LBL-11448

A TABULATION OF THERMODYNAMIC DATA FOR CHEMICAL REACTIONS INVOLVING 58 ELEMENTS COMMON TO RADIOACTIVE WASTE PACKAGE SYSTEMS

L. V. Benson and L. S. Teague

Lawrence Berkeley Laboratory University of California Berkeley, CA 94720

Topical Report Number 4, Fiscal Year 1980 for Rockwell Hanford Operations of Rockwell International under Contract MOA-SBB-202849

DfKUUMErl

Ttiii boor MI prepared « an account ot wok wontored by an eeencv at the United Statet Government. Neuter the Unned Stele* Goye em nor any oetncy thereof, nor wiy ol rhtir emoloyeei. me**t any nerrentv. eypren. of inewM. or ewvniei eny leeel Heoility or reeporoAility for the ercutecv. comdeteneM. or ueelulruaB ol pny mtormetlon, HMKA product, or proem ditclaeed. or urn twit' thet ill uee would not mtrklfB privMory onned rietrll. Reference herein to fry toccifiC commercial product, ptoow. or eeryice by indo neme. tredometk. manulacturc, or ottterwiie, doet not riiiimily corollluM or imply yii ondotwnionl. recorrenendetion. or fevorirej by the United Stem Government or eny aeency thereof. T*e vieed end opmioin ol author* cepre**ed herein do not necea> flyelat e or reflect rhoee ot lb* United Stem Government or any eurcy thereof.

This report was prepared with support fron the U. S. Department of Energy under contract W-7405-ENG-48.

SiSTUSUnOH OF T.i.3 CSGiiT.-cIir IS -iii-

TABLE OF CONTENTS

Page

LIST OF TABLES v

INTRODUCTION 1

THERMOCHEMICAL DATA 1

Free Energy Data 2

Equilibrium Constants and Gibbs Standard Free

Energies of Reaction 3

REFERENCES CITED 5

TABLES 9 LIST OF TABLES

Table Title

1 Gibbs Standard Free Energies of Formation of Free Ions, Complexes, and Solids

2 Equilibrium Constants for Speciation and Precipitation Reactions at 298.15°K and 1 Bar

3 Basis Species 1

INTKODUCTION

The rate of release and migration of radionuclides from a nuclear waste

repository to the biosphere is dependent on chemical interactions between

groundwater, the geologic host rock, and the radioactive waste package. For

the purpose of this report, the waste package includes the wasteform, canister,

overpack, and repository backfill.

Successful isolation of nuclear waste from the biosphere requires

predicting the behavior of a waste repository over a period of time of tens of thousands of years or longer. To assess the suitability of a potential repository, a complete, validated method of ascertaining the potential for movement of radionuclides from the repository through the host rock environ­ ment is needed. Mathematical models based on an understanding of the physical and chemical processes involved are the only tools available by which the repository's behavior can be predicted over the long time spans and path lengths of interest.

Chemical processes of interest include sorption (ion exchange), disso­ lution, complexation, and precipitation. Previous reports by Benson (1980) and White (1980) have dealt with the former two processes. Thernochemical data for complexation and precipitation calculations are presented in this report.

THERMOCHEMICAL DATA

Thermocheaical data for 58 elements common to the radioactive waste package have been tabulated in two ways. In Table 1 are listed standard free energies of formation (&G*f) of free ions, complexes, and solids. 2

In Table 2 are listed common logarithms of equilibrium constants (log K's)

for speciation and precipitation reactions. Unless noted otherwise, all data

are for 298.15°K and one atmosphere.

The data which were extracted from a variety of primary and secondary

references (Alwan and Williams, 1980; Baes and Mesmer, 1976; Ball et al.,

1980; Cleveland, 1970; Fuger and Oetting, 1976; Haacke and Williams, 1979;

Helgeson et al., 1978; Keller, 1971; Kuck, 1978; Langmuir, 1977; Langmuir,

1978; Lemire and Tremaine, 1980; May et al., 1979; Nriagu and Dell, 1974;

Rai and Seme, 1978; Robie et al., 1978; Sillen and Martell, 1964; Smith

and Martell, 1976; Stoessel, R. K., 1977; Truesdell and Jones, 1974;

Urusov and Khodakovsky, 1967; Wagman et al., 1968; Wolery, 1979; Helgeson,

1978; Plummer et al., 1976; Rai et al., 1980) were not critically reviewed;

however, certain selection procedures were employed.

Free Energy Data

Solids. Most of the free energy data were taken from three compilations:

Helgeson et al., (1978), Robie et al., (1978) and Wagman et al. (1968).

In some cases, the three sources did not agree on the free energy value

assigned to a particular solid phase. In these cases, a selection hierarchy

was employed in which the order of preference was Helgeson et al., (1978),

Robie et al. (1978), Wagman et al. (1978). Free energies for aluminosilicates were taken solely from Helgeson et al. (1978).

Free energy data for aluminum oxides were taken from May et al. (1979).

Free energies for phosphate solids, not available in Robie et al. (1978), were taken from Nriagu and Dell (1974). Molybdate data were taken primarily from 3

Kuck (1978); aolybdate free energies were also taken froa Urusov and

Khodakovsky (1967) if unavailable in Kuck (1978). Uranium data were obtained from Langmuir (1978) and Leaire and Tremaine (1980). Thorium data were taken fron Langmuir (1977) and plutonlum data were taken froa Lemire and Treaaine (1980).

Dissolved Species. The majority of the free energy data for dissolved species (free ions and complexes) were taken from Truesdell and Jones (1974),

Ball et al. (1980), and Smith and Martell (1976). Data not available in these sources were obtained from Robie et al. (1978) and Wagman et al. (1968).

If the latter two sources disagreed on the free energy value for a particular chemical species, the value given in Roble et al. (1978) was used. Data on aluminium species were taken from May et al. (1979). Free energy data on chemical species not available in the references mentioned above were taken froa a variety of literature sources.

Equilibrium Constants and Gibbs Standard Free Energies of Reaction

All chemical reactions were formulated using a fundamental basis species set (Table 3). When free energies of formation were available for all components of a chemical reaction, data of Table 1 were used to calculate the

standard free energy of reaction (AGr°).

Basis species free energies for ten elements (Am, Cm, Gd, La, Nd, Np,

Pa, Pr, SB, Tc) were unavailable. Therefore equilibrium constants for reactions involving these eleaents were obtained by addition of reactions froa a single reference. A

Basis species free energies of seven elements (Eu, Hf, Ru, Sn, Te, Ti,

Zr) were obtained using a known free energy value for a reaction involving a particular basis species together with free energies of formation for each of the other components involved in the reaction (Table 1).

When various literature sources were not in agreement on values of the reaction free energy, a selection hierarchy was employed. The order of preference was Ball et al., (1978), Plummer et al. (1976), Truesdell and Jones

(1974), Smith and Martell (1976) and Baes and Mesmer (1976). For reactions involving ion pairs, the order of selection was similar to the forementioned except that the data of Wagman et al. (1968) were given preference over the data of Baes and Mesmer (1976).

