FLT1 and Transcriptome-Wide Polyadenylation Site
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Supplementary Information
Supplementary Information This text file includes: Supplementary Methods Supplementary Figure 1-13, 15-30 Supplementary Table 1-8, 16, 20-21, 23, 25-37, 40-41 1 1. Samples, DNA extraction and genome sequencing 1.1 Ethical statements and sample storage The ethical statements of collecting and processing tissue samples for each species are listed as follows: Myotis myotis: All procedures were carried out in accordance with the ethical guidelines and permits (AREC-13-38-Teeling) delivered by the University College Dublin and the Préfet du Morbihan, awarded to Emma Teeling and Sébastien Puechmaille respectively. A single M. myotis individual was humanely sacrificed given that she had lethal injuries, and dissected. Rhinolophus ferrumequinum: All the procedures were conducted under the license (Natural England 2016-25216-SCI-SCI) issued to Gareth Jones. The individual bat died unexpectedly and suddenly during sampling and was dissected immediately. Pipistrellus kuhlii: The sampling procedure was carried out following all the applicable national guidelines for the care and use of animals. Sampling was done in accordance with all the relevant wildlife legislation and approved by the Ministry of Environment (Ministero della Tutela del Territorio e del Mare, Aut.Prot. N˚: 13040, 26/03/2014). Molossus molossus: All sampling methods were approved by the Ministerio de Ambiente de Panamá (SE/A-29-18) and by the Institutional Animal Care and Use Committee of the Smithsonian Tropical Research Institute (2017-0815-2020). Phyllostomus discolor: P. discolor bats originated from a breeding colony in the Department Biology II of the Ludwig-Maximilians-University in Munich. Approval to keep and breed the bats was issued by the Munich district veterinary office. -
Epigenome-Wide Exploratory Study of Monozygotic Twins Suggests Differentially Methylated Regions to Associate with Hand Grip Strength
Biogerontology (2019) 20:627–647 https://doi.org/10.1007/s10522-019-09818-1 (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength Mette Soerensen . Weilong Li . Birgit Debrabant . Marianne Nygaard . Jonas Mengel-From . Morten Frost . Kaare Christensen . Lene Christiansen . Qihua Tan Received: 15 April 2019 / Accepted: 24 June 2019 / Published online: 28 June 2019 Ó The Author(s) 2019 Abstract Hand grip strength is a measure of mus- significant CpG sites or pathways were found, how- cular strength and is used to study age-related loss of ever two of the suggestive top CpG sites were mapped physical capacity. In order to explore the biological to the COL6A1 and CACNA1B genes, known to be mechanisms that influence hand grip strength varia- related to muscular dysfunction. By investigating tion, an epigenome-wide association study (EWAS) of genomic regions using the comb-p algorithm, several hand grip strength in 672 middle-aged and elderly differentially methylated regions in regulatory monozygotic twins (age 55–90 years) was performed, domains were identified as significantly associated to using both individual and twin pair level analyses, the hand grip strength, and pathway analyses of these latter controlling the influence of genetic variation. regions revealed significant pathways related to the Moreover, as measurements of hand grip strength immune system, autoimmune disorders, including performed over 8 years were available in the elderly diabetes type 1 and viral myocarditis, as well as twins (age 73–90 at intake), a longitudinal EWAS was negative regulation of cell differentiation. -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
Ancient Genomic Regulatory Blocks Are a Major Source for Gene Deserts in Vertebrates After Whole Genome Duplications
Supplementary Information for: Ancient genomic regulatory blocks are a major source for gene deserts in vertebrates after whole genome duplications María Touceda-Suárez, Elizabeth M. Kita, Rafael D. Acemel, Panos N. Firbas, Marta S. Magri, Silvia Naranjo, Juan J. Tena, Jose Luis Gómez-Skarmeta, Ignacio Maeso, Manuel Irimia Corresponding Authors: Manuel Irimia Centre for Genomic Regulation Dr. Aiguader, 88, 08003 Barcelona, Spain e-mail: [email protected] Phone: +34933160212 Fax: +34933160099 Ignacio Maeso Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO) Universidad Pablo de Olavide, Crta. Utrera km.1, 41013 Sevilla, España e-mail: [email protected] Phone: +34954348948 Fax: +34954349376 José Luis Gómez-Skarmeta Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO) Universidad Pablo de Olavide, Crta. Utrera km.1, 41013 Sevilla, España e-mail: [email protected] Phone: +34954348948 Fax: +34954349376 1 Supplementary Figures Supplementary Figure S1 - Microsyntenic arrangements of ancient multi-bystander GRBs whose bystanders have become differentially retained next to different trans-dev ohnologs. For each case, the arrangement in a slow-evolving deuterostome (Bla, B. lanceolatum; Sko, S. kowalevskii; Spu, S. purpuratus) is provided on top (blue lines), followed by the GRB arrangements conserved in the human genome. 