CACTUS ISLAND AFRICA - AMERICA - MADAGASCAR AFRICA’S CACTUS ISLAND the Genus Aeonium Spp

Total Page:16

File Type:pdf, Size:1020Kb

CACTUS ISLAND AFRICA - AMERICA - MADAGASCAR AFRICA’S CACTUS ISLAND the Genus Aeonium Spp CACTUS ISLAND AFRICA - AMERICA - MADAGASCAR AFRICA’S CACTUS ISLAND The genus Aeonium spp. It is mainly known for a specific species, Aeonium arboreum. It is the species that is most cultivated from the ornamental vision of the plant. Still, this genus consists of almost 100 species, of which just under half are indigenous to the Canary Islands. Of course, we can consider the genus Aeonium as ours. It can be found throughout the Mediterranean basin and island areas such as Sardinia or Sicily and even in areas such as Morocco or East Africa. It has a bushy bearing with branched stems and with the formation of dense rosettes AEONIUM ARBOREUM composed of fleshy leaves, a characteristic that identifies succulent plants. Depending on the species and the variety, the color variations in its leaves range from green to almost black and bright satin purple with a special appeal. Some varieties of the genus such as Aeonium arboreum can measure up to 1 meter or even more and their very long inflorescences with yellow flowers are very characteristic. It is striking and of an unmatched contrast, the yellow inflorescences with the purple rosettes. An additional advantage of this plant is that the flowers last a long time on the plant, providing added aesthetic value. In some varieties, when sun grown outdoors, the direct incidence of the sun causes an accentuation of the purple hues achieving a gradient from green to purples from the heart of the rosette to the tip of the leaf of high ornamental value (main photo) . AEONIUM ATROPURPUREUM Single stem species, with leaves arranged in a rosette between 0.60 to 1 meter high and 30 cm (- 100) wide. The leaves are long and fairly wide at the base (about 12 cm), green in color, curved inward and rounded, although with age they open. The margins are scalloped by reddish-brown triangular spines. A distinctive feature of the leaf is the presence of numerous spines on the outer surface. Young plants emit a single inflorescence on a 1m stem; with age it is usually divided into three or four branches. Each cluster is long and narrow, and gradually decreases towards the apex. The flowers (4 cm in length) are tubular and sloping downward, which distinguishes it from other ALOE ACULEATA South African species. Some specimens are single color while others are bicolour. They vary from red to orange, or from red to yellow. It flourishes (in the northern hemisphere). This species is easily identifiable by the unique spines that appear on the external face of the leaves in the form of a white protuberance. When not in flower, it can be confused with Aloe peglerae, however, it differs from this in the presence of spines on both leaf faces, an exclusive characteristic of A. peglerae. Its natural habitat is areas of South Africa. Aloe aculeata can be found in various areas of the Limpopo Province and in the extreme north of Mpumalanga and extends throughout Zimbabwe. It grows in rocky areas, open scrub and grasslands. Aloe brevifolia, is a species of the Aloe genus belonging to the Xanthorrhoeaceae family. It is native to South Africa. It is an evergreen plant with succulent leaves found in heavy clay soils in the winter rain zone, in the Western Cape Province, which can measure up to 15 cm in height, although the flower stems can reach 40 to 50 cm high. The surrounding vegetation is the fynbos. It occurs in dense groups of rosettes with small glaucous leaves and blue deltoids (although their coloration may vary according to the levels of insolation, reaching brown), with different cartilaginous teeth and spines on the surface of the midline, which which ALOE BREVIFOLIA distinguishes this species from all others in southern Africa. Aloe brevifolia is becoming increasingly popular as an ornamental plant for pots and rock gardens. In their cultivation they must be planted in a sufficiently sunny place, in well- drained soil. Only moderate watering is required and should not be kept constantly moist. It must be remembered that it adapts to the Mediterranean climate of the Western Cape Province, with its winter rain regime. They can be easily propagated by simply removing the suction cups and replanting the branch. He has won the Royal Horticultural Society's Garden Merit Award. Aloe congolensis (Congo Aloe) is a small aggressive agglomerating aloe 15-20 cm tall that forms tight 12 cm wide rosettes with short shiny green wedge-shaped leaves with slightly straight tips and sharp teeth. The stems are found along the ground up to 60 cm long and