As a rule, equilibrium constants measured in media with ionic strengths greater than 0.1 were not Incorporated in Table 2. However equilibrium coefficients for reactions involving Am, Ce, Cm, Np, and Zr are exceptions to this rule (see Ral and Serne; 1978). 5

REFERENCES CITED

1. Alwan, A. K., and Williams, P. A., 1980. The aqueous chemistry of uranium minerals. Part 2. Minerals of the liebigite group, Min. Mag., 43, 665-667. 2. Baes, Charles F., Jr., and Mesmer, Robert E., 1976. The Hydrolysis of Cations, John Wiley and Sons, N.Y., 489 pp.

3. Ball, James W., Nordstrom, D. Kirk, and Jenne, Everett, A., 1980. Additional and revised thermocheaical data and computer code for WATEQ2 - a computerized chemical model for trace and major element speclation and mineral equilibria of natural waters, U.S. Geol. Survey Water Resources Invest., WRI 78-116.

4. Cleveland, J. M., 1970. The chemistry of plutonium, Gordon and Breach Science Publisher, New York.

5. Fuger, J., and Oetting, F. L., 1976. The chemical thermodynamics of actlnide elements and compounds, Part 2: The actinide aqueous ions, International Atomic Energy Agency, Vienna.

6. Haacke, P. F., and Williams, P. A., 1979. The aqueous chemistry of uranium minerals, Part I: Divalent cation zippiete, Min. Mag., 43, 539-541. 7. Helgeson, Harold C, Delany, Joan M., Nesbitt, H. Wayne, and Bird, Dennis K., 1978. Summary and critique of the thermodynamic properties of rock-forming minerals, Am. Jour. Sci, 278-A, 229 pp.

8. Keller, C, 1971. The chemistry of the transuranium elements. Verlagchemle Gmblt, Weinheim, Bergstr, Germany. 9. Kuck, Peter Hinckley, 1978. The behavior of molybdenum, tungsten, and titanium in the porphyry copper environment, Univ. of Ariz, PhD. thesis.

10. Langmuir, D., 1977. Compilation of thermodynamic data on naturally occurring compounds and aqueous complexes of thorium, unpub. report to the Lawrence Berkeley Lab.

11. Langmuir, D., 1978. Uranium solution-mineral equilibria at low temperature with application to sedimentary ore deposits, Geochem. et Coamochim, Acta, 42, 547-569.

12. Lemire, R. J., and Tremaine, P. R., 1980. Uranium and plutonium equilibria in aqueous solutions to 200*C, J. of Chem and Eng. Data (in press). 6

13. Hay, Howard H., Helake, Philip A., and Jackson, Marlon L., 1979. Gibbsite solubility and thermodynamic properties of hydroxy - aluainua Ions in aqueous solution at 25*C, Geochia. et Cosaochia. Acta, 43, 861-868.

14. Nriagu, J. 0., and Dell, C. I., 1974. Diagenetic formation of iron phosphates in recent lake sediaents, Aa. Kin., 59, 934-946.

15. Ral, Dhanpat, and Serne, R. J., 1978. Solid phases and solution species of different elements in geologic environments, Pacific Northwest Laboratory, Rpt. PNL-2651.

16. Robie, Richard A., Hemingway, Bruce S., and Fisher, Jaaes R., 1978. Theraodynaaic properties of ainerals and related substances at 298.15K and 1 bar (105 pascals) pressure and at higher teaperatures, U.S. Geol. Surv. Bull. 1452, 456 pp.

17. Sillen, Lars Gunnar, and Martell, Arthur E., 1964. Stability constants of aetal-ion complexes, Spec. Pub. 17 The Chemical Society, London, 754 pp.

18. Saith, Robert M., and Martell, Arthur E., 1976. Critical stability constants, vol 4, Inorganic Complexes, Plenum Press, N. Y., 257 pp.

19. Stoessell, R. K., 1977. Geocheaical studies of two magnesium silicates, seplolite and kerolite, Univ. of Cal. PhD. thesis, 122 pp.

20. Truesdell, Alfred H., and Jones, Blair F., 1974. WATEQ, a computer prograa for calculating chemical equilibria of natural waters, Jour. Res. U. S. Geol. Survey, 2, 233-248.

21. Urusov, Ivarova, and Khodakovsky, I. L., 1967. Energetic and therao­ dynaaic properties of aolybdates and tungstates and some features of their geochemistry, Geokhiaiya, 10, 1050-1063.

22a. Wagaan, D. D., Evans, H. H., Parker, V. B., Halow, I., Bailey, S. M. and Schuaa, R. H., 1968. Selected values of chemical theraodynaaic properties, Natl. Bur. Standards Tech. Note 270-3, 264 pp.

22b. Wagaan, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M. and Schuaa, R. H. 1969. Selected values of chealcal theraodynaaic properties, Natl. Bur. Standards Tech. Note 270-4, 141 pp.

22c. Wagaan, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., Schaaa, R. H., and Churney, K. L., 1971. Selected values of chealcal themodynaaic properties, Natl. Bur. Standards Tech. Note 270-5, 49 pp..

22d. Parker, V. 1., Wagaan, D. D., and W. H. Evans, 1971. Selected values of chealcal theramodynamlc properties, Natl. Bur. Standards Tech. Note 270-6, 119 pp. 7

23. Wolery, T. J., 1979. Calculation of chemical equilibrium between aqueous solution and minerals. The EQ3/6 software package, Lawrence Livermore Lab. Pub UCRL-52658, 41 pp.

24. Helgeson, H. C, 1978. SUPCRT: Computer program 7402 at the University of California Berkeley, Data file of Thermodynamic data for 298.15°K and 1 bar.

25. Plunmer, L. Niel, Jones, Blair F., and Truesdell, Alfred H., 1976. WATKQF - A Fortran IV version of WATEQ, a computer program for calculating chemical equilibria of natural waters, USGS Water Resources Investigation 76-13.

26. Rai, Dhanpat, Seme, R. J., and Moore, P. A., 1980. Solubility of pluto- nium compounds and their behavior in soils, Pacific Northwest Lab., Rpt. PNL-SA-7892. TABLES 11 TABLE 1. GIBBS STANDARD FREE ENERGIES OF FORMATION OF FREE IONS, COMPLEXES, AND SOLIDS SILVER

AGf° Mineral or Aqueous Species (kcal/mole) Ref •

Ag(s) 0 16

Ag+ 18.422 16

Ag„S (acanthite) -9.446 24

AgS04" -161.3 22

Ag2S04(s) -147.82 22

AgN03(s) -8.00 22

Ag2C03(s) -104.4 22

Ag3P04(s) -210.0 22

AgBr (bromargyrite) -23.2125 16

AgBr2" -41.2 22

2 AgBr3 " -68.0 22

AgCl (cerargyrite) -26.2474 16

AgCl2" -51.5 22

Agl (jodargyrite) -15.835 16

Agl2" -20.8 22

2 Agl3 " -36.8 22

3 -50.1 22 Agl4 "

AgCljBr3" -111.3 22

3 AgClBr3 " -100.4 22

Ag20(s) -2.68 22

*8202(s) 6.6 22

A*203(s) 29.0 22

AR(OH)2" -62.2 22

-10.6 22

At2S^)3(») -72.7 22 12

SILVKK (coat)

AGf" Mineral or Aqueous Species (kcal/>ole) Kef.

