Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: the Case of Iron–Sulfur Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: the Case of Iron–Sulfur Proteins magnetochemistry Review Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins Mario Piccioli Magnetic Resonance Center and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy; [email protected]fi.it Received: 30 August 2020; Accepted: 22 September 2020; Published: 26 September 2020 Abstract: The study of cellular machineries responsible for the iron–sulfur (Fe–S) cluster biogenesis has led to the identification of a large number of proteins, whose importance for life is documented by an increasing number of diseases linked to them. The labile nature of Fe–S clusters and the transient protein–protein interactions, occurring during the various steps of the maturation process, make their structural characterization in solution particularly difficult. Paramagnetic nuclear magnetic resonance (NMR) has been used for decades to characterize chemical composition, magnetic coupling, and the electronic structure of Fe–S clusters in proteins; it represents, therefore, a powerful tool to study the protein–protein interaction networks of proteins involving into iron–sulfur cluster biogenesis. The optimization of the various NMR experiments with respect to the hyperfine interaction will be summarized here in the form of a protocol; recently developed experiments for measuring longitudinal and transverse nuclear relaxation rates in highly paramagnetic systems will be also reviewed. Finally, we will address the use of extrinsic paramagnetic centers covalently bound to diamagnetic proteins, which contributed over the last twenty years to promote the applications of paramagnetic NMR well beyond the structural biology of metalloproteins. Keywords: iron–sulfur proteins; paramagnetic NMR; iron–sulfur cluster biogenesis; solution structures; metalloproteins 1. Introduction Paramagnetic nuclear magnetic resonance (NMR) has been, over the last twenty years, one of more lively and active branches of biomolecular NMR, widely used to characterize metalloproteins. Indeed, metalloproteins represent a wide percentage of the entire proteome and a large share of metalloproteins is paramagnetic. The first solution structure of a paramagnetic metalloprotein was solved in 1994 [1]. Since then, many protein structures of paramagnetic systems were obtained in solution in different oxidation states [2–6]. The quest for novel methodological advancements flourished, redox dependent effects were investigated [7], and a number of paramagnetism-based NMR restraints were proposed [8]. Likewise, the main programs for solution structures calculations were revisited and complemented with routines able to tackle paramagnetism-derived NMR restraints and to combine them with conventional NMR restraints [9,10]. Over the last decade, the popularity of NMR-based structural biology has been shadowed by a number of factors: the “mild” success of NMR as a high-throughput method for protein structure determination, the increasing performances of structure prediction approaches, the appearance into the scene of the brilliant and raising star of cryo-electron microscopy, that is replacing NMR for an increasing number of applications in proteomics and interactomics and is integrated with NMR to obtain structure determination of very large complexes at an atomic resolution [11,12]. Nevertheless, many methodological developments have been proposed Magnetochemistry 2020, 6, 46; doi:10.3390/magnetochemistry6040046 www.mdpi.com/journal/magnetochemistry Magnetochemistry 2020, 6, x FOR PEER REVIEW 2 of 20 determination of very large complexes at an atomic resolution [11,12]. Nevertheless, many Magnetochemistrymethodological2020 developments, 6, 46 have been proposed that have contributed to expand the range2 of 21of applications [13–18]; within this scenario, the exploitation of the hyperfine interaction has been one of the most exciting aspects. that haveIn paramagnetic contributed tometalloproteins, expand the range the of hyperfine applications interaction [13–18]; withinbetween this electron scenario, spin the and exploitation nuclear ofspins the can hyperfine be a tool interaction to: (i) elucidate has been catalytic one of mechanisms the most exciting in metalloenzymes aspects. and provide a molecular pictureIn paramagneticof the currently metalloproteins, known protein–protein