CLISP - Conversational LISP

Total Page:16

File Type:pdf, Size:1020Kb

CLISP - Conversational LISP Session 25 Hardware and Software for Artificial Intelligence CLISP - Conversational LISP Warren Teitelman Xerox Palo Alto Research center Palo Alto, California 94304 Abstract CLISP is an attempt to make LISP programs The syntax for a conditional expression is easier to read and write by extending the correspondingly simple:* syntax of LISP to include infix operators, IF-THEN statements, FOR-DO-WHILE statements, Figure 2 and similar ALGOL-like constructs, without Syntax of a conditional Expression changing the structure or representation of the language. CLISP is implemented through <conditional expression> ::x LISP's error handling machinery, rather than (COND <clause> ... <clause>) by modifying the interpreter: when an <clause> :;= (<form> <form>) expression is encountered whose evaluation causes an error, the expression is scanned Note that there are no IF's, THEN's, for possible CLISP constructs, which are BEGIN's, END'S, or semi-colons. LISP avoids then converted to the equivalent LISP the problem of parsing the conditional expressions. Thus, users can freely expression, i.e., delimiting the individual intermix LISP and CLISP without having to clauses, and delimiting the predicates and distinguish which is which. Emphasis in the consequents within the clauses, by requiring design and development of CLISP has been on that each clause be a separate element in the system aspects of such a facility, with the conditional expression, namely a the goal in mind of producing a useful tool, sublist, of which the predicate is always not just another language. To this end, the first element, and the consequent the CLISP includes interactive error correction second element- As an example, let us and many 'Do-what-I-Mean* features. consider the following conditional expression which embodies a recursive * * * definition for FACTORIALS** Figure 3 Recursive Definition of Factorial The syntax of the programming language LISP»»»»» is very simple, in the sense that (COND it can be described concisely, but not in ( (EQ N 0) the sense that LISP programs are easy to read or write! This simplicity of syntax is (T (TIMES N (FACTORIAL (SOB1 N))))) achieved by, and at the expense of, extensive use of explicit structuring, namely grouping through parenthesesization. For the benefit of readers unfamiliar with LISP syntax, the basic element of LISP programs is called a fgr.m. A form is either * Actually, a clause can have more than (1) atomic, or (2) a list, the latter being two consequents, in which case each form denoted by enclosing the elements of the is evaluated and the value of the last list in matching parentheses. In the first form returned as the value of the case, the form is either a variable or a conditional. However, for the purposes constant, and its value is computed of this discussion, we can confine accordingly. In the second case, the first ourselves to the case where a clause has element of the list is the name of a only one consequent. function, and the remaining elements are again forms whose values will be the arguments to that function. In Backus ** The expression in Figure 3 is shown as notation: it would be printed by a special formatting program called PRETTYPRINT. PRETTYPRINT attempts to make the Figure 1 structure of LISP expressions more Syntax of a LISP Form manageable by judicious use of identation and breaking the output into <form> ::« <variable>|<constant>| separate lines. Its existence is a (<function-name> <form> ... <form>) tacit acknowledgment of the fact that LISP programs require more information For example, assign x the value of the sum than that contained solely in the of A and the product of B and C is written parenthesization in order to make them in LISP as (SETQ X (PLUS A (TIMES B C))) . easily readable by people. 686 The first clause in this conditional is the embedding, because embedded sentences are list of two elements ((EQ NO) 1), which more difficult to grasp and understand than says if (EQ N 0) is true, i.e., if N is equivalent non-embedded ones (even when the equal to 0, then return 1 as the value of latter sentences are somewhat longer). the conditional expression, otherwise go on Similarly, most high level programming to the second clause. The second clause is languages offer syntactic devices for (T (TIMES N (FACTORIAL (SUB1 N) ) ) ) , which reducing apparent depth and complexity of a says if T is true (a tautology-the ELSE of program: the reserved words and infix ALGOL conditionals), return the product of N operators used in ALGOL-like languages and (FACTORIAL (SUB1 N)). The latter is simultaneously delimit operands and evaluated by first evaluating (SUB1 N), and operations, and also convey meaning to the then calling FACTORIAL (recursively) on this programmer. They are far more intuitive value. than