Ag2Se04(s) -79.9 22

Ag2Mo04(s) -178.8 22

AgV03(s) -214.3 22

Ag2HVD4(s) -288.6 22

Ag2HV04-AgOH(s) -358.6 22

Ag2Cr04(s) -153.40 22

ALUMINUM

Al(s) 0 13

Al3+ -117.0 13

Al2(S04)3(s) -740.8824 16

Al2(S04)3-6H20(s) -1104.82 22

A1P04 () -382.7 22

AlF3(s) -342.0354 16

A1F2 + -192.0 22

All3(s) -71.9 22

A10H',2 + -166.9 13

+ Al(OH)2 -216.5 13

A1(0H)4" -313.5 13

Al(Ofl), (gibbsite synthetic) -276.0 13

-275.1 13 Al(OH)3 (gibbsite natural)

Al-O- (corunduB),ot) -374,824 7

AIO(OH) (boebaite) -217.250 7

AIO(OH) (diaapore) -218.402 7 13

ALUMIHUM (cont)

AGf° Mineral or Aqueoua Specie* (kcal/«ole) Ref.

Al203(s,Y) -373.4947 16

A10 ~ -196.8 22

Al.SiO. (kyanite) -580.956 7

Al-SiO, (andalusite) -580.587 7

Al.SiO, (sillimanite) -580.091 7

Al2Si205(OH)4 (kaolinite) -905.614 7

Al2Si401()(OH)2 (pyrophyllite) -1255.997 7

BARIUM

Ba(s)

Ba2+ -134.020 16

BaS(s) -109.0 22

BaSO, (barite) -325.563 24

Ba(HC03)2(s) -414.54 22

+ BaN03 -159.35 22

Ba(N03)2(s) -190.387 16

BaCa(CO-). (alstonite) -543.2 22

BaCa(CO-), (barytocalcite) -543.0 22

BaO(s) -124.377 16

Ba(OH)2'8H20(») -667.6 22

BaF2(s) -276.5 22

BaCl2(s) -193.7 22

BaClj-HjOCs) -252.32 22

BaClj-ZHjCKs) -309.86 22 14

BARIUM (cont)

AGf° Mineral or Aqueous Species (kcal/aole) Ref.

BaBr2(s) -176.1 22

BaBr2'2H20(s) -294.1 22

Ba0*Si0,(s) -368.13 22

BaO'2SiO,(s) -576.2 22

2BaO'SiO (s) -519.8 22

2BaO'3Si02(s) -947.2 22

BaSiFgCs) -667.8 22

BaTi03(s) -375.8 22

BaTiO, (s) -509.8 22

BaSrTiO,(s) -518.1 22

BaCrO.(s) -321.53 22

BaMnO.(s) -267.5 22

BaZrO.Cs) -405.0 22

BaSeO.Cs) -231.4 22

BsSeO,(s) -249.7 22

BaMoO,(s) -347.6 21

BROMINE

Br" -24.8540 16

CARBON

CO,2" -126.171 11 15

CALCIUM

&G£° Mineral or Aqueous Species (kcal/aole) Ref.

Ca(s) 0 16 „ 2+ Ca -132.299 16

CaS (oldhamite) -112.297 16

CaS0.'l/2 H,0 (macro a) -343.41 22

CaS0,'l/2 HO (micro 3) -343.18 22

CaCO, (vaterite) -269.0105 16

CaCO,*H„0 (monohydrocalcite) -325.4302 16

CaMg(CO ) () -517.980 7

CaMg3(C03), (huntite) -1004.710 24

Ca(N03)2(s) -177.578 16

Ca(N03)2-2H20(s) -293.82 22

Ca(N03)2-3H20(s) -351.8 22

Ca(N03)2-4H20(s) -409.53 22

Ca3(PO.) (whitlockite) -931.0837 16

Ca3(P04)2(s,6) -928.5 22

Ca3(P04)2(s,a) -926.3 22

Ca10(PV6(OH)2° -2859.2 22 CaHPO.(s) -401.83 22

CaHP04'2^0(8) -515.00 22

Ca(H2P04)2-H20(s) -730.98 22

Ca8H2(P04)6-5H20(s) -2931.0 22

CaSe(s) -86.8 22

CaSe03-2^0(8) -341.5 22

CaSe0^-ZBJiia)4*2£ -355.4 22

C«Mo04 (powellite) -344.0 9 16

CALCIUM (cont)

AGf° Mineral or Aqueous Species (kcal/aole) Ref.

CaCl, (hydrophilite) -178.791 22

CaBr2(s) -158.6 22

CaBr2'6H20(s) -514.6 22

Cal2(s) -126.4 22

CaF2 (fluorite) -280.493 24

CaO (lime) -144.366 7

Ca(OH) (portlandite) -214.725 16

CaOH+ -171.7 22

Ca,SiOg(s) -665.4 22

Ca.Si-O- (rankinite) -899.0 22

Ca3Ti20?(s) -896.6 22

CaZrO„(s) -401.8 22

CaFe^U) -337.6353 16

Ca2Fe205(s) -478.3843 16

CaTiO. (perovskite) -376.4952 16

Ca SiO, (lamite) -523.7247 16

Ca.SiO, (Ca-olivine) -525.7610 16

Ca Al SiO (gehlenite) -903.588 7

Ca.Al-Si-O.- (grossular) -1496.967 7

Ca3Fe2Si,0.2 (andradite) -1297.479 7

CaAl,Si207(OH)2-H20 (lawsonite) -1073.628 7

CaMgSiO, (aonticellite) -512.829 7

Ca,Mg(Si04)2 («erwinite) -1037.186 7

Ca.MgSijOj (akermanite) -879.802 7

CaTiSiO. (sphene) -587.9195 16 17

CALCIUM (cont)

AGf°

Mineral or Aqueoua Species (kc«l/»ole) Ref.

Ca2A1.3Si3012(OH) (clinozoisite) -1549-680

Ca2Al3Si3012(OH) (zoisite) -1549.619

Ca2FeAl2Si3012(OH) (epidote) -1451.346

CaSiO, (wollastonite) -369.445

CaSiO, (pseudowollastonite) -369.2531 16

CaAl SiO, (Ca-Al pyroxene) -742.287

CaMgSi206 (diopside) -724.000

CaFeSi 0, (hedenbergite) -639.218

Ca2Mg5Si8022(OH)2 (tremolite) -2770.685

CaAl2Si208 (anorthite) -954.298

CaAl2Si4012-2H20 (wairakite) -1477.652

CaAl2Si4012'4H20 (launontite) -1597.043

Ca2Al(AlSi3O10)(OH)2 (prehnite) -1390.537

CaAl2(Al2Si2C1())(OH)2 (margarite) -1394.370

Ca(U02)2(Si03OH)2 (uranophane) (-1189.0)