the hyperfine interaction interaction networks between involving electron metalloproteins; spin and nuclear (ii) spinsuse small can beand a toolstable to: (i)metalloproteins elucidate catalytic as test mechanisms systems to in develop metalloenzymes novel experiments and provide and a molecularto obtain pictureadditional of the NMR currently restraints known that protein–protein could eventually interaction be used networks to study involving larger metalloproteins;and unstable proteins. (ii) use smallHowever, and stableprobably metalloproteins the most intriguing as test systems aspect tois developthe use of novel metal-based experiments spin and labels to obtain as an additional NMRsource restraints of structural that could constraints eventually in bediamagnetic used to study proteins. larger andThis unstable succeeded proteins. to extend However, the probablyrange of thesystems most that intriguing can be aspectstudied is thevia useparamagnetic of metal-based NMR: spin extrinsic labels para as anmagnetic additional centers source contributed of structural to constraintspromote the in applications diamagnetic of proteins. paramagnetic This succeeded NMR also to beyond extend thestructural range of biology systems in that solution can be [19–25]. studied via paramagneticOne of the aspects NMR: to extrinsic which paramagnetic paramagnetic NMR centers has contributed substantially to promotecontributed the is applications the discovery of paramagneticof molecular machineries NMR also beyond devoted structural to the biogenesis biology in of solution iron sulfur [19– 25proteins]. and the study of cellular traffickingOne of of the metal aspects cofactors. to which I will paramagnetic briefly overview NMR the has contribution substantially of contributedNMR studies is for the elucidating discovery ofaspects molecular of iron–sulfur machineries proteins devoted biogenesis, to the biogenesis where the of ironunderstanding sulfur proteins at a andmolecular the study level of provide cellular trasnapshotsfficking of metalprotein–protein cofactors. Iinteractions, will briefly overviewwhich are the crucial contribution for the biomedical of NMR studies aspects. for Then, elucidating I will aspectspresent ofhere iron–sulfur a summary proteins of the biogenesis, recent developments where the understanding in NMR methodologies at a molecular for levelparamagnetic provide snapshotsproteins and of protein–proteinshow how they can interactions, be used within which solution are crucial structure for the calculations. biomedical aspects.Finally, I Then, will briefly I will presentoverview here how a summary paramagnetic of the NMR recent came developments under the in sp NMRotlights methodologies when extrinsic for paramagnetic paramagnetic proteins agents andhave show been howattached they to can biomolecules be used within and solution used as structure a source calculations.of paramagnetism Finally, based I will NMR briefly restraints. overview how paramagnetic NMR came under the spotlights when extrinsic paramagnetic agents have been attached2. Paramagnetic to biomolecules NMR and used as a source of paramagnetism based NMR restraints. 2. ParamagneticThe theory NMRof the hyperfine interaction between electron spins and nuclear spins and its consequences on the nuclear relaxation properties have been exhaustively reviewed [2,26]. For the The theory of the hyperfine interaction between electron spins and nuclear spins and its ease of the reader, I will recap here the terms that are of major use in paramagnetic systems. The consequences on the nuclear relaxation properties have been exhaustively reviewed [2,26]. For the ease hyperfine shift, i.e., the contribution to the chemical shift arising from the hyperfine interaction, can of the reader, I will recap here the terms that are of major use in paramagnetic systems. The hyperfine be factorized into a contact (CS) and pseudo-contact (PCS) contributions, according to Equations (1)– shift, i.e., the contribution to the chemical shift arising from the hyperfine interaction, can be factorized (3) into a contact (CS) and pseudo-contact (PCS) contributions, according to Equations (1)–(3) ∂ = ∂ + ∂ obs CS PCS (1) @obs = @CS + @PCS (1) μ + A ggµBBSS(S(S+ 1)1) ∂@ == (2)(2) CSCS 3γγ kT 3 II kT 1 para 2 3 para 2 @PCS = Dχax (3 cos θMI 1) + Dχ (sin θMI cos 2'MI) (3) 121πr3 − 23 rh ∂ = MI Δχ para (3cos2 θ −1) + Δχ para (sin 2 θ cos 2φ ) (3) PCS π 3 ax MI rh MI MI