Anomalocaridids Together the Unusual Anatomy of the Mtocs Are Also Studied in Other Anomalocaridids

Total Page:16

File Type:pdf, Size:1020Kb

Anomalocaridids Together the Unusual Anatomy of the Mtocs Are Also Studied in Other Anomalocaridids Current Biology Vol 23 No 19 R860 comprehensive cell cycle controlling before palaeontologists could piece machinery. Anomalocaridids together the unusual anatomy of the MTOCs are also studied in other anomalocaridids. They are completely fungi, e.g. Aspergillus nidulans, Allison C. Daley soft bodied animals, lacking bones or Ustilago maydis and Ashbya gossypii. hard shells, but their frontal appendages Much less is known about the What are anomalocaridids? Imagine and circular mouthparts were about as composition of these MTOCs. you’re a small crab-like creature hard as a fingernail and so are found living on the ocean floor: you’re just fossilized on their own much more often Is the SPB equivalent to the minding your own business, when than as part of full body specimens. centrosome? Although sharing no suddenly you’re in the shadow of a The first anomalocaridid fossils were structural similarity, the yeast SPB is huge animal gliding through the water found in 1892 near the Burgess Shale, the functional equivalent of animal above you, its body flattened with and consisted of isolated frontal cells’ centrosomes. Whereas the wide swim flaps, huge limbs with appendages of Anomalocaris, which centriole-less SPBs are situated in sharp claws and a circular toothey were then thought to be the body of a the NE during mitosis (fungi have mouth; and it’s looking at you with shrimp. Soon after, strange fossils in mostly a closed mitosis) to organize its two large insect-like eyes. You are the form of a ring of plates with sharp the mitotic spindle, the centrosome, about to become the next meal of an teeth were found and interpreted which consists of a pair of cylindrical anomalocaridid! These animals are to be a jellyfish. Actually, they were centrioles surrounded by the the Earth’s oldest super predators. anomalocaridid mouthparts (Figure 1). pericentriolar material, is associated Now extinct, the anomalocaridids Other specimens were discovered and with the NE in interphase and then were found in marine environments thought to be sponges, sea cucumbers, becomes released with nuclear worldwide in Cambrian and Early and various early arthropods, before envelope breakdown in early mitosis Ordovician times, about 520 to 480 it was revealed in 1985 that all these when the centrosome establishes million years ago. They originated fossils were actually different parts the mitotic spindle. Despite these during a rapid burst of evolution called of the anomalocaridid body. All structural differences, a small set of the Cambrian Explosion, when most anomalocaridids have a flattened components of the yeast SPB and the major animal phyla first appeared in a and segmented body with a series of vertebrate centrosome are conserved, relatively short period of time. wide swim flaps, and a head bearing reflecting ancestral functions in a pair of spiney frontal appendages, duplication and MT organization. How do we know all that? The fossil circular plated mouthparts and a pair of record of the Cambrian Explosion multifaceted eyes on stalks (Figure 1). What can we learn from SPBs? SPBs is exquisite, because special local have proven to be as good a model conditions allowed soft tissues to How many different types of for addressing how a cell restricts the be preserved, meaning that whole anomalocaridids were there? duplication of the MTOC to one event bodies can be seen with skin, eyes, Recent research has revealed that the per cell cycle as they are for studying gills and internal organs fully intact. anomalocaridids were highly diverse MT nucleation. Furthermore, SPBs These fossils are flattened carbon and distributed worldwide. There are explain to us how cells can fulfil many impressions in dark shaley rock (Figure at least seven different genera and 13 diverging processes with a limited set 1). Localities yielding this