Ca2U02(C03)3«10H20 (liebigite) -1488.0

CaMgUO2(CO3)3'12H20 (iwartzite) -1579.0

Ca(U02)2(V04)2(tyuya»unite) (-1090.0)

CADMIUM

Cd2+ -18.5421 16

CdS (greenokite) -34.8064 16

CdS04(s) -196.65 22

CdSOl( 4-HjO(») -255.46 22

CdS04«8/3 HjOCa) -350.224 22 18

CADMIUM (cont)

AGf° Mineral or Aqueous Specie* (kcal/aole) Kef

Cd3(OH)4S04(s) -429.6 22

Cd3(OH)2(S04)2(s) -515.8 22

CdCO. (otavite) -160.000 16

Cd3(P04)2(s) -587.1 22

CdSe03(s) -119.0 22

CdSe04(s) -127.1 22

CdSb(s) -3.11 22

CdCl2(s) -82.21 22 CdCl -H 0(s) 2 2 -140.310 22 CdCl -5/2 H 0(s) 2 2 -225.644 22

Cd(OH)Cl(g) -101.8 22

+ CdBr -46.35 22 CdBr " 3 -97.4 22 CdBr (s) 2 -70.82 22 CdBr -4H 0(s) 2 2 -298.287 22

+ Cdl -33.8 22 Cdl " 3 -62.0 22

Cdl.2" -75.5 22 4 -48.13 22

Cdl2(s) -54.6140 16 CdO (nonteponite) -68.0 22 2 Cd02 " -86.9 22

HCd02~

Cd(OH)3" -143.6 22

2 Cd(OH>4 ~ -181.3 22

CdSi03(») -264.20 22 19

CERIUM

AGf° Mineral or Aqueom Specie* (teal/sole) Kef. 3+ Ce -160.612 16 4+ Ce -120.411 16

CeO, (cerianite) -245.072 16

Ce20_ (s, hexagonal a) -408.2075 16

CHLORINE

CI -31.3743 16

CHROMIUM 2- CrO •173.96 22

Cr203(») •251.6864 16

2 Cr207 " 311.0 22

HCrO " 182.8 22

CrF3(») 260.0 22

CrCl2(a) -85.1 22

CrCl3<«) 116.2 22

CESIUM

Cs -67.7880 16

Cs(t) 0 16 20

COFTO

ACf° Mineral or Aqueous Specie* (kcal/aole) Ref.

Cu+ 11.9503 16

Cu2+ 15.6597 16

CuS (covellite) -12.612 24

Cu.S (chalcocite) -20.7620 16

CuFeS. (chalcopyrite) -44.900 7

Cu.FeS. (bornite) -86.704 7 5 4 CuSO, (chalcocyanite) -158.296 16

CuS04'H20(s) -219.46 22

CuS04'3H20(s) -334.65 22

CuSO^-SHjO (chalcanthite) -449.3059 16

Cu,(0H).S0. (antlerite) -345.8 22

Cu.SO.(OH)- (brochantite) -434.5005 16 4 4 6

Cu4(OH)fiS04'H20 (langite) -488.6 22

Cu2(0H)2(C03) (malachite) -214.204 24

Cu3(OH)2(C03)2 (arunite) -334.417 24

CuMo04(s) -195.5 21

CuSeO-(s) -83.2 22

Cu2(OH)3(H03)2(s) -152.75 22

Cu3(P04)2(») -490.3 22

CuCl(nantokite) -28.65 22

CuCl* -16.3 22

CuCl (aelanthallite) -42.0 22

CuC^^HjOd) -156.8 22

CuBr(s) -24.1 22

CuBr2*3Cu(OH)2(s) -306.2 22 21

COPPER (coat)

AG/ Mineral or Aqueoua Specie* (kcal/aole) Kef.

Cul(s) -16.6 22

CuO (tenorite) -30.568 24

Cu.O (cuprite) -35.384 24

2 Cu02 " -43.9 22

HCuO ~ -61.8 22

EUROPIUM

Eu3+ -137.20 15

EuO(s) -132.907 16

Eu.O-(s, nonoclinic) -371.6917 16

FLUORINE

-67.1705 16

IRON 2+ Fe -18.8504 16

Fe -1.09943 16

FeS (troilite) -24.2192 16

FeSj (pyrite) -38.293 24

FeS. (aarcasite) -37.8635 16

FeS (pyrrhotitc) -24.084 16

F«7Sg (f-rich pyrrfcotite) 178.9 22 22

mow (coot)

AGf° Mineral or Aqwaous Species (kcal/»ole) Kef.

FeS04(«) -196.2 22

+ FeS04 -184.7 22

Fe(*34)2" -364.4 22

Fe3(P04)2'8H20 (vivianite) -1046.2 14

Fe5(P04)3OH(s) -1510.2 14

FeMo04(s) -233.0 9

FeCO, diderite) -162.390 24

2+ Fe(N03) -29.1 22

FeCl, (lavencite) -72.2208 16

FeCl2+ -34.4 22

+ FeCl2 -66.7 22

FeCl. (molysite) -79.7691 16

FeF2+ -77.1 22

+ FeF2 -150.2 22

FeBr2+ -26.8 22

Fel2+ -16.0 22

Fe>9470 (vustite) -58.5935 16

FeO(s) -60.097 7

Fe203 (hematite) -178.155 7

Fe304 (magnetite) -242.574 7

Fe(OH)2(s) -118.5 14

F<- -108.8 22

FeOH2+ -54.83 22

*e02" -90.3 16

Fe(0«)3" -147.0 22 23

nam (cont)

AGf° Mineral or Aqueou* Specici (kcal/aole) Kef. 2- FeOH -184.0 22 4+ Fe2((»)2 -111.68 22

FeAl-O, (hercynite) -442.3506 16

FeTiO, (ilaenite) -277.0483 16

FeCr 0, (chromite) -321.2 22

FeSi(s) -17.6 22

FeSi, (6-lebeanite) -18.7 22

FeSi. ,, (a-lebeanite) -14.0 22

Fe3Si(s) -22.6 22

FeSiO, (fay»lite) -330.233 7

FeSiO, (ferrosilite) -267.160 7

HYDROGEN

HCO, -140.261 16

H C0 -148.941 2 3 16 HF -71.685 12

HF„ -138.18 22

H20(JI) -56.678 16 2- TOO, 260.34 22

H TO -270.17 2 4 22

H3F04° -273.16 12

H3P04(a) -265.8437 16

H3P04-l/2 H20(«) -296.9 22

HS~ 2.892 16

M0.~ -180.69 22 24

HAFNIUM

AGf° Mineral or Aqueou» Species (kcal/aole) Ref. .4+ Hf -133.700 18

HfO„ -260.1042 16

HfF,(s,»onoclinic) -437.5 22

HfCl.(s) -215.42 4 22

IODINE

-12.408 16

POTASSIUM

K(s) 0 16

-67.5167 16

K SO, (arcanite) -315.4068 16

KAl(S04)2(s) -535.3227 16

K2Mo04(s) -330.1 21

KN03 (niter) -94.2983 16

KC1 (sylvite) -97.735 24

KBr(s) -90.8368 16

K20(s) -77.056 7

K02(a) 57.5014 16

KOH (s) -90.5669 16

KAlSi.O. (R-apar) -895.374 7

KAlSi.O- (aax-aicrocline) -895.374 7

KAlSi.O. (high aanidine) -?93.738 7 POTASSIUM (cont)