the eaves are often kept along the entire stem, although they eventually detach. Leaves: short, stiff, bright glossy green, almost plastic-like, wedge-shaped, and somewhat flat to recurring near the tips. The leaves take on a reddish brown tint when drought or cold are stressed. The blades are heavily armed with large, sharp teeth the same color as the blades. Flowers In late fall and early winter, an unbranched inflorescence 30 cm or more in height appears with pinkish red or reddish orange flowers in late fall and mid winter. It seems like it takes years for the plant to mature enough to reach flowering size. Taxonomic Notes: The name Aloe congolensis is not a verified name of the species, but it is a very common plant, often seen in garden centers and has long been cultivated and passed on under this name, which was first used by From Wildeman and T. Durand in ALOE CONGOLENSIS 1899. but this name is often noted as "imperfectly known or dubious" as Gilbert Reynolds does in "Aloes of Tropical Africa and Madagascar". Aloe dichotoma is one of the best known and at the same time least known caudex plants in the world. Yes, yes, it is very popular among collectors, but it is difficult to see in nurseries, especially in non-specialized ones. Despite being a rarity for many, its cultivation and maintenance is actually very simple; so if you get a copy, you only have to take into account the advice that I am going to offer you here, in the file of this wonderful species. Aloe dichotoma is one of the best known and at the same time least known caudex plants in the world. Despite being a rarity for many, its cultivation and maintenance is actually very simple; so if you get a copy, you only have to take into account the advice that I am going to offer you here, in the file of this wonderful species. The flowers sprout during the summer in the adult specimens, and are distributed in inflorescences whose appearance is reminiscent of that of the spike. If we talk about its care, it behaves like a relatively easy plant to maintain. In fact, you just have to locate it in an area where it gives you direct sunlight throughout the day and plant it in a pot with a substrate that has excellent drainage, such as the pomice or the washed river sand. I totally discourage substrates like peat, since it is very difficult for them to take root. ALOE DICHOTOMA Irrigation has to be very little: every 10 days in summer and every 20-25 days the rest of the year. In order to have an optimal development, it will be necessary to fertilize it with liquid fertilizer for cacti and other succulents following the instructions specified on the product packaging, or with Blue Nitrofoska. Finally, it is interesting as well as important to say that, although it is of tropical origin, it is able to withstand mild and occasional frosts of up to -2ºC. Aloe ferox, commonly called fierce aloe or Cape aloe, is a species of the aloe genus native to Africa, especially from the regions of South Africa. It is a slow growing tree species. It has a single stem that reaches 2-3 meters in height. The leaves are arranged in a rosette around the stem, are succulent, lanceolate and can grow to be 1 m by 1 cm wide. Glaucous green in color, they have reddish spines along the margins and sometimes also on both sides. The flowers emerge from the axils of the upper leaves, grouped into dense, long, yellow, orange or red candelabra-shaped inflorescences with brown spots on the inner lobes. Flowering occurs from May to August, or somewhat later in cold climates. It has a wide distribution, stretching 1,000 kilometers from the southern Western Cape to the southern KwaZulu-Natal. It is also found in the south eastern area of the Free State and in southern Lesotho. It grows in a great diversity of habitats as a result of its wide distribution. It is common on the slopes of ALOE FEROX rocky hills. To the southwest of the Cape it grows in fynbo grasslands and in the south and the Eastern Cape on the banks of the Karoo. It is found both on plains and in scrub areas. Due to the diversity of habitats and growing conditions, plants can physically differ from one area to another.2 It is a species native to the northeast of South Africa, specifically from the Mpumalanga province (former Transvaal region), where we can find it mainly among bushes, on stony slopes covered with grass, on sandstone or quartzite patches. It is a succulent plant without a stem with fleshy green leaves and a lanceolate shape, which grow in the form of a rosette and have fine brown lines at the top, parallel to the axis of the leaf, which either exist or are barely seen at the bottom, and with a narrow row of sharp reddish-brown teeth (5-8 mm) along the entire edge.