type of fossil species of anomalocaridids known of protagonists. are known as ‘Konservat Lagerstätten’, from Canada, China, Australia, the USA, the most famous of which is the Greenland and Morocco. The group is Where can I find out more? Burgess Shale in the Canadian Rocky named after Anomalocaris canadensis, Adams, I.R., and Kilmartin, J.V. (1999). Localization Mountains. It took decades of collecting the first anomalocaridid ever found, of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J. Cell Biol. 145, 809–823. Bullitt, E., Rout, M.P., Kilmartin, J.V., and Akey, C.W. (1997). The yeast spindle pole body is assembled around a central crystal of Spc42p. Cell 89, 1077–1086. Jaspersen, S.L., and Winey, M. (2004). The budding yeast spindle pole body: structure, duplication, and function. Annu. Rev. Cell Dev. Biol. 20, 1–28. Knop, M., Pereira, G., Schiebel E. (1999). 10 mm Microtubule organization by the budding yeast spindle pole body. Biol. Cell 91, 291–304. Lim, H.H., Zhang, T., and Surana, U. (2009). Regulation of centrosome separation in yeast and vertebrates: common threads. Trends Cell Biol. 19, 325–333. Pereira, G., and Schiebel, E. (2001). The role of the yeast spindle pole body and the mammalian centrosome in regulating late mitotic events. Curr. Opin. Cell Biol. 13, 762–769. 10 mm Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Figure 1. Anomalocaridids from the Burgess Shale. Im Neuenheimer Feld 282, 69120 Heidelberg, Top left: Mouthparts of Peytoia. Bottom left: Full body specimen of Anomalocaris with Germany. complete frontal appendage (arrow). Photos courtesy of Jean-Bernard Caron. Top right: Full E-mail: [email protected] body specimen of Hurdia. Bottom right: Model of Peytoia by E. Horn. Magazine R861 from the Burgess Shale in Canada (Figure 1). Anomalocaris is found at Priapulida most Cambrian fossil lagerstätten. Tardigrada The Burgess Shale has yielded a wide Onychophora variety of anomalocaridids, including Lobopodians the highly abundant Hurdia, which is characterised by an enigmatic large Opabinia carapace that extended forward from Stem group Anomalocaris arthropoda its head and appeared to be empty Peytoia (Figure 1). The function of this structure Hurdia remains unknown. The Chengjiang Biota Anomalocaridids Leanchoilia in China has yielded several beautifully preserved whole body specimens of Chelicerata and Eurypterida anomalocaridids, but at most other Trilobita Cambrian localities only fragments of Crown group anomalocaridids are known. Even still, arthropoda Hexapoda these fragments can reveal important Crustacea morphological details not seen Myriapoda elsewhere, such as at the Emu Bay Shale in Australia where exceptional Current Biology preservation of the eyes revealed that they were composed of over Figure 2. Tree of arthropod relationships. Anomalocaridids are found in the stem lineage leading to crown group Arthropoda. Drawings 16,000 tiny lenses. For over a century, by M. Streng. anomalocaridids were thought to be exclusively Cambrian in age, until the shrimp. The eyes of Anomalocaris are identified morphological differences in recent discovery of giant anomalocaridid made up of thousands of tiny lenses, the appendages and mouthparts of the fossils in the Ordovician of Morocco just like the eye of a fly. Thus, we can anomalocaridids, and suggested that revealed that they had survived much determine that Anomalocaris and other different taxa ate different diets. Some longer than previously thought. anomalocaridids were stem lineage anomalocaridids like Anomalocaris members of the phylum Arthropoda, have long appendages with short How big were they? Anomalocaridids which today includes spiders, crabs, spikey spines (Figure 1), perfect were the largest swimming animals in millipedes, centipedes and insects. As for grasping prey off the sea floor, the Cambrian seas. The majority of taxa arthropod ancestors, understanding while others like Hurdia have short ranged from 30 cm to 60 cm in length, the complex morphology of the appendages with long slender spines but some were over a metre long. That’s