AG£° Mineral or Aqueous Species (kcal/mole

KAlSiO. (kalsilite) -481.750 4

KFe3(AlSi301Q)(OH)2 (annite) -1147.156

KMg3(AlSi301())(OH)2 (phlogopite) -1396.187

KAl2(AlSi301Q)(OH)2 (nuscovite) -1336.301

K2(V02)2(V04)2 (carnotite) -1097.0

MAGNESIUM

Mg(s) 0

Mg2+ -108.700

MgS(s) -81.7

MgS04(s) -279.8

MgSO^H^s) -341.5

MgSCy 61^0(8) -629,1

MgS04'7H20 (epsomite) -686.2428

Mg3(P04)2(s) -845.8

MgMo04(s) -309.7

MgC03 (aagneaite) -245.658

MgC03'3H20 (neaquehonite) -412.035

MgCOj-SHjO (landsfordite) -525.7

Mg5(OH)2(C03)4'*H20 (hydroaugneaite) -1401.687

Mg2(OH)2C03-3H20 (artinite) -613.8494

+ MfHC03 (unionised) -250.3

Ht^OB^CCOj^'SH^OC*) -1100.3

NK(M03)2(a) -140.818 26

tOCMSHM (coat)

Mineral or Aqueou« Species (kcal/aole) let

MgOtOj^'ei^OU) -497.3 22

MgCl_(«, chlorcmagnesite) -141.440 16

MgCl2 •HjOCs) -205.98 22

MgCl2 '2H20 (s) -267.24 22

MgCl2'•4H 20 (s) -388.03 22

MgCl2'•6H 20 (s) -505.49 22

MgF2 lCsellaite ) -255.9904 16

MgBr2lIs) -120.4 22

MgBr2' 6H20(s) -491.4 22

Mgl2(!> ) -85.6 22

MgV2Oe . (metavanadate) -487.43 22

Mg V 0 (pyrovanadate) -632.24 22

MgTiOj (geikilite) -354.7732 16

MgTiO, (metatitanate) -354.8 22

MgTi205 (s) -565.7 22

Mg TiO. (orthotitanate) -489.2 22

MgO (periclase) -136.086 7

Mg(OH)2 () -199.646 7

MgOH+ -149.8 22

MgH2(s) -8.6 22

MgAljO^ (spinel) -517.006 7

MgCr.O. (picrochroaite) -398.9195 16

MgFe.O, (magnesioferrite) -314.7715 16

Mg2Si(s) -18.0 22

MgCu2(«,B) -8.1 22 MAGHESIUM (cont)

AG£" Mineral or Aqueous Species (kcal/aole

MgCd(s) -3.71

MgCd3(s) -4.71

Mg3Cd(s) -5.14

MgNi2(s) -12.9

Mg.SiO, (forsterite) -491.564

Mg2Al3(AlSi5018) (cordierite) -2061.279

Mg„Al,(AlSis0.a)-H-0 (hydrous cordierite) -2121.350 52<"3^ ^"lS' "2 MgSiO, (enstatite) -348.930

Mg7Si8022(OH)2 (anthophyllite) -2715.430

Mg3Si205(OH)4 (chrypotite) -964.871

Mg4gSi34085(OH)62 (antigorite) -15808.020

Mg3Si401()(OH)2 (talc) -1320.188

Mg5Al(AlSi3010)COH)g (7 -clinochlore) -1957.101

Mg5Al(AlSi3O10(OH)8 (14 -clinochlore) -1961.703

Mg4Si6015(OH)2(OH2)2-(OH2)4 (sepiolite) -2211.192

Mg2U02(C03)3-18H20(bayleyite) -1894.0

MANGANESE

Mn(s,ct) 0

Mn(s,Y) 0.34

Mn2+ -54.4933

HnS (alabandite) -52.178

MnSO.(s) -228.806

Mn3(P04)2'8H20(s) -870.9

MnRPO.(s) -332.5 28

MANGANESE (cont)

AGf" Mineral or Aqueous Species (kcal/aole) Ref.

MnMo04(s) -260.6 21

MnCO, (rhodochrosite]i -195.045 24

+ MnHC03 -196.0 22

MnCl2 (scacchite) -105.279 16

MnCl+ -86.7 22

MnCl2'•H 20(s) -166.4 22

MnCl,'•2H 20(s) -225.2 22

MnCl2'•4H 20(s) -340.3 22

MnCl3" -148.2 22

MnO (manganosite) -86.740 24

MnO. (pyrolusite) -111.171 16

Mn 0 (bixbyite) -210.580 16

Mn,0, (haussmanite) -306.5903 3 4 16 MnO," -106.9 4 22 MnO.2~ -119.7 4 22 MnOH+ -96.8 22

Mn(OH)3~ -177.9 22

Mn SiO, (tephroite) -389.5065 16

MnSiO, (rhodonite) -297.1035 16

MOLYBDENUM

MoS. (molybdenite) -71.0858 16

Mo02(s) -127.403 16

Mo03(s) -159.669 16 29

MOLYBDENUM (cont)

AGf° Mineral or Aqueous Species (kcal/nole) Ref. 2- MoO -199.82 9

Mo3Si(s) -23.0 22

H2Mo04(s) -216.4 9

NITROGEN

NO, -26.6491 11

AMMONIUM

NH, -18.9907 16

NH,OH -63.04 22

NH4V03(s) -212.3 22

NH4HS(s) -12.1 22

NH4Al(S04)2(s) -487.2 22

NH4Al(S04)2'12H20(s) -1180.21 22

(NH4)„S04 (mascagnite) -215.506 16

NH,N0. (ammonia niter) -43.9300 16

NH.C1 (salammoniac) -48.7036 16

22 NH4Br(s) -41.9

22 NH4Br3(s) -45.1

22 NH4BrI2(s) -45.3

NH.F(s) -83.36 22 4 -155.6 22 NH4HF2(s)

-26.9 22 NH4l(s) 22 NH4I3(s) -28.6 30

AMMONIUM (cont)

AGf" Mineral or Aqueous Species (kcal/aole) Kef

NH4ICl2(s) -55.5 22

NH.IC1. (s) -59.2 22 4 4 -46.9 22 NH4IBr2(s)

-52.0 22 NH,IBrCl2(s)

(NH,) SiF, (s, hexagonal) -565.38 22

-565.40 22 (NH4)2SiF6 (s, cubic)

-3863.9 22 H6(NH4)3Al5(P04)8-18H20(s) NH.H„P0.(s) -289.33 22 4 2 4 NH.HSe(s) -5.6 22 4