Recommended publications
  • Inflorescences
    Inflorescences - Floral Displays Inflorescences - Floral Displays A shift from widely The vast majority of flowering plants spaced single flowers to an inflorescence required possess flowers in clusters called an condensation of shoots inflorescence. and the loss of the intervening leaves. These clusters facilitate pollination via a prominent visual display and more The simplest efficient pollen uptake and deposition. inflorescence type would thus be indeterminate with the oldest flowers at the base and the younger flowers progressively closer to the apical meristem of the shoot. = a raceme Raceme (Prunus or cherry) One modification of the basic raceme is to make it compound The panicle is essentially compound a series of attached racemes with the oldest racemes at the base and the youngest at the apex of the inflorescence. Panicle (Zigadenus or white camass) Raceme Panicle 1 A second modification of the basic raceme is to lose its pedicels The spike is usually associated with congested reduced flowers and often, but not always, with wind Pedicel loss pollination. wind pollinated Spike (Plantago or plantain) Raceme Spike A third modification of the basic raceme is to lose its internodes The spike is usually associated with congested reduced flowers and often, animal pollinated but not always, with wind Internode loss pollination. Umbel Spike (Combretum - Brent’s plants) Raceme 2 The umbel characterizes specific families (carrot and The umbel is found scattered in many other families ginseng families for example). as well. These families typically show a compound umbel - smaller umbellets on a larger umbel. Umbel Umbel (Cicuta or water hemlock) (Zizia or golden alexander) (Eriogonum or false buckwheat - family Polygonaceae) - Ben’s plants A fourth modification of the basic raceme is for the stem axis to form a head The head or capitulum characterizes specific families - most notably the Compositae or Asteraceae.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • E-Content-Januaray (2021)
    K.N.G.Arts College for women Department of Botany I B.SC ALLIED BOTANY E-content-Januaray (2021) S.NO E-CONENT 1 UNIT-I 2 UNIT-III 3 UNITIV 18K2ZAB3 ALLIED BOTANY: TAXONOMY, ANATOMY, EMBRYOLOGY, HORTICULTURE AND ECOLOGY UNIT-I: TAXONOMY General outline of Bentham and Hooker’s classification. Detailed study and economic importance of the families: Rutaceae, Leguminosae, Cucurbitaceae, Euphorbiaceae and Poaceae. UNIT-III: EMBRYOLOGY Structure of mature anther and Ovule, Types of ovule. Double fertilization. Development of dicot embryo. UNIT-IV: HORTICULTURE Scope and Importance of Horticulture. Propagation method: Cutting, layering and grafting. Bonsai technique UNIT – I Dr.A.Pauline Fathima Mary, Guest lecturer in Botany, K.N.G.Arts College for Women (A). Thanjavur. UNIT III & IV Dr.S.Gandhimathi & Dr.A.Pauline Fathima Mary , Guest lecturer in Botany, K.N.G.Arts College for Women (A). Thanjavur. REFERENCES 1. Pandey B.P., 2001, Taxonomy. Of Angiosperms,S.Chand & company.Ltd.Newdelhi. 2. Pandey B.P., 2015(Edn), Plant Taxonomy. New central Book Agency,pvt Lit,New Delhi. 3. Rajaram,P.allied Botany 1983.CollegeBook Center.Thanjavur. 4. Kumar,K.N.,1999.Introduction of Horticulture ,Rajalakshmi Publication,Nagerkoil. UNIT – I BENTHAM AND HOOKER'S CLASSIFICATION OF PLANTS The outline of Bentham and Hooker's classification of plants is given below. The seeded plants are divided into three classes ' Dicotyledonae,Gymnospermae and Monocotyledonae Bentham and Hooker's classification of plants t is a natural system of classification and is based on important characters of the plants. Even today this system is being followed in India, United Kingdom and several other Commonwealth countries.