anomalocaridids has given us insight that could have made a crude net for pretty big when you think that most into the evolution of key arthropod filtering smaller prey items out of the other animals alive at that time were traits, such as segmentation, biramous water column or seafloor sediment only a few centimetres in length and limbs, and cephalic shields. (Figure 1). Anomalocaridids were lived on or in the sea floor. undoubtedly important in Cambrian What did they eat? Their highly- marine ecosystems. Okay, so that’s what they looked toothed mouthparts and the sharp like, but what were they? At first, the claws on their frontal appendages Where can I find out more? Chen, J., Ramsköld, L., and Zhou, G.Q. (1994). anomalocaridids and other oddities suggest that the anomalocaridids were Evidence for monophyly and arthropod affinity from the Cambrian Explosion were active predators. They were probably of Cambrian giant predators. Science 264, considered so weird that they could agile swimmers, as indicated by the 1304–1308. Collins, D. (1996). The “evolution” of Anomalocaris only be dead-end experiments in hydrodynamic shape of their flattened and its classification in the arthropod class animal form. However, parts of their body with wide swim flaps, and their Dinocarida (nov) and order Radiodonta (nov). J. Pal. 70, 280–293. bodies are actually very similar to those highly developed eyes suggest they Daley, A.C. and Budd, G.E. (2010). New of animals alive today. If a fossil is had good visual acuity for locating anomalocaridid appendages from the Burgess similar to a particular group of living prey items. With all these armaments, Shale, Canada. Palaeontology 53, 721–738. Daley, A.C., Budd, G.E., Caron, J.-B., Edgecombe, animals but doesn’t quite have all of coupled with their large body size, the G.D. and Collins, D. (2009). The Burgess Shale the defining characteristics, we place anomalocaridids were surely highly anomalocaridid Hurdia and its significance for early euarthropod evolution. Science 323, it in the ‘stem lineage’ or ancestral line mobile and very deadly predators.
Recommended publications
  • Discussion Acta Palaeontologica Polonica 63 (1): 105– 110, 2018
    Discussion Acta Palaeontologica Polonica 63 (1): 105– 110, 2018 Reply to Comment on “Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris” with the formal description of Stanleycaris STEPHEN PATES, ALLISON C. DALEY, and JAVIER ORTEGA-HERNÁNDEZ As part of a comprehensive examination of all radiodontans extend beyond the fossil margins into the rock matrix, demon- from Cambrian localities in the USA, Pates et al. (2017a, b) strating that they are not part of the fossil specimen. and Pates and Daley (2017) revised the taxonomic affinities of several described specimens. This included the reinter- Antenniform frontal appendage.—There are no features that distinguish the structure regarded by Gámez Vintaned et al. pretation of two putative lobopodians, one from the Wheeler (2011) as an antenniform limb, and the interpretation of this Formation (Utah, USA) and one from the Valdemiedes For- feature as a small burrow is more compelling as it extends into mation (Spain), as frontal appendages of the radiodontan the surrounding matrix. Structures identified as “pores” are like- genera Stanleycaris and Caryosyntrips respectively. In their ly plucked mineral grains approximately aligned in this region, comment, Gámez Vintaned and Zhuravlev (2018) disagree and other unaligned voids can be seen elsewhere in the SEM with these conclusions and raise three topics for discussion: images (Gámez Vintaned et al. 2011: fig. 12.5h, k). (i) anatomical features they suggest support a lobopodian affinity for “Mureropodia”; (ii) the identity of Caryosyntrips Proboscis with retractor-protractor muscle system.—The as a radiodontan, and the assignment of certain specimens to presence of a fleshy proboscis among lobopodians has only been this genus; and (iii) the nomenclatural status of Stanleycaris reliably documented in the Chengjiang Onychodictyon ferox (Ou hirpex as an invalid taxon.