2 Supplementary Figure S2 - Evolution of the Hey-MrpS28-Hdcc2 GRB and its functional characterization in zebrafish. A) Phylogenetic distribution of the GRB across the studied metazoan species. Only B. floridae, S. kowalevskii, C. teleta and T. adhaerens have conserved both bystander genes: Hddc2 (grey) and MrpS28 (white), linked to the trans-dev gene Hey (black arrows). In vertebrates, each of the Hey paralogs has preserved only one of the bystander genes in a reciprocal manner. -
The Transition from Primary Colorectal Cancer to Isolated Peritoneal Malignancy
medRxiv preprint doi: https://doi.org/10.1101/2020.02.24.20027318; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . The transition from primary colorectal cancer to isolated peritoneal malignancy is associated with a hypermutant, hypermethylated state Sally Hallam1, Joanne Stockton1, Claire Bryer1, Celina Whalley1, Valerie Pestinger1, Haney Youssef1, Andrew D Beggs1 1 = Surgical Research Laboratory, Institute of Cancer & Genomic Science, University of Birmingham, B15 2TT. Correspondence to: Andrew Beggs, [email protected] KEYWORDS: Colorectal cancer, peritoneal metastasis ABBREVIATIONS: Colorectal cancer (CRC), Colorectal peritoneal metastasis (CPM), Cytoreductive surgery and heated intraperitoneal chemotherapy (CRS & HIPEC), Disease free survival (DFS), Differentially methylated regions (DMR), Overall survival (OS), TableFormalin fixed paraffin embedded (FFPE), Hepatocellular carcinoma (HCC) ARTICLE CATEGORY: Research article NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.02.24.20027318; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . NOVELTY AND IMPACT: Colorectal peritoneal metastasis (CPM) are associated with limited and variable survival despite patient selection using known prognostic factors and optimal currently available treatments. -
Mouse Cadm3 Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Cadm3 Knockout Project (CRISPR/Cas9) Objective: To create a Cadm3 knockout Mouse model (C57BL/6N) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cadm3 gene (NCBI Reference Sequence: NM_053199 ; Ensembl: ENSMUSG00000005338 ) is located on Mouse chromosome 1. 9 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 9 (Transcript: ENSMUST00000111220). Exon 2~6 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a null allele exhibit delayed myelination. Other mice with ubiquitous conditional deletion of the gene do not display neurological abnormalities. Exon 2 starts from about 6.99% of the coding region. Exon 2~6 covers 58.42% of the coding region. The size of effective KO region: ~4894 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 9 Legends Exon of mouse Cadm3 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 445 bp section downstream of Exon 6 is aligned with itself to determine if there are tandem repeats. -
Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo -
Genetic and Functional Approaches to Understanding Autoimmune and Inflammatory Pathologies
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2020 Genetic And Functional Approaches To Understanding Autoimmune And Inflammatory Pathologies Abbas Raza University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Genetics and Genomics Commons, Immunology and Infectious Disease Commons, and the Pathology Commons Recommended Citation Raza, Abbas, "Genetic And Functional Approaches To Understanding Autoimmune And Inflammatory Pathologies" (2020). Graduate College Dissertations and Theses. 1175. https://scholarworks.uvm.edu/graddis/1175 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. GENETIC AND FUNCTIONAL APPROACHES TO UNDERSTANDING AUTOIMMUNE AND INFLAMMATORY PATHOLOGIES A Dissertation Presented by Abbas Raza to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Cellular, Molecular, and Biomedical Sciences January, 2020 Defense Date: August 30, 2019 Dissertation Examination Committee: Cory Teuscher, Ph.D., Advisor Jonathan Boyson, Ph.D., Chairperson Matthew Poynter, Ph.D. Ralph Budd, M.D. Dawei Li, Ph.D. Dimitry Krementsov, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Our understanding of genetic predisposition to inflammatory and autoimmune diseases has been enhanced by large scale quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, the resolution and interpretation of QTL linkage mapping or GWAS findings are limited. -
3D Cell Culture-Based Global Mirna Expression Analysis Reveals Mir-142-5P As a Theranostic Biomarker of Rectal Cancer Following Neoadjuvant Long-Course Treatment