SODIUM

Na 0 16

Na+ -62.5956 16

Na2S04"10H,0 (mirabilite) -871.5440 16

Na2Mo04(s) -323.6 21

NaAlC0,(0H)2 (dawsonite) -426.8619 16

NaN03(s) -87.7517 16

NaCl (halite) -91.807 ' 24

NaCl° -92.740 24

NaF (villiauiuite) -130.573 16

Na.AlF, (cryolite) 751.6527 16

Na20(s) -89.883 7

NaOH(s) -90.7388 16

NaAl(Si03)2 (jadeite) -679.445 7 SODIHM (cont) AGf° Mineral or Agueom Species (kcal/«ole) Re

NaCa2Mg4Al(Al2Si6022)(OH)2 (pargaaite) -2847.168

NaAlSi.Og'H.O (analcime) -738.098

NaAlSi.O, (dehydrated analcime) -674.989

NaAlSi3Og (low albite) -886.308

NaAlSi.Og (high albite) -884.509

NaAlSiO, (nepheline) -472.872

NaAl2(AlSi3O10)(OH)2 (paragonite) -1326.012

Na2CaUO,(CO-),•6H„0 (andersoni te) -1351.0

NICKEL

NI 0 16 .2+ -10.8987 16 Ni -20.6004 16 NiS (millerite) -47.1009 16 Ni„S« (heazlewood) NiSO.(s) -181.6 22 4 -531.6783 16 NiSO,'6H20 (retgersite) -518.1 22 Ni4(OH)6S04 (s) -815.0 22 Ni7(OH)8(S04)3 (s) -146.4 22 NiC03(s) -562.4 22 Ni3(P04)2(s) -61.9097 16 HiCl2(s)

-181.7 22 HiCl2-2H20(«) NiClj^HjOCs) -295.2 22

HiCl2-6H20(«) -409.54 22 32

NICKEL (cont)

AGf° Mineral or Aqueous Specie* (kcal/aole) kef

HiF2(s) -144.4 22

NiF2-4H20(s) -378.0 22

NiO (bunsenite) -50.573 24

NiOH* -54.4 22

NI(OH)2(s) -106.9 22

NiFe.O, (trevorite) -232.5382 16

OXYGEN

0H_ -37.6023 16

LEAD

Pb(s) 0 16

Pb2+ -5.8317 16

PbS(galena) -23.115 24

PbSO.(anglesite) -194.353 24

PbS04'PbO(s) -246.7 22

PbS04'2PbO(s) -294.0 22

PbS04'3PbO(s) •341.2 22

PbMoO. (wulfenite) •227.4 9

PbCO,(cerrus i te) 150.370 24

PbO'PbC03(s) 195.2 22

PbCl2'PbCO- (phosgenite) 227.6 22

+ PbH03 -33.9 22

PbClj(cotunnite) -75.0557 16 33

LEAD (cont)

AG£° Mineral or Aqueous Specie* (kc«l/»ole) Kef.

PbCl3~ -101-9 22

Pb2(OH)3Cl(s) -252.55 22

PbCl* -39.39 22

PbBr2(s) -62.60 22

Pbl3- -47.5 22

Pbl.2" 4 -60.9 22 PbSe (clausthalite) -24.2775 16

PbSe04(s) -120.7 22

2PbCl2'NH4Cl(3) -201.49 22

PbSi03(s) -253.86 22

Pb2Si04(s) -299.4 22

PbO (litharge, red) -45.2204 16

PbO (massicot, yellow) -45.0700 16

PbO„ (plattnerite) -51.4613 16

Pb.O, (minium) 3 4 -143.728 16

PbO-1/3 H20(s) -63.7 22

HPW>2" -80.90 22

Pb(OH)2(s) -108.1 22

Pb(OH)3 -137.6 22 2+ Pb3(OH)4 -212.4 22 4+ Pb4(OH)4 -223.8 22 4+ Pbfi(OH)8 -430.3 22

Pb(Mn04)2-3PbO(s) -393.0 22 34

raosraotus *f° Mineral or Aqueou* Specie* (kc«l/»olc) let.

PO,33 " -243.5*69 16 °4

PALLADIUM

Pd(s) 0 16

Pd2+ 42.2 22

PdS(s) -16 22

PdS2(s) -17.8 22

Pd4S(s) -16.0 22

PdCl2(s) -29.9 22

PdBr3" -48.8 22

PdBr.2" -76.0 22 4 PdBr,2" -80.1 22 b

Pdl2(s) -15.0 22 w -38.0 22 -40.7 22

PLUTONIUM

Pu3+ -138.3 12

Pu4+ -115.1 12

+ Pu(S04) (-321.0) 11

2+ Pu(S04) -300.9 11

Pu(S04)2° -484.9 11

Pu02S04° -363.3 11 35

FLDTOmDM (cone)

AGf° Mi—r»l or Aqu«ou« Sp«cie» (kc«l/«ole) Kef.

Pu02HK>4(«) -458.4 11

Pu02(HP04)2(s) -673.5 11

+ Pu02(H2P04) -456.5 11 Pu(HPO.)2+ -393.2 11

Pu(HP04)2° -668.3 11

2 Pu(HP04)3 " -941.7 11 Pu(HPO.)/ 4 4 -1215.0 11 Pu(H P0 ),2 + 2 4 -411.8 11 2+ PuCO -296.8 11 Pu0 (C0 ) '' 2 3 2 -453.6 11 PuF (s) 3 -354.2 11 PuF.(s) 4 -402.5 11 PuCl3 + -148.0 11 Pu0 Cl 2 -212.0 11 PuF.3 + -193.3 11 PuOjF -256.0 11 Pu0 F ° 2 2 -330.5 11 Pu0 F " 2 3 -404.6 11 Pu0 F 2_ 2 4 -475.9 11 hex-Pu 0,(a) 2 -381.0 11 Pu0 («) 2 -238.5 11 Pu(OH) (s) 3 -277.7 11 Pu(0H) (s) 4 -340.8 11 36

PLPTOWIUH (coat)

AGf° Min«r»l or Aqu«ou« S»ecie» (kc«l/»ol«) le

Pu02(OH) (««orphou«) -252.4

PuO2(0H)2(s) -289.4

Pu(OH)2+ -184.1

Pu(OH)3+ (-171.1)

2+ Pu(OH)2 (-225.3)

+ Pu(OH)3 (-278.0)

Pu(OH)4° (-328.9)

Pu(OH) ~ (-378.1)

+ Pu02 (-203.2)

2+ Pu02 -180.9

+ Pu02(OH) -229.9

2+ (Pu02)2(OH)2 -463.9

+ (Pu02)3(OH)5 -796.6

Pu02OH° -246.7

RADIUM

Ra2+ -134.2 22

R»(s) 0 22

R«S04(s) -326.4 22

R*(M03)2(s) -190.3 22

R«Cl2«2R20(s) -311.4 22 37

KOBIDIUM

AGf° Mineral or Aqucom Speci« (kcal/mole) Kef.