    [Show full text]
  • Aysheaia Prolata from the Utah Wheeler Formation (Drumian, Cambrian) Is a Frontal Appendage of the Radiodontan Stanleycaris
    Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris STEPHEN PATES, ALLISON C. DALEY, and JAVIER ORTEGA-HERNÁNDEZ Pates, S., Daley, A.C., and J. Ortega-Hernández, J. 2017. Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris. Acta Palaeontologica Polonica 62 (3): 619–625. Aysheaia prolata, was described as the only lobopodian from the Drumian (Cambrian) Wheeler Formation in Utah, USA, and the sole representative of this genus besides the type species Aysheaia pedunculata, from the Cambrian (Stage 5) Stephen Formation, British Columbia. A redescription of Aysheaia prolata reveals previously overlooked morphological features, including segmental boundaries between putative lobopods, and curved terminal spines on the putative anterior end. These observations undermine lobopodian affinities of Aysheaia prolata, and instead we interpret this specimen as an isolated radiodontan frontal appendage. The presence of 11 podomeres, five of which possess elongate and anteri- orly recurved ventral blades with auxiliary spines, together with shorter robust dorsal spines, identify the specimen as Stanleycaris. This represents the first report of Stanelycaris outside of the Cambrian Stage 5 thin Stephen Formation in British Columbia, expanding its palaeobiogeographic and stratigraphic range. Aysheaia is left as a monotypic genus endemic to the Burgess Shale. The Spence Shale luolishaniid Acinocrinus stichus is currently the only lobopodian known from the Cambrian of Utah. Key words: Euarthropoda, Radiodonta, Hurdiidae, Cambrian, United States. Stephen Pates [[email protected]], Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK. Allison C. Daley [[email protected]], Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015, Lausanne, Switzerland.
    [Show full text]
  • The Secrets of Fossils Lesson by Tucker Hirsch
    The Secrets of Fossils Lesson by Tucker Hirsch Video Titles: Introduction: A New view of the Evolution of Animals Cambrian Explosion Jenny Clack, Paleontologist: The First Vertebrate Walks on Land Des Collins, Paleontologist: The Burgess Shale Activity Subject: Assessing evolutionary links NEXT GENERATION SCIENCE STANDARDS and evidence from comparative analysis of the fossil MS-LS4-1 Analyze and interpret data for patterns record and modern day organisms. in the fossil record that document the existence, diversity, extinction, and change of life forms Grade Level: 6 – 8 grades throughout the history of life on Earth under the Introduction assumptions that natural laws operate today as In this lesson students make connections between in the past. [Clarification Statement: Emphasis fossils and modern day organisms. Using the is on finding patterns of changes in the level of information about the Cambrian Explosion, they complexity of anatomical structures in organisms explore theories about how and why organisms diversified. Students hypothesize what evidence and the chronological order of fossil appearance might be helpful to connect fossil organisms to in the rock layers.] [Assessment Boundary: modern organisms to show evolutionary connections. Assessment does not include the names of Students use three videos from shapeoflife.org. individual species or geological eras in the fossil record.] Assessments Written MS-LS4-2 Apply scientific ideas to construct an Time 100-120 minutes (2 class periods) explanation for the anatomical similarities and Group Size Varies; single student, student pairs, differences among modern organisms and between entire class modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis Materials and Preparation is on explanations of the evolutionary relationships • Access to the Internet to watch 4 Shape of Life videos among organisms in terms of similarity or • Video Worksheet differences of the gross appearance of anatomical • “Ancient-Modern” Activity.
    [Show full text]
  • Arthropod Origins
    Bulletin of Geosciences, Vol. 78, No. 4, 323–334, 2003 © Czech Geological Survey, ISSN 1214-1119 Arthropod origins Jan Bergström 1 – Hou Xian-Guang 2 1 Swedish Museum of Nature History, Box 50007, S-104 05 Stockholm, Sweden. E-mail: [email protected] 2 Yunnan University, Yunnan Research Center for Chengjiang Biota, Kunming 650091, Peoples’ Republic of China. E-mail: [email protected] Abstract. Reconsideration of the position of trilobite-like arthropods leads to an idea of the last shared ancestor of known (eu)arthropods. The ancestry and morphological evolution is traced back from this form to a hypothetical ciliated and pseudosegmented slug-like ancestor. Evolution logically passed through a lobopodian stage. Extant onychophorans, Cambrian xenusians, and perhaps anomalocaridids with their kin (the Dinocaridida) may represent probable offshoots on the way. As such, these groups are highly derived and not ancestral to the arthropods. Results of molecular studies indicate a rela- tionship to moulting worms, which at first could seem to be in conflict with what was just said. However, if this is correct, the arthropod and moulting worm lineages must have diverged when some “coelomate” features such as specific vascular and neural systems were still present. The moulting worms would therefore have lost such characters, either only once or several times. Key words: arthropod origins, Anomalocaris, Tardigrada, Cambrian arthropods, Cycloneuralia, trilobitomorphs, eye ridge Introduction immediate ancestors might have looked like, and what they could not have been like. For instance, if the first arthro- Most of our important information on early arthropods co- pods were completely primitive in certain respects, they mes from such deposits as the Lower Cambrian Chengji- cannot be traced back to animals that are highly derived in ang beds, the Middle Cambrian Burgess Shale, and the Up- these respects.