where A is the hyperfine12 couplingrMI constant, which is proportional2 to the electron spin density at the nucleus and can be anisotropic due to electron orbital contributions; g is the average g value along where A is the hyperfine coupling constant, which is proportional to the electron spin density at the the principal directions of the contact coupling, when the latter is anisotropic; µ is the electron Bohr nucleus and can be anisotropic due to electron orbital contributions; g is the averageB g value along magneton; S is the electron spin number; γI is the gyromagnetic ratio of a generic I nucleus; k is the principal directions of the contact coupling, when the latter is anisotropic; μB is the
Recommended publications
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • Faculty of Science Internal Bylaw of Graduate Studies "Program Curricula and Course Contents" 2016
    . Faculty of Science Internal Bylaw of Graduate Studies "Program Curricula and Course Contents" 2016 Table of Contents Page 1-Mathematics Department Mathematics Programs 1 Diplomas Professional Diploma in Applied Statistics 2 Professional Diploma in Bioinformatics 3 M.Sc. Degree M.Sc. Degree in Pure Mathematics 4 M.Sc. Degree in Applied Mathematics 5 M.Sc. Degree in Mathematical Statistics 6 M.Sc. Degree in Computer Science 7 M.Sc. Degree in Scientific Computing 8 Ph.D. Degree Ph. D. Degree in Pure Mathematics 9 Ph. D Degree in Applied Mathematics 10 Ph. D. Degree in Mathematical Statistics 11 Ph. D Degree in Computer Science 12 Ph. D Degree in Scientific Computing 13 2- Physics Department Physics Programs 14 Diplomas Diploma in Medical Physics 15 M.Sc. Degree M.Sc. Degree in Solid State Physics 16 M.Sc. Degree in Nanomaterials 17 M.Sc. Degree in Nuclear Physics 18 M.Sc. Degree in Radiation Physics 19 M.Sc. Degree in Plasma Physics 20 M.Sc. Degree in Laser Physics 21 M.Sc. Degree in Theoretical Physics 22 M.Sc. Degree in Medical Physics 23 Ph.D. Degree Ph.D. Degree in Solid State Physics 24 Ph.D. Degree in Nanomaterials 25 Ph.D. Degree in Nuclear Physics 26 Ph.D. Degree in Radiation Physics 27 Ph.D. Degree in Plasma Physics 28 Ph.D. Degree in Laser Physics 29 Ph.D. Degree in Theoretical Physics 30 3- Chemistry Department Chemistry Programs 31 Diplomas Professional Diploma in Biochemistry 32 Professional Diploma in Quality Control 33 Professional Diploma in Applied Forensic Chemistry 34 Professional Diploma in Applied Organic Chemistry 35 Environmental Analytical Chemistry Diploma 36 M.Sc.
    [Show full text]
  • CHEMISTRY MODULE No.31 : Magnetic Properties of Transition
    Web links http://en.wikipedia.org/wiki/Magnetism http://wwwchem.uwimona.edu.jm/courses/magnetism.html https://www.boundless.com/chemistry/textbooks/boundless-chemistry-textbook/transition- metals-22/bonding-in-coordination-compounds-crystal-field-theory-160/magnetic-properties- 616-6882/ http://en.wikipedia.org/wiki/Transition_metal http://chemwiki.ucdavis.edu/Inorganic_Chemistry/Crystal_Field_Theory/Crystal_Field_Theo ry/Magnetic_Properties_of_Coordination_Complexes Suggested Readings Miessler, G. L.; Tarr, D. A. (2003). Inorganic Chemistry (3rd ed.). Pearson Prentice Hall. ISBN 0-13-035471-6 Drago, R. S.Physical Methods In Chemistry. W.B. Saunders Company. ISBN 0721631843 (ISBN13: 9780721631844) Huheey, J. E.; Keiter, E.A. ; Keiter, R. L. ; Medhi O. K. Inorganic Chemistry: Principles of Structure and Reactivity.Pearson Education India, 2006 - Chemistry, Inorganic CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No.31 : Magnetic properties of transition metal ions Carlin, R. L. Magnetochemistry. SPRINGER VERLAG GMBH. ISBN 10: 3642707351 / ISBN 13: 9783642707353 SELWOOD, P. W. MAGNETOCHEMISIRY. Swinburne Press. ISBN 1443724890. Earnshaw, A. Introduction to Magnetochemistry Academic Press. ISBN 10: 1483255239 / ISBN 13: 9781483255231 Lacheisserie É, D. T. De; Gignoux, D., Schlenker, M. Magnetism Time-Lines Timeline Image Description s 1600 Dr. William Gilbert published the first systematic experiments on magnetism in "De Magnete". Source: http://en.wikipedia.org/wiki/William_Gilbert_(astronomer) CHEMISTRY PAPER No.: 7; Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) MODULE No.31 : Magnetic properties of transition metal ions 1777 Charles-Augustin de Coulomb showed that the magnetic repulsion or attraction between magnetic poles varies inversely with the square of the http://en.wikipedia.org/wiki/Charles-Augustin_de_Coulomb distance r.