parentheses. In fact, since LISP uses parentheses (i.e., lists) for almost all As a result of the structuring of syntactic forms, there is very little conditional expressions, LISP does not have information contained in the parentheses for to search for words such as IF, THEN, ELSE, the person reading a LISP program, and so ELSEIF, etc., when interpreting or compiling the parentheses tend mostly to be ignored: conditional expressions in order to delimit the meaning of a particular LISP expression clauses and their constituents: this for people is found almost entirely in the grouping is specified by the parentheses, words, not in the structure. For example, and is performed at input time by the READ the expression in Figure 4 program which creates the list structure used to represent the expression. Figure 4 Similarly, LISP does not have to worry about careless Definition of Factorial how to parse expressions such as A+B+C, since (A+B)*C must be written unambiguously (COND (EQ N 0) 1) as (TIMES (PLUS A B) c), and A+(B*C) as (T TIMES N FACTORIAL ( (SUB1 N) ) ) (PLUS A (TIMES B C)). In fact, there are no reserved words in LISP such as IF, THEN, is recognizable as FACTORIAL even though AND, OR, FOR, DO, BEGIN, END, etc., nor there are five misplaced or missing reserved characters like + , -, *, /, =, «-, parentheses. Grouping words together in etc.* This eliminates entirely the need for parentheses is done more for LISP's benefit, parsers and precedence rules in the LISP than for the programmer's. interpreter and compiler, and thereby makes program manipulation of LISP programs CLISP is designed to make LISP programs straightforward. In other words, a program easier to read and write by permitting the that "looks at" other LISP programs does not user to employ various infix operators, IF- need to incorporate a lot of syntactic THEN- ELSE statements, FOR-DO-WHILE-UNLESS- information. For example, a LISP FROM-TO-etc. expressions, which are interpreter can be written in one or two automatically converted to equivalent LISP pages of LISP code.' It is for this reason expressions when they are first interpreted. that LISP is by far the most suitable, and For example, FACTORIAL could be written in frequently used, programming language for CLISP as shown in Figure 5. writing programs that deal with other programs as data, e.g., programs that Figure 5 analyze, modify, or construct other CLISP Definition Of FACTORIAL programs. (IF N=0 THEN 1 ELSE N*(FACTORIAL N-1)) However, it is precisely this same simplicity of syntax that makes LISP Note that this expression would be programs difficult to read and write represented internally (after it had been (especially for beginners), 'pushing down' interpreted once) as shown in Figure 3, so is something programs do very well, and that programs that might have to analyse or people do poorly. As an example, consider otherwise process this expression could take the following two "equivalent" sentences: advantage of the simple syntax. "The rat that the cat that the dog CLISP also contains facilities for making that I owned chased caught ate the sense out of expressions such as the cheese." careless conditional shown in Figure 4. Furthermore, CLISP will detect those cases versus which would not generate LISP errors, but are nevertheless obviously not what the "I own the dog that chased the cat programmer intended. For example, the that caught the rat that ate the expression (QUOTE <expression> <form>) will cheese." not cause a LISP error, but <form> would never be seen by the interpreter. This is Natural language contains many linguistic clearly a parentheses error. CLISP uses devices Buch as that illustrated in the both local and global information to detect, second sentence above for minimizing and where possible, repair such errors. However, this paper will concentrate * except for parentheses (and period), primarily on the syntax extension aspects of which are used for indicating structure, CLISP, and leave a discussion of the and space and end-of-line, which are semantic issues for a later time. used for delimiting identifiers. 687 There have been similar efforts in other 1) (LIST X*FACT N), where FACT is the name LISP systems, most notably the MLISP of a variable, means (LIST (X*FACT) N). language at Stanford.* CLISP differs from these in that it does not attempt to replace 2) (LIST X*FACT N), where FACT is not the the LISP language so much as to augment it. name of a variable but instead is the In fact, one of the principal criteria in name of a function, means the design of CLISP was that users be able (LIST X*(FACT N)>, i.e., N is FACT'S to freely intermix LISP and CLISP without argument. having to identify which is which. Users can write programs, or type in expressions 3) (LIST X*FACT(N)), FACT the name of a for evaluation, in LISP, CLISP, or a mixture function (and not the name of a of both.