    [Show full text]
  • New Anomalocaridid Frontal Appendages from the Guanshan Biota, Eastern Yunnan
    Article Geology November 2013 Vol.58 No.32: 39373942 doi: 10.1007/s11434-013-5908-x New anomalocaridid frontal appendages from the Guanshan biota, eastern Yunnan WANG YuanYuan1, HUANG DiYing1* & HU ShiXue2 1 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; 2 Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, China Received August 1, 2012; accepted April 15, 2013; published online June 14, 2013 Anomalocaridids were large predators of the Cambrian seas at the top of the trophic pyramid. Complete anomalocaridid speci- mens have been rarely discovered and the rigid isolated frontal appendages and mouthparts are more commonly preserved. Here we study new material of the frontal appendages from the Wulongqing Formation, Cambrian Stage 4, Series 2 near Kunming, eastern Yunnan. Two new forms of anomalocaridid frontal appendages are described, namely Anomalocaris kunmingensis sp. nov. and Paranomalocaris multisegmentalis gen. nov., sp. nov. The frontal appendage of A. kunmingensis sp. nov. probably comprises 15 podomeres of which the first one has a weakened skeletoned, the second one is armed with small spines, and the third one is armed with remarkably robust proximal ventral spines with 6 anisomerous auxiliary spines; paired auxiliary spines are associated with podomeres 4–14; podomeres 12–14 are armed with paired dorsal spines, and the last podomere bears 2 distal spines, one spine distinctly larger than the other. The frontal appendage of P. multisegmentalis tapered backwards, consisting of 22 visible podomeres; the most ventral spine is armed with 5 pairs of auxiliary spines, and podomeres 12–21 bear dorsal spines, the last podomere with 2 small distal spines.
    [Show full text]
  • The Endemic Radiodonts of the Cambrian Stage 4 Guanshan Biota of South China
    Editors' choice The endemic radiodonts of the Cambrian Stage 4 Guanshan Biota of South China DE-GUANG JIAO, STEPHEN PATES, RUDY LEROSEY-AUBRIL, JAVIER ORTEGA-HERNÁNDEZ, JIE YANG, TIAN LAN, and XI-GUANG ZHANG Jiao, D.-G., Pates, S., Lerosey-Aubril, R., Ortega-Hernández, J., Yang, J., Lan, T., and Zhang, X.-G. 2021. The endemic radiodionts of the Cambrian Stage 4 Guanshan Biota of South China. Acta Palaeontologica Polonica 66 (2): 255–274. The Guanshan Biota (South China, Cambrian, Stage 4) contains a diverse assemblage of biomineralizing and non-biomin- eralizing animals. Sitting temporally between the Stage 3 Chengjiang and Wuliuan Kaili Biotas, the Guanshan Biota con- tains numerous fossil organisms that are exclusive to this exceptional deposit. The Guanshan Konservat-Lagerstätte is also unusual amongst Cambrian strata that preserve non-biomineralized material, as it was deposited in a relatively shallow water setting. In this contribution we double the diversity of radiodonts known from the Guanshan Biota from two to four, and describe the second species of Paranomalocaris. In addition, we report the first tamisiocaridid from South China, and confirm the presence of a tetraradial oral cone bearing small and large plates in “Anomalocaris” kunmingensis, the most abundant radiodont from the deposit. All four radiodont species, and three genera, are apparently endemic to the Guanshan Biota. When considered in the wider context of geographically and temporally comparable radiodont faunas, endemism in Guanshan radiodonts is most likely a consequence of the shallower and more proximal environment in which they lived. The strong coupling of free-swimming radiodonts and benthic communities underlines the complex relationship between the palaeobiogeographic and environmental distributions of prey and predators.