Rb(«) 0 16

Rb+ -69.7216 16

SULFUR

S(s) „2- 20.5067 16 2- SO 177.971 16

ANTIMONY

Sb S (stibnite) -41.4603 16

Sb S 2 -23.8 22 2 4 "

Sb(OH)2F° (undis -173.2 22

SbCl3(«) -77.37 22

SbBr3(s) -57.2 22

SbO+ -42.33 22

Sb02" -81.32 22

sb2o4(.) •190.2 22

Sb205(i) -198.2 22

Sb.O. II (s, cubic) -303.1 22

Sb0 I (i, orthorhcabic) •299.5 22

Sb(OH)3(») •163.8 22

Sb2Te3(s) -13.2 22 38

RUTHENIUM

AGf° Mineral or Aqueous Specie* (kcal/»olc) Ref. 4+ Ru 55.891 15 2+ Ru(OH) -51.0 22

SELENIUM 2- Se 30.83 16 2- SeO, -88.4 22 2- SeO •105.5 22

HSe 10.5 22

H2Se~ 5.3 22

HSeO, -98.36 22

HSeO, 108.1 22

SILICON

SiO„ (a and (3 quartz) -204.646 7

SiO (cristobalite) -204.89r 7

SiO (tridyadte) -204.066 16

SiO, (coesite) -203.541 7

SiO„ (stishovite) -191.880 16

Si02 (glass) -203.288 16

SiO. (chalcedony) -204.276 7

SiO, (amorphous) -202.892 7

SiO ° -199.190 24

H4Si04(s) -318.6 22

\ 39

SILICON (cont)

AGf" Mineral or Aqueous Species (kcal/aole) Ref.

H. SiO. (undiss) -314.7 22 4 4

H3Si04 -299.18 11

2_ H2Si04 -281.31 11

H2Si03(s) -261.1 22

H-SiO ° (undiss) -258.0 22

HSi(OH)6" -414.6 22

H2Si(OH)6° (undi -428.1 22

H2Si205(s) -464.5 22

H6Si207(s) -579.8 22 2- SiF, -525.7 22

TIN „ 2+ Sn -7.137 18

Sn II (s, grey) 0.03 22

SnS (herzenbergite) -25.0234 16 2+ SnSO. -173.1 22 4

SnF+ -80.1 22

SnOHCl'HjOCs) -155.0 22

SnO. (cassiterite) -124.260 16

SnO(OH)+ -113.3 22

Sn(OH), (s, precipitated) -117.5 22 40

SraONTIOM

ACf° Mineral or Aqueom Specie* (kcal/aole) Kef

Sr(«) 0

Sr2+ -133.709 16

SrS(s) -107.2 22

SrSO. (celestite) -320.435 4 24 SrHPO.(s) -403.6 22 4 SrMoO.(s) -345.1 21 4 SrCO, (strontianite) -275.470 24 -186.206 16 Sr(N03)2(s)

Sr(N03)2-4H20(s) -413.65 22

-166.326 SrBr2(s) 16

SrBr2'H20(s) -228.1 16

SrBr2-6H20(s) -519.7 16

SrCl2(s,a) -186.7 22

SrCl2'H20(s) -247.7 22

SrCl2-2H20(s) -306.4 22

SrCl2'6H20(s) -535.67 22

SrO(s) -133.928 16

S.OH"1" -172.4 22

SrSi03(s) -370.4 22

SrSiO.(s) -523.7 22 4 -379.64 22 SrTi03(s) -520.7 22 SrTi04(s)

SrZrO,(s) -402.2 22 41

TELLURIUM

AG£° Mineral or Aqueous Species (kcal/aole) Ref.

Te2" 50.655 24

TeO (s, tellurite) -64.6200 16

+ Te(OH)3 -118.6 22

TeSe(s) 26.0 22

THORIUM

a-Th(s) 10

TIT -168.4 10 3+ ThOH -220.7 10 2+ TMOH)^ -272.3 10

Th(OH), (-322.5) 10

Th(OH), -373.5 10 6+ Th2(OH)2 -441.8 10 8+ Th4(OH)8 -1098.3 10 9+ Th6(OH)15 -1810.6 10

Th02(s) -273.2 10

ThO.(s, thorianite) -279.35 10 3+ ThF -246.70 10 2+ ThF, -322.52 10

ThF, -396.2 10

ThF, -468.2 10

ThF.(3) -478.9 10 4 tt

THORIUM (cont)

AGf° Mineral or Aqueous Species (kcal/aole) Ref.

ThF4-2.5^0(8) (-624.7) 10 3+ ThClJ -201.3 10 2+ ThClj -232.3 10

+ ThCl3 -264.8 10

ThCl.° -295.6 10 4 ThCl,(s) -261.6 4 10 ThSO.2+ -353.8 10 4 -537.6 10

Th(S04)2° -716.6 10 2 Th(S04)3 " -891.8 10 4 Th(S04)4 " -444.9 10 3+ ThH2P04 -720.9 10 2+ Th(H2P04)2

TITANIUM

Ti(s) 0 16

Ti3+ -73.929 17

TiBr3(s) -136.408 16

TiBr4(s) -140.9 22

TiCl3(s) -156.431 16

TiCl2(s) -111.0 22

Til4(s) -88.8 22

TiH2(s) -19.2 22

TiO(s) -122.685 16

TiO, (rutile) -212.583 16 43

TITAHIHM (cont)

W AG£ Mineral or Aqueous Speciea (kc«l/»ole) Kef

TiO„ (anatase) -211.114 16

Ti203(s) -342.7110 16

Ti,05(s,a) -553.8745 16

Ti407(s) -767.9651 16

URANIUM ..3+ -114.9 12 „4+ -126.9 12

i u(so4) -312.4 12

u(so4)2° -496.2 12

uo2so4° -409.7 12

U02C03(s) -373.1 12

uo2co3° -367.6 12

2 uo2(co3)2 " -503.3 12

12 U02(C03)34" -635.5

(U02)3(P04)2(s) -1237.0 12

(U02)2(HP04)2(s) -1008.0 12

U02HP04° -499.5 12

2_ U02(HP04)2 -773.7 12

+ U02(H2P04) -501.9 12

U02(H2P04)2° -775.6 12

-1048.0 12 uo,•2

U(HP04)2'4H20(s) -910.9 12 2+ UHPO, -403.7 12 4*

URAHIUM (cont)

AGf° Mineral or Aqueoua Species (kcal/aole) Re£.

U(HPO.),° -677.6 12 V2° U(HPO.) 2~ -949.8 12 4 3

4 U(HPO.).4 4 " -1221.0 12

UF4(s) -428.3

UF4-5/2 H20(s) -575.6

UC13+ -162.0

UF3+ -206.0

UF 2+ -281.3

UF,+ -354.9

UF4° -428.5

UF ~ -498.1

UF 2" -568.6

UO„F+ -302.1

U02F2° -374.5

U02F3" -445.3

2 U02F4 " -514.1

+ U02C1 -261.5

U02(s) -246.61 12

B-U02(0H)2(s) -333.2 12

U03*2H20(s) -390.1 12

Y-U03(s) -273.9 12

a-U3Og(s) -805.4 12

U409(s) -1022.0 12

U(0H)3+ -183.0 12

2+ U(OH)2 -237.0 12 45

PKAHIUM (cont)

AGf° Mineral or Aqueoua Spcciea (kcal/aole) Ref. + UCOH), -290.0 12

IKOH)^ -342.0 12

U(OH). -392.0 12

U0„ -231.5 12 2+ UO, -227.7 12

U02(OH) -276.5 12

2+ (U02)2(OH)2 -561.2 12

+ (U02)3(OH)5 -945.3 12

(U02)3(OH)7" -1038.0 12

U02(OH)2° -324.8 12

USiO. (coffinite) (-452.0) 11

+ U02SiO(OH)3 (-537.0) 11

VANADIUM

V(s) 0 16 „3+ -57.8 11 2+ TO -106.7 22

VO„ -140.3 22

VO, -187.3 22

TO, -214.9 22

V -411.0 22 2°7 VO(s) -96.6107 16

V203 (karelianite) -272.2400 16

V204(a) -315.1188 16 46

VAMADIUM (cont)

AGf° Mineral or Aqueoua Speciet (kcal/aole) Kef.