Recommended publications
  • Stanford University Medical Experimental Computer Resource (SUMEX) Records SC1248
    http://oac.cdlib.org/findaid/ark:/13030/c8s46z8g Online items available Guide to the Stanford University Medical Experimental Computer Resource (SUMEX) Records SC1248 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives January 2018 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Guide to the Stanford University SC1248 1 Medical Experimental Computer Resource (SUMEX) Records SC... Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Stanford University Medical Experimental Computer Resource (SUMEX) records Identifier/Call Number: SC1248 Physical Description: 33 Linear Feet Date (inclusive): 1975-1991 Special Collections and University Archives materials are stored offsite and must be paged 48 hours in advance. For more information on paging collections, see the department's website: http://library.stanford.edu/spc. Conditions Governing Access Materials are open for research use. Audio-visual materials are not available in original format, and must be reformatted to a digital use copy. Conditions Governing Use All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes.
    [Show full text]
  • MELT a Translated Domain Specific Language Embedded in the GCC
    MELT a Translated Domain Specific Language Embedded in the GCC Compiler Basile STARYNKEVITCH CEA, LIST Software Safety Laboratory, boˆıte courrier 94, 91191 GIF/YVETTE CEDEX, France [email protected] [email protected] The GCC free compiler is a very large software, compiling source in several languages for many targets on various systems. It can be extended by plugins, which may take advantage of its power to provide extra specific functionality (warnings, optimizations, source refactoring or navigation) by processing various GCC internal representations (Gimple, Tree, ...). Writing plugins in C is a complex and time-consuming task, but customizing GCC by using an existing scripting language inside is impractical. We describe MELT, a specific Lisp-like DSL which fits well into existing GCC technology and offers high-level features (functional, object or reflexive programming, pattern matching). MELT is translated to C fitted for GCC internals and provides various features to facilitate this. This work shows that even huge, legacy, software can be a posteriori extended by specifically tailored and translated high-level DSLs. 1 Introduction GCC1 is an industrial-strength free compiler for many source languages (C, C++, Ada, Objective C, Fortran, Go, ...), targetting about 30 different machine architectures, and supported on many operating systems. Its source code size is huge (4.296MLOC2 for GCC 4.6.0), heterogenous, and still increasing by 6% annually 3. It has no single main architect and hundreds of (mostly full-time) contributors, who follow strict social rules 4. 1.1 The powerful GCC legacy The several GCC [8] front-ends (parsing C, C++, Go .
    [Show full text]
  • Practical Semantic Web and Linked Data Applications
    Practical Semantic Web and Linked Data Applications Common Lisp Edition Uses the Free Editions of Franz Common Lisp and AllegroGraph Mark Watson Copyright 2010 Mark Watson. All rights reserved. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works Version 3.0 United States License. November 3, 2010 Contents Preface xi 1. Getting started . xi 2. Portable Common Lisp Code Book Examples . xii 3. Using the Common Lisp ASDF Package Manager . xii 4. Information on the Companion Edition to this Book that Covers Java and JVM Languages . xiii 5. AllegroGraph . xiii 6. Software License for Example Code in this Book . xiv 1. Introduction 1 1.1. Who is this Book Written For? . 1 1.2. Why a PDF Copy of this Book is Available Free on the Web . 3 1.3. Book Software . 3 1.4. Why Graph Data Representations are Better than the Relational Database Model for Dealing with Rapidly Changing Data Requirements . 4 1.5. What if You Use Other Programming Languages Other Than Lisp? . 4 2. AllegroGraph Embedded Lisp Quick Start 7 2.1. Starting AllegroGraph . 7 2.2. Working with RDF Data Stores . 8 2.2.1. Creating Repositories . 9 2.2.2. AllegroGraph Lisp Reader Support for RDF . 10 2.2.3. Adding Triples . 10 2.2.4. Fetching Triples by ID . 11 2.2.5. Printing Triples . 11 2.2.6. Using Cursors to Iterate Through Query Results . 13 2.2.7. Saving Triple Stores to Disk as XML, N-Triples, and N3 . 14 2.3. AllegroGraph’s Extensions to RDF .