    [Show full text]
  • The Early History of the Metazoa—A Paleontologist's Viewpoint
    ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons.
    [Show full text]
  • New Suspension-Feeding Radiodont Suggests Evolution of Microplanktivory in Cambrian Macronekton
    ARTICLE DOI: 10.1038/s41467-018-06229-7 OPEN New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton Rudy Lerosey-Aubril 1 & Stephen Pates 2,3 The rapid diversification of metazoans and their organisation in modern-style marine eco- systems during the Cambrian profoundly transformed the biosphere. What initially sparked 1234567890():,; this Cambrian explosion remains passionately debated, but the establishment of a coupling between pelagic and benthic realms, a key characteristic of modern-day oceans, might represent a primary ecological cause. By allowing the transfer of biomass and energy from the euphotic zone—the locus of primary production—to the sea floor, this biological pump would have boosted diversification within the emerging metazoan-dominated benthic communities. However, little is known about Cambrian pelagic organisms and their trophic interactions. Here we describe a filter-feeding Cambrian radiodont exhibiting morphological characters that likely enabled the capture of microplankton-sized particles, including large phyto- plankton. This description of a large free-swimming suspension-feeder potentially engaged in primary consumption suggests a more direct involvement of nekton in the establishment of an oceanic pelagic-benthic coupling in the Cambrian. 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia. 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. 3 Institute of
    [Show full text]
  • Arthropod Fossil Data Increase Congruence of Morphological and Molecular Phylogenies
    ARTICLE Received 14 Jan 2013 | Accepted 21 Aug 2013 | Published 30 Sep 2013 DOI: 10.1038/ncomms3485 Arthropod fossil data increase congruence of morphological and molecular phylogenies David A. Legg1,2,3, Mark D. Sutton1 & Gregory D. Edgecombe2 The relationships of major arthropod clades have long been contentious, but refinements in molecular phylogenetics underpin an emerging consensus. Nevertheless, molecular phylogenies have recovered topologies that morphological phylogenies have not, including the placement of hexapods within a paraphyletic Crustacea, and an alliance between myriapods and chelicerates. Here we show enhanced congruence between molecular and morphological phylogenies based on 753 morphological characters for 309 fossil and Recent panarthropods. We resolve hexapods within Crustacea, with remipedes as their closest extant relatives, and show that the traditionally close relationship between myriapods and hexapods is an artefact of convergent character acquisition during terrestrialisation. The inclusion of fossil morphology mitigates long-branch artefacts as exemplified by pycnogonids: when fossils are included, they resolve with euchelicerates rather than as a sister taxon to all other euarthropods. 1 Department of Earth Sciences and Engineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK. 2 Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK. 3 Oxford University Museum of Natural History, Oxford OX1 3PW, UK. Correspondence and requests for materials should be addressed to D.A.L. (email: [email protected]). NATURE COMMUNICATIONS | 4:2485 | DOI: 10.1038/ncomms3485 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3485 rthropods are diverse, disparate, abundant and ubiqui- including all major extinct and extant panarthropod groups.
    [Show full text]
  • A New Radiodont (Stem Euarthropoda) Frontal Appendage with a Mosaic of Characters from the Cambrian (Series 2 Stage 3) Chengjiang Biota
    A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota Jin Guo1, Stephen Pates2, 3*, Peiyun Cong4, 5, 6*, Allison C. Daley 3, Gregory D. Edgecombe5, 6, Taimin Chen1 and Xianguang Hou4, 6 1 Management Committee of the Chengjiang Fossil Site World Heritage, Chengjiang 652599, China; email: [email protected], [email protected] 2 Department of Zoology, University of Oxford, Oxford OX1 3PS, UK; email: [email protected] 3 Institute of Earth Sciences, University of Lausanne, Lausanne CH-1015, Switzerland; email: [email protected] 4 Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China; email: [email protected], [email protected] 5 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; email: [email protected], [email protected] 6 MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091 China. * Corresponding author Abstract: The classification of Radiodonta is primarily based on the morphology of their frontal appendages, a main feeding structure of this iconic group of mostly Cambrian stem-group euarthropods. However, recent progress in the description and revision of radiodont taxa, particularly drawing on their frontal appendages, has exposed morphological variation that challenges reliable identification of higher- level groupings. Here we describe a new taxon of Radiodonta, Laminacaris chimera gen. et sp. nov., from the Cambrian Series 2, Stage 3, Chengjiang biota of China, based on unique frontal appendage morphology. Laminacaris is distinctive for its combination of characters shared by hurdiids and other early Cambrian radiodont families.