biomolecules Article 3D Cell Culture-Based Global miRNA Expression Analysis Reveals miR-142-5p as a Theranostic Biomarker of Rectal Cancer Following Neoadjuvant Long-Course Treatment 1,2, 1,3, , 1,4,5 1 Linas Kunigenas y, Vaidotas Stankevicius * y, Audrius Dulskas , Elzbieta Budginaite , Gediminas Alzbutas 6,7, Eugenijus Stratilatovas 1,4, Nils Cordes 8,9,10,11,12 and Kestutis Suziedelis 1,2,* 1 National Cancer Institute, LT-08660 Vilnius, Lithuania; [email protected] (L.K.); [email protected] (A.D.); [email protected] (E.B.); [email protected] (E.S.) 2 Life Sciences Center, Institute of Biosciences, Vilnius University, LT-08412 Vilnius, Lithuania 3 Life Sciences Center, Institute of Biotechnology, Vilnius University, LT-08412 Vilnius, Lithuania 4 Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-08406 Vilnius, Lithuania 5 University of Applied Sciences, Faculty of Health Care, LT-08303 Vilnius, Lithuania 6 Thermo Fisher Scientific, LT-02241 Vilnius, Lithuania; gediminas.alzbutas@thermofisher.com 7 Institute of Informatics, Faculty of Mathematics and Informatics, Vilnius University,LT-08303 Vilnius, Lithuania 8 OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität, D–01307 Dresden, Germany; [email protected] 9 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, D–01307 Dresden, Germany 10 Helmholtz–Zentrum Dresden–Rossendorf, Institute of Radiooncology–OncoRay,D–01328 Dresden, Germany 11 German Cancer Consortium (DKTK), partner site Dresden, D–69192 Heidelberg, Germany 12 German Cancer Research Center (DKFZ), D–69192 Heidelberg, Germany * Correspondence: [email protected] (V.S.); [email protected] (K.S.); Tel.: +370-5219-0904 (K.S.) These authors contributed equally to the work. -
SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons
7980 • The Journal of Neuroscience, October 7, 2020 • 40(41):7980–7994 Neurobiology of Disease SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons Nerea Llamosas,1 Vineet Arora,1 Ridhima Vij,2,3 Murat Kilinc,1 Lukasz Bijoch,4 Camilo Rojas,1 Adrian Reich,5 BanuPriya Sridharan,6 Erik Willems,7 David R. Piper,7 Louis Scampavia,6 Timothy P. Spicer,6 Courtney A. Miller,1,6 J. Lloyd Holder,2,3 and Gavin Rumbaugh1 1Department of Neuroscience, Scripps Research, Jupiter, Florida 33458, 2Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas 77030, 3Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, 4Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland, 5Center for Computational Biology and Bioinformatics, Scripps Research, Jupiter, Florida 33458, 6Department of Molecular Medicine, Scripps Research, Jupiter, Florida 33458, and 7Cell Biology, Thermo Fisher Scientific, Carlsbad, California 92008 SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. De novo loss-of-function variants in this gene cause a neurodevelopmental disorder defined by cognitive impairment, social-communica- tion disorder, and early-onset seizures. Cell biological studies in mouse and rat neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, with loss-of-function variants driving formation of larger dendritic spines and stronger glu- tamatergic transmission. However, studies to date have been limited to mouse and rat neurons. Therefore, it remains unknown how SYNGAP1 loss of function impacts the development and function of human neurons. -
Edger: Differential Expression Analysis of Digital Gene
edgeR: differential expression analysis of digital gene expression data User's Guide Yunshun Chen, Davis McCarthy, Matthew Ritchie, Mark Robinson, Gordon K. Smyth First edition 17 September 2008 Last revised 30 June 2016 Contents 1 Introduction 5 1.1 Scope . 5 1.2 Citation . 6 1.3 How to get help . 7 1.4 Quick start . 8 2 Overview of capabilities 9 2.1 Terminology . 9 2.2 Aligning reads to a genome . 9 2.3 Producing a table of read counts . 9 2.4 Reading the counts from a file . 10 2.5 The DGEList data class . 10 2.6 Filtering . 11 2.7 Normalization . 12 2.7.1 Normalization is only necessary for sample-specific effects . 12 2.7.2 Sequencing depth . 12 2.7.3 RNA composition . 12 2.7.4 GC content . 13 2.7.5 Gene length . 13 2.7.6 Model-based normalization, not transformation . 13 2.7.7 Pseudo-counts . 14 2.8 Negative binomial models . 14 2.8.1 Introduction . 14 2.8.2 Biological coefficient of variation (BCV) . 15 2.8.3 Estimating BCVs . 16 2.8.4 Quasi negative binomial . 17 2.9 Pairwise comparisons between two or more groups (classic) . 17 2.9.1 Estimating dispersions . 17 2.9.2 Testing for DE genes . 18 2.10 More complex experiments (glm functionality) . 19 2.10.1 Generalized linear models . 19 1 2.10.2 Estimating dispersions . 19 2.10.3 Testing for DE genes . 20 2.11 What to do if you have no replicates . 21 2.12 Differential expression above a fold-change threshold .