    [Show full text]
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • The Cedar Programming Environment: a Midterm Report and Examination
    The Cedar Programming Environment: A Midterm Report and Examination Warren Teitelman The Cedar Programming Environment: A Midterm Report and Examination Warren Teitelman t CSL-83-11 June 1984 [P83-00012] © Copyright 1984 Xerox Corporation. All rights reserved. CR Categories and Subject Descriptors: D.2_6 [Software Engineering]: Programming environments. Additional Keywords and Phrases: integrated programming environment, experimental programming, display oriented user interface, strongly typed programming language environment, personal computing. t The author's present address is: Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Ca. 94043. The work described here was performed while employed by Xerox Corporation. XEROX Xerox Corporation Palo Alto Research Center 3333 Coyote Hill Road Palo Alto, California 94304 1 Abstract: This collection of papers comprises a report on Cedar, a state-of-the-art programming system. Cedar combines in a single integrated environment: high-quality graphics, a sophisticated editor and document preparation facility, and a variety of tools for the programmer to use in the construction and debugging of his programs. The Cedar Programming Language is a strongly-typed, compiler-oriented language of the Pascal family. What is especially interesting about the Ce~ar project is that it is one of the few examples where an interactive, experimental programming environment has been built for this kind of language. In the past, such environments have been confined to dynamically typed languages like Lisp and Smalltalk. The first paper, "The Roots of Cedar," describes the conditions in 1978 in the Xerox Palo Alto Research Center's Computer Science Laboratory that led us to embark on the Cedar project and helped to define its objectives and goals.
    [Show full text]
  • 1960 1970 1980 1990 Japan California………………… UT IL in PA NJ NY Massachusetts………… Europe Lisp 1.5 TX
    Japan UT IL PA NY Massachusetts………… Europe California………………… TX IN NJ Lisp 1.5 1960 1970 1980 1990 Direct Relationships Lisp 1.5 LISP Family Graph Lisp 1.5 LISP 1.5 Family Lisp 1.5 Basic PDP-1 LISP M-460 LISP 7090 LISP 1.5 BBN PDP-1 LISP 7094 LISP 1.5 Stanford PDP-1 LISP SDS-940 LISP Q-32 LISP PDP-6 LISP LISP 2 MLISP MIT PDP-1 LISP Stanford LISP 1.6 Cambridge LISP Standard LISP UCI-LISP MacLisp Family PDP-6 LISP MacLisp Multics MacLisp CMU SAIL MacLisp MacLisp VLISP Franz Lisp Machine Lisp LISP S-1 Lisp NIL Spice Lisp Zetalisp IBM Lisp Family 7090 LISP 1.5 Lisp360 Lisp370 Interlisp Illinois SAIL MacLisp VM LISP Interlisp Family SDS-940 LISP BBN-LISP Interlisp 370 Spaghetti stacks Interlisp LOOPS Common LOOPS Lisp Machines Spice Lisp Machine Lisp Interlisp Lisp (MIT CONS) (Xerox (BBN Jericho) (PERQ) (MIT CADR) Alto, Dorado, (LMI Lambda) Dolphin, Dandelion) Lisp Zetalisp TAO (3600) (ELIS) Machine Lisp (TI Explorer) Common Lisp Family APL APL\360 ECL Interlisp ARPA S-1 Lisp Scheme Meeting Spice at SRI, Lisp April 1991 PSL KCL NIL CLTL1 Zetalisp X3J13 CLTL2 CLOS ISLISP X3J13 Scheme Extended Family COMIT Algol 60 SNOBOL METEOR CONVERT Simula 67 Planner LOGO DAISY, Muddle Scheme 311, Microplanner Scheme 84 Conniver PLASMA (actors) Scheme Revised Scheme T 2 CLTL1 Revised Scheme Revised2 Scheme 3 CScheme Revised Scheme MacScheme PC Scheme Chez Scheme IEEE Revised4 Scheme Scheme Object-Oriented Influence Simula 67 Smalltalk-71 LOGO Smalltalk-72 CLU PLASMA (actors) Flavors Common Objects LOOPS ObjectLisp CommonLOOPS EuLisp New Flavors CLTL2 CLOS Dylan X3J13 ISLISP Lambda Calculus Church, 1941 λ Influence Lisp 1.5 Landin (SECD, ISWIM) Evans (PAL) Reynolds (Definitional Interpreters) Lisp370 Scheme HOPE ML Standard ML Standard ML of New Jersey Haskell FORTRAN Influence FORTRAN FLPL Lisp 1.5 S-1 Lisp Lisp Machine Lisp CLTL1 Revised3 Zetalisp Scheme X3J13 CLTL2 IEEE Scheme X3J13 John McCarthy Lisp 1.5 Danny Bobrow Richard Gabriel Guy Steele Dave Moon Jon L White.