    [Show full text]
  • Department of Chemistry Faculty of Science
    M.Phil./Ph.D. Syllabus DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE THE UNIVERSITY OF RAJSHAHI Syllabus for The Degree of Master of Philosophy (M.Phil.)/ Doctor of Philosophy (Ph.D.) in Chemistry Session: 2017-2018 Department of Chemistry, University of Rajshahi January, 2018 DEPARTMENT OF CHEMISTRY Syllabus for M. Phil / Ph.D. Courses The following courses each of 100 marks are designed for M..Phil / Ph.D. students as per ordinance passed by the Academic Council held on 17-18/10-98 (decision no. 37 of 196th Academic Council) and approved by the Syndicate at its 351st meeting held on 22/10/98. Course Number Course Title Chem 611 Physical Chemistry - X Chem 612 Physical Chemistry - XI Chem 613 Physical Chemistry - XII Chem 621 Organic Chemistry - VIII Chem 622 Organic Chemistry - IX Chem 623 Industrial Chemistry - II Chem 631 Inorganic Chemistry - IX Chem 632 Inorganic Chemistry - X Chem 633 Analytical Chemistry – II Chem 634 Bioinorganic Chemistry * Marks Distribution: (a) Close Book Examination : 75 (b) Class Assessment : 25 A student must complete two courses out of the above ten courses. The courses will be assigned to a research fellow on the recommendation of supervisor(s) and approved by the departmental Chairman / Academic Committee. 1 Course : Chem 611 Physical Chemistry-X Examination : 4 hours Full marks : 100 1. Physical Properties of Gases: Kinetic molecular theory, equation of states and transport phenomena of gases. 2. Chemical Thermodynamics: Thermochemistry, statistical thermodynamics, non-equilibrium or reversible thermodynamics. 3. Chemical Equilibria, Phase Rule and Distribution law. 4. Electrochemistry:Electrolytic conductance, electrolytic transference and Ionic equilibria. 5.
    [Show full text]
  • Dysprosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6
    Dysprosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6-dione Ligand Olivier Galangau, J González, Vincent Montigaud, Vincent Dorcet, Boris Le Guennic, Olivier Cador, Fabrice Pointillart To cite this version: Olivier Galangau, J González, Vincent Montigaud, Vincent Dorcet, Boris Le Guennic, et al.. Dys- prosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6-dione Ligand. Magnetochemistry, MDPI, 2020, 6 (2), pp.19. 10.3390/magnetochemistry6020019. hal-02957777 HAL Id: hal-02957777 https://hal.archives-ouvertes.fr/hal-02957777 Submitted on 5 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License magnetochemistry Article Dysprosium Single-Molecule Magnets Involving 1,10-Phenantroline-5,6-dione Ligand Olivier Galangau , Jessica Flores Gonzalez, Vincent Montigaud, Vincent Dorcet, Boris le Guennic , Olivier Cador and Fabrice Pointillart * Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France; [email protected]
    [Show full text]
  • Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet Ekaterina Mamontova, Jérôme Long, Rute A
    Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet Ekaterina Mamontova, Jérôme Long, Rute A. S. Ferreira, Alexandre Botas, Dominique Luneau, Yannick Guari, Luis D. Carlos, Joulia Larionova To cite this version: Ekaterina Mamontova, Jérôme Long, Rute A. S. Ferreira, Alexandre Botas, Dominique Luneau, et al.. Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet. Magnetochemistry, MDPI, 2016, 2 (4), pp.41. 10.3390/magnetochemistry2040041. hal-01399122 HAL Id: hal-01399122 https://hal.archives-ouvertes.fr/hal-01399122 Submitted on 13 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. magnetochemistry Article Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet Ekaterina Mamontova 1, Jérôme Long 1,*, Rute A. S. Ferreira 2, Alexandre M. P. Botas 2,3, Dominique Luneau 4, Yannick Guari 1, Luis D. Carlos 2 and Joulia Larionova 1 1 Institut Charles Gerhardt Montpellier, UMR 5253, Ingénierie Moléculaire et Nano-Objects, Université de Montpellier,
    [Show full text]
  • Magnetochemistry
    Magnetochemistry (12.7.06) H.J. Deiseroth, SS 2006 Magnetochemistry The magnetic moment of a single atom (µ) (µ is a vector !) μ µ μ = i F [Am2], circular current i, aerea F F -27 2 μB = eh/4πme = 0,9274 10 Am (h: Planck constant, me: electron mass) μB: „Bohr magneton“ (smallest quantity of a magnetic moment) → for one unpaired electron in an atom („spin only“): s μ = 1,73 μB Magnetochemistry → The magnetic moment of an atom has two components a spin component („spin moment“) and an orbital component („orbital moment“). →Frequently the orbital moment is supressed („spin-only- magnetism“, e.g. coordination compounds of 3d elements) Magnetisation M and susceptibility χ M = (∑ μ)/V ∑ μ: sum of all magnetic moments μ in a given volume V, dimension: [Am2/m3 = A/m] The actual magnetization of a given sample is composed of the „intrinsic“ magnetization (susceptibility χ) and an external field H: M = H χ (χ: suszeptibility) Magnetochemistry There are three types of susceptibilities: χV: dimensionless (volume susceptibility) 3 χg:[cm/g] (gramm susceptibility) 3 χm: [cm /mol] (molar susceptibility) !!!!! χm is used normally in chemistry !!!! Frequently: χ = f(H) → complications !! Magnetochemistry Diamagnetism - external field is weakened - atoms/ions/molecules with closed shells -4 -2 3 -10 < χm < -10 cm /mol (negative sign) Paramagnetism (van Vleck) - external field is strengthened - atoms/ions/molecules with open shells/unpaired electrons -4 -1 3 +10 < χm < 10 cm /mol → diamagnetism (core electrons) + paramagnetism (valence electrons) Magnetism
