa rtic ular and early yen for this special distinction.
    [Show full text]
  • CASE STUDY Chess: Deep Blue's Victory AI As Sport How Intelligent Is
    AI as Sport In 1965 the Russian mathematician Alexander CASE STUDY Kronrod said, "Chess is the Drosophila of artificial intelligence." However, computer chess has developed as genetics might have if Chess: Deep Blue’s Victory the geneticists had concentrated their efforts starting in 1910 on breeding racing Drosophilia. We would have some science, but mainly we would have very fast fruit flies." - John McCarthy 1 2 How Intelligent is Deep Blue? On Game 2 (Game 2 - Deep Blue took an early lead. Kasparov resigned, but it turned out he could have forced a draw by perpetual check.) Saying Deep Blue doesn't really think about chess is like saying an airplane doesn't really This was real chess. This was a game any fly because it doesn't flap its wings. human grandmaster wouldhave been proud of. Joel Benjamin - Drew McDermott grandmaster, member Deep Blue team 3 4 Kasparov on Deep Blue Combinatorics of Chess Opening book 1996: Kasparov Beats Deep Blue Endgame • database of all 5 piece endgames exists; “I could feel --- I could smell --- a new kind of database of all 6 piece games being built intelligence acrossthe table.” Middle game • branching factor of 30 to 40 1997: Deep Blue Beats Kasparov • 1000(d/2) positions – 1 move by each player = 1,000 “Deep Blue hasn't proven anything.” – 2 moves by each player = 1,000,000 – 3 moves by each player = 1,000,000,000 5 6 1 Positions with Alpha-Beta Pruning History of Search Innovations Search Depth Positions Shannon, Turing Minimax search 1950 Kotok/McCarthy Alpha-beta pruning 1966 260MacHack Transposition
    [Show full text]
  • Building the Second Mind, 1961-1980: from the Ascendancy of ARPA to the Advent of Commercial Expert Systems Copyright 2013 Rebecca E
    Building the Second Mind, 1961-1980: From the Ascendancy of ARPA to the Advent of Commercial Expert Systems copyright 2013 Rebecca E. Skinner ISBN 978 09894543-4-6 Forward Part I. Introduction Preface Chapter 1. Introduction: The Status Quo of AI in 1961 Part II. Twin Bolts of Lightning Chapter 2. The Integrated Circuit Chapter 3. The Advanced Research Projects Agency and the Foundation of the IPTO Chapter 4. Hardware, Systems and Applications in the 1960s Part II. The Belle Epoque of the 1960s Chapter 5. MIT: Work in AI in the Early and Mid-1960s Chapter 6. CMU: From the General Problem Solver to the Physical Symbol System and Production Systems Chapter 7. Stanford University and SRI Part III. The Challenges of 1970 Chapter 8. The Mansfield Amendment, “The Heilmeier Era”, and the Crisis in Research Funding Chapter 9. The AI Culture Wars: the War Inside AI and Academia Chapter 10. The AI Culture Wars: Popular Culture Part IV. Big Ideas and Hardware Improvements in the 1970s invert these and put the hardware chapter first Chapter 11. AI at MIT in the 1970s: The Semantic Fallout of NLR and Vision Chapter 12. Hardware, Software, and Applications in the 1970s Chapter 13. Big Ideas in the 1970s Chapter 14. Conclusion: the Status Quo in 1980 Chapter 15. Acknowledgements Bibliography Endnotes Forward to the Beta Edition This book continues the story initiated in Building the Second Mind: 1956 and the Origins of Artificial Intelligence Computing. Building the Second Mind, 1961-1980: From the Establishment of ARPA to the Advent of Commercial Expert Systems continues this story, through to the fortunate phase of the second decade of AI computing.
    [Show full text]
  • History of the Lisp Language
    History of the Lisp Language History of the Lisp Language The following information is derived from the history section of dpANS Common Lisp. Lisp is a family of languages with a long history. Early key ideas in Lisp were developed by John McCarthy during the 1956 Dartmouth Summer Research Project on Artificial Intelligence. McCarthy’s motivation was to develop an algebraic list processing language for artificial intelligence work. Implementation efforts for early dialects of Lisp were undertaken on the IBM 704, the IBM 7090, the Digital Equipment Corporation (DEC) PDP−1, the DEC PDP−6, and the PDP−10. The primary dialect of Lisp between 1960 and 1965 was Lisp 1.5. By the early 1970’s there were two predominant dialects of Lisp, both arising from these early efforts: MacLisp and Interlisp. For further information about very early Lisp dialects, see The Anatomy of Lisp or Lisp 1.5 Programmer’s Manual. MacLisp improved on the Lisp 1.5 notion of special variables and error handling. MacLisp also introduced the concept of functions that could take a variable number of arguments, macros, arrays, non−local dynamic exits, fast arithmetic, the first good Lisp compiler, and an emphasis on execution speed. For further information about Maclisp, see Maclisp Reference Manual, Revision 0 or The Revised Maclisp Manual. Interlisp introduced many ideas into Lisp programming environments and methodology. One of the Interlisp ideas that influenced Common Lisp was an iteration construct implemented by Warren Teitelman that inspired the loop macro used both on the Lisp Machines and in MacLisp, and now in Common Lisp.
    [Show full text]
  • Andproblemsolving Volume I- Executive Summary by Ewald Heer
    NASA Conference Publication 2180 NASA-CP-2180-VOL- 1 Automated DecisionMaking andProblemSolving Volume I- Executive Summary By _ Ewald Heer i Proceedings of a conference held at NASA Langley Research Center • Hampton, Virginia May 19-21, 1980 NASA Conference Publication 2180 Automated Dec.isionMaking andProblemSolving Volume I- Executive Summary By Ewald Heer University of Southern California Los Angeles Proceedings of a conference held at NASA Langley Research Center Hampton, Virginia May 19-21, 1980 National Aeronautics and Space Administration ScientificandTechnical Information Branch 1981 PREFACE On May 19-21, 1980, NASA Langley Research Center hosted a Conference on Auto- mated Decision Making and Problem Solving. The purpose of the conference was to explore related topics in artificial intelligence, operations research, and control theory and, in particular, to assess existing techniques, determine trends of development, and identify potential for appl_cation in automation technology programs at NASA. The first two days consisted of formal presentations by experts in the three disciplines. The third day was a workshop in which the invited speakers and NASA personnel discussed current technology in automation and how NASA can and should interface with the academic community to advance this technology. The conference proceedings are published in two volumes. Volume I gives a readable and coherent overview of the subject area of automated decision making and problem solving. This required interpretation, synthesizing, and summarizing, and in some cases expansion of the material presented at the conference. Volume II contains the vugraphs with various annotations extracted from videotape records and also written papers submitted by several authors. In addition, a summary of the issues discussed on the third day has been published separately in NASA Technical Memorandum 81846.
    [Show full text]