    [Show full text]
  • Euphorbiaceae
    Botanische Bestimmungsübungen 1 Euphorbiaceae Euphorbiaceae (Wolfsmilchgewächse) 1 Systematik und Verbreitung Die Euphorbiaceae gehören zu den Eudikotyledonen (Kerneudikotyledonen > Superrosiden > Rosiden > Fabiden). Innerhalb dieser wird die Familie zur Ordnung der Malpighiales (Malpighienartige) gestellt. Die Euphorbiaceae umfassen rund 230 Gattungen mit ca. 6.000 Arten. Sie werden in 4 Unterfamilien gegliedert: 1. Cheilosoideae, 2. Acalyphoideae, 3. Crotonoideae und 4. Euphorbioideae sowie in 6 Triben unterteilt. Die Familie ist überwiegend tropisch verbreitet mit einem Schwerpunkt im indomalaiischen Raum und in den neuweltlichen Tropen. Die Gattung Euphorbia (Wolfsmilch) ist auch in außertropischen Regionen wie z. B. dem Mittelmeerraum, in Südafrika sowie in den südlichen USA häufig. Heimisch ist die Familie mit Mercurialis (Bingelkraut; 2 Arten) und Euphorbia (Wolfsmilch; 20-30 Arten) vertreten. Abb. 1: Verbreitungskarte. 2 Morphologie 2.1 Habitus Die Familie ist sehr vielgestaltig. Es handelt sich um ein- und mehrjährige krautige Pflanzen, Halbsträucher, Sträucher bis große Bäume oder Sukkulenten. Besonders in S-Afrika und auf den Kanarischen Inseln kommen auf hitzebelasteten Trockenstandorten zahlreiche kakteenartige stammsukkulente Arten vor, die in den Sprossachsen immens viel Wasser speichern können. © PD DR. VEIT M. DÖRKEN, Universität Konstanz, FB Biologie Botanische Bestimmungsübungen 2 Euphorbiaceae Abb. 2: Lebensformen; entweder einjährige (annuelle) oder ausdauernde (perennierende) krautige Pflanzen, aber auch viele Halbsträucher,
    [Show full text]
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • – the 2020 Horticulture Guide –
    – THE 2020 HORTICULTURE GUIDE – THE 2020 BULB & PLANT MART IS BEING HELD ONLINE ONLY AT WWW.GCHOUSTON.ORG THE DEADLINE FOR ORDERING YOUR FAVORITE BULBS AND SELECTED PLANTS IS OCTOBER 5, 2020 PICK UP YOUR ORDER OCTOBER 16-17 AT SILVER STREET STUDIOS AT SAWYER YARDS, 2000 EDWARDS STREET FRIDAY, OCTOBER 16, 2020 SATURDAY, OCTOBER 17, 2020 9:00am - 5:00pm 9:00am - 2:00pm The 2020 Horticulture Guide was generously underwritten by DEAR FELLOW GARDENERS, I am excited to welcome you to The Garden Club of Houston’s 78th Annual Bulb and Plant Mart. Although this year has thrown many obstacles our way, we feel that the “show must go on.” In response to the COVID-19 situation, this year will look a little different. For the safety of our members and our customers, this year will be an online pre-order only sale. Our mission stays the same: to support our community’s green spaces, and to educate our community in the areas of gardening, horticulture, conservation, and related topics. GCH members serve as volunteers, and our profits from the Bulb Mart are given back to WELCOME the community in support of our mission. In the last fifteen years, we have given back over $3.5 million in grants to the community! The Garden Club of Houston’s first Plant Sale was held in 1942, on the steps of The Museum of Fine Arts, Houston, with plants dug from members’ gardens. Plants propagated from our own members’ yards will be available again this year as well as plants and bulbs sourced from near and far that are unique, interesting, and well suited for area gardens.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 61, NUMBER 1 THE WHITE RHINOCEROS With Thirty-one Plates EDMUND HELLER Naturalist, Smithsonian African Expedition Publication i 2180) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1913 tt%t £or6 (gfafttmore <pvt36 S. A. BALTIMORE, MD. : C. THE WHITE RHINOCEROS By EDMUND HELLER Naturalist, Smithsonian African Expedition (With Thirty-one Plates) PREFACE The white rhinoceros is so imperfectly known that it has been thought advisable to publish, in advance of the complete report of the expedition, the results obtained from the study of the specimens of this species collected in the Sudan by the Smithsonian African Expe- 1 dition, under the direction of Colonel Roosevelt. In order to make this material available to zoologists generally, a series of photographs of the skull of each specimen collected has been added to the paper. This has been found necessary not only to illustrate the text, but in order to fill one of the gaps in the literature pertaining to African mammalogy. Up to the present time no photograph of a perfect skull of this rhinoceros has appeared in print. There have been a few figures published, but none showing structural details well. The present publication will do much to remedy this want, and will also, it is hoped, serve to put the species on a more logical systematic basis. In the present paper considerable emphasis has been placed on the really great structural differences which exist between the white rhi- noceros and the black, with which it has hitherto been generically con- founded under the name Diccros.