    [Show full text]
  • Magnetic Properties and the Superatom Character of 13-Atom Platinum Nanoclusters
    Magnetochemistry 2015, 1, 28-44; doi:10.3390/magnetochemistry1010028 OPEN ACCESS magnetochemistry ISSN 2312-7481 www.mdpi.com/journal/magnetochemistry Article Magnetic Properties and the Superatom Character of 13-Atom Platinum Nanoclusters Emil Roduner 1,2,* and Christopher Jensen 1,† 1 Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany; E-Mail: [email protected] 2 Chemistry Department, University of Pretoria, Pretoria 0002, South Africa † Present address: ThyssenKrupp Industrial Solutions AG, Business Unit Process Technologies, Neubeckumer Straße 127, D-59320 Ennigerloh, Germany. * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +0041-44-422-34-28. Academic Editor: Carlos J. Gómez García Received: 25 October 2015 / Accepted: 18 November 2015 / Published: 26 November 2015 Abstract: 13-atom platinum nanoclusters have been synthesized quantitatively in the pores of the zeolites NaY and KL. They reveal highly interesting magnetic properties like high-spin states, a blocking temperature, and super-diamagnetism, depending heavily on the loading of chemisorbed hydrogen. Additionally, EPR active states are observed. All of these magnetic properties are understood best if one considers the near-spherical clusters as analogs of transition metal atoms with low-spin and high-spin states, and with delocalized molecular orbitals which have a structure similar to that of atomic orbitals. These clusters are, therefore, called superatoms, and it is their analogy with normal atoms which is in the focus of the present work, but further phenomena, like the observation of a magnetic blocking temperature and the possibility of superconductivity, are discussed.
    [Show full text]
  • A Themed Issue of Functional Molecule-Based Magnets
    A Themed Issue of Functional Molecule-Based Magnets A Themed Issue of Functional • Keiichi Katoh • Keiichi Molecule-Based Magnets Dedicated to Professor Masahiro Yamashita on the Occasion of his 65th Birthday Edited by Keiichi Katoh Printed Edition of the Special Issue Published in Magnetochemistry www.mdpi.com/journal/magnetochemistry A Themed Issue of Functional Molecule-Based Magnets A Themed Issue of Functional Molecule-Based Magnets Dedicated to Professor Masahiro Yamashita on the Occasion of his 65th Birthday Special Issue Editor Keiichi Katoh MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Special Issue Editor Keiichi Katoh Tohoku University Japan Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Magnetochemistry (ISSN 2312-7481) (available at: https://www.mdpi.com/journal/ magnetochemistry/special issues/Molecule based Magnets). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-901-1 (Pbk) ISBN 978-3-03928-902-8 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Magnetite (Fe3o4) Nanoparticles in Biomedical Application: from Synthesis to Surface Functionalisation
    magnetochemistry Review Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation Lokesh Srinath Ganapathe 1, Mohd Ambri Mohamed 1 , Rozan Mohamad Yunus 2 and Dilla Duryha Berhanuddin 1,* 1 Institut Kejuruteraan Mikro dan Nanoelektronik (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; [email protected] (L.S.G.); [email protected] (M.A.M.) 2 Fuel Cell Institute, Level 4, Research Complex, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-38911-8544 Received: 28 October 2020; Accepted: 20 November 2020; Published: 3 December 2020 Abstract: Nanotechnology has gained much attention for its potential application in medical science. Iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications. In particular, magnetite (Fe3O4) nanoparticles are widely applied due to their biocompatibility, high magnetic susceptibility, chemical stability, innocuousness, high saturation magnetisation, and inexpensiveness. Magnetite (Fe3O4) exhibits superparamagnetism as its size shrinks in the single-domain region to around 20 nm, which is an essential property for use in biomedical applications. In this review, the application of magnetite nanoparticles (MNPs) in the biomedical field based on different synthesis approaches and various surface functionalisation materials was discussed. Firstly, a brief introduction on the MNP properties, such as physical, thermal, magnetic, and optical properties, is provided. Considering that the surface chemistry of MNPs plays an important role in the practical implementation of in vitro and in vivo applications, this review then focuses on several predominant synthesis methods and variations in the synthesis parameters of MNPs. The encapsulation of MNPs with organic and inorganic materials is also discussed.