    [Show full text]
  • Lisp: Program Is Data
    LISP: PROGRAM IS DATA A HISTORICAL PERSPECTIVE ON MACLISP Jon L White Laboratory for Computer Science, M.I.T.* ABSTRACT For over 10 years, MACLISP has supported a variety of projects at M.I.T.'s Artificial Intelligence Laboratory, and the Laboratory for Computer Science (formerly Project MAC). During this time, there has been a continuing development of the MACLISP system, spurred in great measure by the needs of MACSYMAdevelopment. Herein are reported, in amosiac, historical style, the major features of the system. For each feature discussed, an attempt will be made to mention the year of initial development, andthe names of persons or projectsprimarily responsible for requiring, needing, or suggestingsuch features. INTRODUCTION In 1964,Greenblatt and others participated in thecheck-out phase of DigitalEquipment Corporation's new computer, the PDP-6. This machine had a number of innovative features that were thought to be ideal for the development of a list processing system, and thus it was very appropriate that thefirst working program actually run on thePDP-6 was anancestor of thecurrent MACLISP. This earlyLISP was patterned after the existing PDP-1 LISP (see reference l), and was produced by using the text editor and a mini-assembler on the PDP-1. That first PDP-6 finally found its way into M.I.T.'s ProjectMAC for use by theArtificial lntelligence group (the A.1. grouplater became the M.I.T. Artificial Intelligence Laboratory, and Project MAC became the Laboratory for Computer Science). By 1968, the PDP-6 wasrunning the Incompatible Time-sharing system, and was soon supplanted by the PDP-IO.Today, the KL-I 0, anadvanced version of thePDP-10, supports a variety of time sharing systems, most of which are capable of running a MACLISP.
    [Show full text]
  • CONS Y X)))) Which Sets Z to Cdr[X] If Cdr[X] Is Not NIL (Without Recomputing the Value As Woirld Be Necessary in LISP 1.5
    NO. 1 This first (long delayed) LISP Bulletin contains samples of most of those types of items which the editor feels are relevant to this publication. These include announcements of new (i.e. not previously announced here) implementations of LISP !or closely re- lated) systems; quick tricks in LISP; abstracts o. LISP related papers; short writeups and listings of useful programs; and longer articles on problems of general interest to the entire LISP com- munity. Printing- of these last articles in the Bulletin does not interfere with later publications in formal journals or books. Short write-ups of new features added to LISP are of interest, preferably upward compatible with LISP 1.5, especially if they are illustrated by programming examples. -A NEW LISP FEATURE Bobrow, Daniel G., Bolt Beranek and Newman Inc., 50 oulton Street, Cambridge, Massachusetts 02138. An extension of ro 2, called progn is very useful. Tht ralue of progn[el;e ; ,..;e Y- is the value of e . In BBN-LISP on t .e SDS 940 we ha6e extenaed -cond to include $n implicit progn in each clause, putting It In the general form (COND (ell e ) . (e21 . e 2n2) (ekl e )) In1 ... ... kn,_ where nl -> 1. This form is identical to the LISP 1.5 form if n ni = 2. If n > 2 then each expression e in a clause is evaluated (in order) whh e is the first true (nohkN1~)predicate found. The value of the &And Is the value of the last clause evaluated. This is directly Gapolated to the case where n, = 1, bxre the value of the cond is the value of this first non-~ILprewcate.