    [Show full text]
  • Cyphostemma Juttae SCORE: -2.0 RATING: Low Risk (Dinter & Gilg) Desc
    TAXON: Cyphostemma juttae SCORE: -2.0 RATING: Low Risk (Dinter & Gilg) Desc. Taxon: Cyphostemma juttae (Dinter & Gilg) Desc. Family: Vitaceae Common Name(s): Namibian grape Synonym(s): Cissus juttae Dinter & Gilg tree grape wild grape Assessor: Chuck Chimera Status: Assessor Approved End Date: 14 Sep 2016 WRA Score: -2.0 Designation: L Rating: Low Risk Keywords: Succulent Tree, Ornamental, Toxic, Fire-Resistant, Fleshy-Fruit Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) n 401 Produces spines,
    [Show full text]
  • 1 History of Vitaceae Inferred from Morphology-Based
    HISTORY OF VITACEAE INFERRED FROM MORPHOLOGY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS By IJU CHEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Iju Chen 2 To my parents and my sisters, 2-, 3-, 4-ju 3 ACKNOWLEDGMENTS I thank Dr. Steven Manchester for providing the important fossil information, sharing the beautiful images of the fossils, and reviewing the dissertation. I thank Dr. Walter Judd for providing valuable discussion. I thank Dr. Hongshan Wang, Dr. Dario de Franceschi, Dr. Mary Dettmann, and Dr. Peta Hayes for access to the paleobotanical specimens in museum collections, Dr. Kent Perkins for arranging the herbarium loans, Dr. Suhua Shi for arranging the field trip in China, and Dr. Betsy R. Jackes for lending extant Australian vitaceous seeds and arranging the field trip in Australia. This research is partially supported by National Science Foundation Doctoral Dissertation Improvement Grants award number 0608342. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................9 LIST OF FIGURES .......................................................................................................................11 ABSTRACT...................................................................................................................................14
    [Show full text]
  • UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI Bethânia Alves De Avelar DETECÇÃO in VITRO DE CITOCINAS INTRACITOPLA
    UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI Bethânia Alves de Avelar DETECÇÃO IN VITRO DE CITOCINAS INTRACITOPLASMÁTICAS (INTERFERON GAMA, FATOR DE NECROSE TUMORAL, INTERLEUCINA 4 E INTERLEUCINA 10) EM LEUCÓCITOS HUMANOS TRATADOS COM EXTRATO BRUTO DILUÍDO DE Euphorbia tirucalli Diamantina 2010 Bethânia Alves de Avelar DETECÇÃO IN VITRO DE CITOCINAS INTRACITOPLASMÁTICAS (INTERFERON GAMA, FATOR DE NECROSE TUMORAL, INTERLEUCINA 4 E INTERLEUCINA 10) EM LEUCÓCITOS HUMANOS TRATADOS COM EXTRATO BRUTO DILUÍDO DE Euphorbia tirucalli Dissertação apresentada ao curso de Mestrado do Programa Multicêntrico em Ciências Fisiológicas da Universidade Federal dos Vales do Jequitinhonha e Mucuri, como requisito parcial à obtenção do título de Mestre em Ciências Fisiológicas. Área de concentração: Farmacologia de produtos naturais e plantas medicinais. Orientador: Dr. Gustavo Eustáquio Brito Alvim de Melo - UFVJM Coorientador: Dra. Miriam Tereza da Paz Lopes - UFMG Diamantina 2010 AGRADECIMENTOS A Deus, pelo cuidado; Ao meu pai Américo e minha mãe Lúcia, pelo exemplo de perseverança, amizade, apoio e dedicação; Ao meu irmão Américo, pelo companheirismo; Aos meus tios, Lucimar, Lucinéia, Lucilene, Estanislau e Luciano, pela bondade, incentivo e prontidão em ajudar; Ao Professor Dr. Gustavo Eustáquio Brito Alvim de Melo, pelo auxílio na formação acadêmica, pela amizade e o exemplo de Pesquisador; À Professora Dra. Miriam Tereza da Paz Lopes, pela disposição em coorientar; Ao Professor Dr. Herton Helder Rocha Pires (Tim), pelo incentivo e confiança desde a iniciação científica; À equipe do Programa Multicêntrico em Ciências Fisiológicas da UFVJM pelos conselhos e apoio; Ao Dr. Olindo Martins Filho, pelas contribuições ao trabalho; Aos funcionários da Pró-reitoria de Pesquisa e Pós-Graduação, pelo comprometimento; À equipe do laboratório de Imunologia da UFVJM, pelo incentivo e apoio, e trabalho em equipe; A todos que contribuíram de alguma forma para a realização deste trabalho.