    [Show full text]
  • An Armoured Cambrian Lobopodian from China with Arthropod-Like Appendages
    LETTER doi:10.1038/nature09704 An armoured Cambrian lobopodian from China with arthropod-like appendages Jianni Liu1,2, Michael Steiner2, Jason A. Dunlop3, Helmut Keupp2, Degan Shu1,4, Qiang Ou4, Jian Han1, Zhifei Zhang1 & Xingliang Zhang1 Cambrian fossil Lagersta¨tten preserving soft-bodied organisms expanded compared to the trunk and shows no sign of becoming have contributed much towards our understanding of metazoan thinner towards the end. No mouth can be observed (Figs 2a–e and origins1–3. Lobopodians are a particularly interesting group that 3). A small projection occurs at the posterior end of the body (Figs 2a–c diversified and flourished in the Cambrian seas. Resembling and 3). The main body trunk is sub-circular in outline and composed ‘worms with legs’, they have long attracted much attention in that of nine segments, each comprising five rows of sub-parallel transverse they may have given rise to both Onychophora (velvet worms)4–6 annulations alternating with five rings of tubercles with tiny spines and Tardigrada (water bears)7,8,aswellastoarthropodsingeneral9–12. (Fig. 1a, b); each with 10–12 tubercles. The tiny spines are not well- Here we describe Diania cactiformis gen. et sp. nov. as an ‘armoured’ preserved, possibly as an artefact of taphonomy, and in most cases only lobopodian from the Chengjiang fossil Lagersta¨tte (Cambrian Stage the tubercles of these spines are observable (Figs 1a, b and 2b–c). 3), Yunnan, southwestern China. Although sharing features with A pair of strongly armoured appendages protrudes from the ven- other typical lobopodians, it is remarkable for possessing robust trolateral region of each segment, each limb attached robustly at its and probably sclerotized appendages, with what appear to be articu- base to the otherwise slender trunk.
    [Show full text]
  • Brachiopod-Dominated Communities and Depositional Environment of the Guanshan Konservat-Lagerstätte, Eastern Yunnan, China
    Downloaded from http://jgs.lyellcollection.org/ by guest on October 1, 2021 Research article Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-043 Brachiopod-dominated communities and depositional environment of the Guanshan Konservat-Lagerstätte, eastern Yunnan, China Feiyang Chen1,2, Glenn A. Brock1,2, Zhiliang Zhang1,2, Brittany Laing2,3, Xinyi Ren1 and Zhifei Zhang1* 1 State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi’an, 710069, China 2 Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia 3 Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada FC, 0000-0001-8994-4187; GAB, 0000-0002-2277-7350; Z-LZ, 0000-0003-2296-5973; BL, 0000-0002-0874-8879; Z-FZ, 0000-0003-0325-5116 * Correspondence: [email protected]; [email protected] Abstract: The Guanshan Biota is an unusual early Cambrian Konservat-Lagerstätte from China and is distinguished from all other exceptionally preserved Cambrian biotas by the dominance of brachiopods and a relatively shallow depositional environment. However, the faunal composition, overturn and sedimentology associated with the Guanshan Biota are poorly understood. This study, based on collections through the best-exposed succession of the basal Wulongqing Formation at the Shijiangjun section, Wuding County, eastern Yunnan, China recovered six major animal groups with soft tissue preservation; brachiopods vastly outnumbered all other groups. Brachiopods quickly replace arthropods as the dominant fauna following a transgression at the base of the Wulongqing Formation. A transition from a botsfordiid-, eoobolid- and acrotretid- to an acrotheloid-dominated brachiopod assemblage occurs up-section.
    [Show full text]