    [Show full text]
  • Emergence of On-Surface Magnetochemistry § ‡ ‡ † ‡ Nirmalya Ballav,*, Christian Wackerlin,̈ Dorota Siewert, Peter M
    Perspective pubs.acs.org/JPCL Emergence of On-Surface Magnetochemistry § ‡ ‡ † ‡ Nirmalya Ballav,*, Christian Wackerlin,̈ Dorota Siewert, Peter M. Oppeneer, and Thomas A. Jung*, § Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pashan, Pune 411 008, India ‡ Laboratory for Micro and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland † Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden ABSTRACT: The control of exchange coupling across the molecule−substrate interface is a key feature in molecular spintronics. This Perspective reviews the emerging field of on-surface magnetochemistry, where coordination chemistry is applied to surface-supported metal porphyrins and metal phthalocyanines to control their magnetic properties. The particularities of the surface as a multiatomic ligand or “surface ligand” are introduced. The asymmetry involved in the action of a chemical ligand and a surface ligand on the same planar complexes modifies the well-established “trans effect” to the notion of the “surface-trans effect”. As ad-complexes on ferromagnetic substrates are usually exchange-coupled, the magnetochemical implications of the surface-trans effect are of particular interest. The combined action of the different ligands allows for the reproducible control of spin states in on-surface supramolecular architectures and opens up new ways toward building and operating spin systems at interfaces. Notably, spin-switching has been demonstrated to be controlled collectively via the interaction with a ligand (chemical selectivity) and individually via local addressing at the interface. century ago, Alfred Werner laid the foundation of modern Emerging evidence shows that A coordination chemistry, an achievement for which he was awarded the Nobel Prize in Chemistry in 1913.
    [Show full text]
  • Explorations of Magnetic Properties of Noble Gases: the Past, Present, and Future
    magnetochemistry Review Explorations of Magnetic Properties of Noble Gases: The Past, Present, and Future Włodzimierz Makulski Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; [email protected]; Tel.: +48-22-55-26-346 Received: 23 October 2020; Accepted: 19 November 2020; Published: 23 November 2020 Abstract: In recent years, we have seen spectacular growth in the experimental and theoretical investigations of magnetic properties of small subatomic particles: electrons, positrons, muons, and neutrinos. However, conventional methods for establishing these properties for atomic nuclei are also in progress, due to new, more sophisticated theoretical achievements and experimental results performed using modern spectroscopic devices. In this review, a brief outline of the history of experiments with nuclear magnetic moments in magnetic fields of noble gases is provided. In particular, nuclear magnetic resonance (NMR) and atomic beam magnetic resonance (ABMR) measurements are included in this text. Various aspects of NMR methodology performed in the gas phase are discussed in detail. The basic achievements of this research are reviewed, and the main features of the methods for the noble gas isotopes: 3He, 21Ne, 83Kr, 129Xe, and 131Xe are clarified. A comprehensive description of short lived isotopes of argon (Ar) and radon (Rn) measurements is included. Remarks on the theoretical calculations and future experimental intentions of nuclear magnetic moments of noble gases are also provided. Keywords: nuclear magnetic dipole moment; magnetic shielding constants; noble gases; NMR spectroscopy 1. Introduction The seven chemical elements known as noble (or rare gases) belong to the VIIIa (or 18th) group of the periodic table. These are: helium (2He), neon (10Ne), argon (18Ar), krypton (36Kr), xenon (54Xe), radon (86Rn), and oganesson (118Og).
    [Show full text]