    [Show full text]
  • 1 the Global Flower Bulb Industry
    1 The Global Flower Bulb Industry: Production, Utilization, Research Maarten Benschop Hobaho Testcentrum Hillegom, The Netherlands Rina Kamenetsky Department of Ornamental Horticulture Agricultural Research Organization The Volcani Center Bet Dagan 50250, Israel Marcel Le Nard Institut National de la Recherche Agronomique 29260 Ploudaniel, France Hiroshi Okubo Laboratory of Horticultural Science Kyushu University 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581, Japan August De Hertogh Department of Horticultural Science North Carolina State University Raleigh, NC 29565-7609, USA COPYRIGHTED MATERIAL I. INTRODUCTION II. HISTORICAL PERSPECTIVES III. GLOBALIZATION OF THE WORLD FLOWER BULB INDUSTRY A. Utilization and Development of Expanded Markets Horticultural Reviews, Volume 36 Edited by Jules Janick Copyright Ó 2010 Wiley-Blackwell. 1 2 M. BENSCHOP, R. KAMENETSKY, M. LE NARD, H. OKUBO, AND A. DE HERTOGH B. Introduction of New Crops C. International Conventions IV. MAJOR AREAS OF RESEARCH A. Plant Breeding and Genetics 1. Breeders’ Right and Variety Registration 2. Hortus Bulborum: A Germplasm Repository 3. Gladiolus 4. Hyacinthus 5. Iris (Bulbous) 6. Lilium 7. Narcissus 8. Tulipa 9. Other Genera B. Physiology 1. Bulb Production 2. Bulb Forcing and the Flowering Process 3. Morpho- and Physiological Aspects of Florogenesis 4. Molecular Aspects of Florogenesis C. Pests, Physiological Disorders, and Plant Growth Regulators 1. General Aspects for Best Management Practices 2. Diseases of Ornamental Geophytes 3. Insects of Ornamental Geophytes 4. Physiological Disorders of Ornamental Geophytes 5. Exogenous Plant Growth Regulators (PGR) D. Other Research Areas 1. Specialized Facilities and Equipment for Flower Bulbs52 2. Transportation of Flower Bulbs 3. Forcing and Greenhouse Technology V. MAJOR FLOWER BULB ORGANIZATIONS A.
    [Show full text]
  • Camel Forage Variety in the Karamoja Sub-Region, Uganda
    Salamula et al. Pastoralism: Research, Policy and Practice (2017) 7:8 Pastoralism: Research, Policy DOI 10.1186/s13570-017-0080-6 and Practice RESEARCH Open Access Camel forage variety in the Karamoja sub- region, Uganda Jenipher Biira Salamula1*, Anthony Egeru1,2, Daniel Knox Aleper3 and Justine Jumba Namaalwa1 Abstract Camels have the potential to increase the resilience of pastoral communities to the impacts of climate variability and change. Despite this potential, there is limited documentation of the camel forage species, their availability and distribution. The study was conducted in Karamoja sub-region in Uganda and involved assessment of vegetation with intent to characterize the range of forage species available for camels in the region. The camel grazing area was stratified based on land cover types, namely woodland, bushland, grassland and farmland using the Amudat and Moroto district vegetation maps. Vegetation plots measuring 20 m × 20 m were mapped out among the land cover types where species identification was undertaken. In addition, a cross-sectional survey involving 52 camel herders was used to document the camel forage species preferences. Shannon and Simpson diversity indices as well as the Jaccard coefficient were used to measure the species richness, relative abundance, diversity and plant community similarities among the land cover types. Results showed high species richness and diversities in the bushland and woodland land cover types. Plant communities in the woodland and bushlands were found to be more similar. A wide range of plant species were reported to be preferred by camels in the study area, that is 63 in Amudat and 50 in Moroto districts.
    [Show full text]