    [Show full text]
  • Latexsample-Thesis
    INTEGRAL ESTIMATION IN QUANTUM PHYSICS by Jane Doe A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics The University of Utah May 2016 Copyright c Jane Doe 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jane Doe has been approved by the following supervisory committee members: Cornelius L´anczos , Chair(s) 17 Feb 2016 Date Approved Hans Bethe , Member 17 Feb 2016 Date Approved Niels Bohr , Member 17 Feb 2016 Date Approved Max Born , Member 17 Feb 2016 Date Approved Paul A. M. Dirac , Member 17 Feb 2016 Date Approved by Petrus Marcus Aurelius Featherstone-Hough , Chair/Dean of the Department/College/School of Mathematics and by Alice B. Toklas , Dean of The Graduate School. ABSTRACT Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah.
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]
  • Lisp and Prolog Background
    Lisp and Prolog Background Thank you to Prof. Roosen-Runge for the slides on background and history. Edited by Gunnar Gotshalks BH2-1 Lisp History •Lisp--invented (about 1958) by the logician and AI researcher John McCarthy •Widely used in for applications in AI every since •Used in industry » To develop expert systems & other AI applications » For Rapid Application Development (RAD) Edited by Gunnar Gotshalks BH2-2 Lisp Use •Lisp is used as an embedded language •Found inside applications like Emacs (MLisp) and AutoCAD (AutoLisp). » Emacs supports Lisp as a language for developing programs » As well as embedded language for controlling and customizing the editor itself Edited by Gunnar Gotshalks BH2-3 Lisp availability •On all major and many minor platforms. •Numerous free- and shareware versions. • Standard: Common Lisp Edited by Gunnar Gotshalks BH2-4 Prolog history •Prolog invented (≈1972) » Used at York in the by the AI researcher Student Information Alan Colmeraurer System to check applications for input errors •Widely used to develop » Early ideas developed expert systems & other at University of AI applications including Montreal; then natural language University of Marseilles processing Edited by Gunnar Gotshalks BH2-5 Prolog Use & Availability •Prolog rumored to be embedded in MS Office •On all major and many minor platforms •Several free and shareware versions •Standard: ‘Edinburgh-style’ Edited by Gunnar Gotshalks BH2-6 Survival Value McCarthy's Lisp versus Newell's IPL (Information Processing Language) » Both proposed » Both men pioneers languages at about the in AI and computer same time for symbolic science computing to be used in AI research Edited by Gunnar Gotshalks BH2-7 And the winner is ? McCarthy? Newell? Why? Edited by Gunnar Gotshalks BH2-8 & the winner is ..
    [Show full text]
  • Lisping Copyleft: a Close Reading of the Lisp LGPL 15
    Lisping Copyleft: A Close Reading of the Lisp LGPL 15 Lisping Copyleft: A Close Reading of the Lisp LGPL Eli Greenbaum a (a) Attorney, Yigal Arnon & Co. Jerusalem DOI: 10.5033/ifosslr.v5i1.75 Abstract: The idioms of both the General Public License (the “GPL”) and the Lesser General Public License (the “LGPL”) seem to be grounded in the C programming language. This article analyses the Lisp Lesser General Public License (colloquially and here referred to as the “LLGPL”), a specific attempt to apply the LGPL to a language with a programming paradigm and method of building and distributing programs that traditionally differs substantially from the approach of C. In addition, this article attempts to understand whether the LLGPL actually succeeds in its stated goal of translating the LGPL to the Lisp context or whether the LLGPL changes the requirements and philosophical moorings of the LGPL. Keywords: Law; information technology; Free and Open Source Software; copyleft, copyright; derivation; compilation; Lisp; LGPL; Introduction The idioms of both the General Public License (the “GPL”) and the Lesser General Public License 1 (the “LGPL”) seem to be grounded in the C programming language. The licenses refer to “compiling”, “linking” and “header files”, features of the C programming languages which may not be present in other languages that are not traditionally compiled. Similarly, the licenses do not expressly include provisions relating to features of object-oriented programming languages.2 Do the GNU licenses work as intended when applied in these other contexts? 3 This article analyses the Lisp 1 The LLGPL license is drafted as a preamble to version 2.1 of the LGPL.
    [Show full text]