V205(s) -339.2531 16

V305(s) -434.0 22

V407(s) -591.0 22

2 HV04 " -233.0 22

-244.0 H2V°4 22

+ H4V04 -253.67 22 2+ VOH -111.41 11

+ V(OH)2 (-163.2) 11

V(OH)3° (-212.9) 11

VOOH+ -155.65 11

VO H0° (undiss) -178.1 22

3+ VO(OH)2 -125.1 22

-178.4 V02H2°2+ 22 -428.4 HV2°73" 22

H3V2°7~ -445.5 22

^IO^S5" -1935.0 22

H2V10°284" -1940.0 22

VCl2(s) -96.9601 16

VCl3(s) -122.227 16

VOSO,(s) 4 -282.6 22 47

YTTRIUM

ACf" Mineral or Aqueout Specie* (kc«l/»ole) Ref. „3+ -165.8 22

Y,03 (a, cubic) -434.1800 16

YH2(s) -27.8 22

YH3(s) -33.2 22 4+ Y2(OH)2 -425.5 22

YF3(s) -393.1 22 YC12 + -198.7 22 YCl »6H 0(s) 3 2 -592.1 22 Y(OH) Cl(s) 2 -297.9 22 Y(OH) Cl(s) 5 -609.3 22 2+ YBr -191.6 22 Y (S0 ) (s) 2 4 3 -866.8 22 Y (S0 ) -8H 0(s) 2 4 3 2 -1332.1 22 YNO. 2+ -192.4 22 Y (C0 ) (3) 2 3 3 -752.4 22 YZn(s) -18.4 22 YZn (s,a) 2 -31.4 22 YZn (s) 3 -35.6 22 YZn.(s) 4 -40.2 22 YZn (s) 5 -46.4 22 YZn (s) u -67.7 22 Y Zn (s) 2 17 -131.3 22 48

ZIHC

AGf° Mineral or Aqueous Specie* (kcal/aole) Ref

Z„2+ -35.1960 16

ZnO (zincite) -76.5958 16

2_ Zn02 -91.85 22

HZnO " -109.26 22

Zn(OH)2(s,Y) -132.38 22

Zn(OH)2(s,6) -132.31 22

Zn(OH)2(s,£) -132.68 22

Zn(OH)3" -165.95 22

Zn(OH),2 ~ 4 -205.23 22 Zn(OH)Cl° (undiss) -113.0 22

Zn2(OH)3Cl(s) -251.0 22

ZnBr -59.2 22

ZnBr2 -74.60 22

ZnBr2-2H20(s) -191.1 22

ZnBr ~ -107.3 22

Znl+ -43.5 22

Znl2(s) -49.94 22

Znl3" -69.7 22

Znl.2~ -81.3 4 22 ZnS (sphalerite) -47.947 24

ZnS (wurtzite) -44.810 24

ZnSO, (zinkosite) -208.301 4 16 ZnSO.'H-OCs) -270.58 22

ZnSO.'6H,0 (bianchite) -555.5382 22 49

ZIWC (cont)

Mineral or Aqueom Species (kcal/aole) Ref

ZnSO,*7H20 (goilarite) -612.4885 22

ZnO'ZZnSO.(s) -492.1 22

Zn2(OH)2S04(s) -351.4 22

Zn5(OH)8(H03)2(s) -624.4 22

ZnCO, (snithsonite) -174.850 7

ZnMoO,(s) -243.3 21 4 ZnSe(s) -39.0 22

ZnSe03'H20(s) -189.5 22

Zn.TiO, (Zn-Ti spinel) -366.6432 16

Zn.SiO. (willemite) -363.9904 16

ZnFe204(s) -254.2 22

ZIRCONIUM 4+ Zr -138.39 18

ZrH2(s) -30.8 22

ZrF, (0, ntonoclinic) -432.6 22

ZrCl.(s) -212.7 22 4 ZrSiO, (zircon) -458.6257 16 & 51

TABLE 2. EQUILIBRIUM COHSTARTS FOR SPECIATION AMD PRECIPITATION REACTIORS AT 298.15'K AND 1 BAR

SILVER

Reaction lot K R«f.

Af(») - Ag* + e~ -13.51

2 A(2S(ac«nthite) + 48^0 « 2At* • S04 ~ + 811* + 8c' -*».*7

2 AfRS° • *H20 - Af* • S04 " + 9H* + 8e~ -47.66 3

2 A»(HS)2" + 8H20 - At* + 2»4 " + 18H* + 16e~ -85.68 3

- 2 ARS + 4^0 - AR* • S04 " + 8H* + 8e~ -39.36 18(20°,0.1)

2 2 + ARHS2 " + 8Hj0 - Af* + 2S04 " + 17H + 16e" -76.18 18(20°,0.1)

2 A«S04" - A»* • S04 " -1.28

2 At2S04(.) - 2Ag* • S04 " -4.91

AfHOjU) » At* + IWj" 0.167

AtN03° - Af* + NOj" 0.29 19

2 AtjCOjd) • 2At* + C03 " -11.05

3 At3P04U> - 3At* • P04 " -15.92

AtBr(broMrtyritc) • At + Br~ -12.30

AfBr° - At* + Br" -4.24

AtBr2" - At* • 2Br" -7.27

2 AtBr3 " - At* + 3Br~ -8.70

AtBr^3" - At* • 4Br~ -9.0 3

Afldodargyritc) • AR + I -16.02

AH" - At* • r -6.6 3

Atl2 - At + 21 -10.56

2 «tl3 " - At* + 3I~ -13.20

3 Atl4 " - At* + 4I~ -13.85

Ajr-MjOCl) » Af* + F~ • 41^0 0.55 3

AtF° - At* • F~ -0.36 3

AfCKcerartyrit*) - At ••«- -9.75

AtCl° - At* • Cl" -3.27 3

«t«2~ - At* • 2«~ -5.26

2 AtCl3 " - AR* 3C1~ -5.29 3

ARC1 3" - AR* + 4Cl" 4 -5.51 3

ARCIJIC3" - «R* • 3C1~ • Bar* -7.88

ARCIBCJ3- - «t* + Cl~ •»» " -9.45 ARJIKO • »* « 2*R* * V 12.58 ACjOjfa) • *•* • l«~ « 2AR* * lljO C0.93 52

SILVMt (coat)

»««ction Lot K »ef.

A»203(«) • 6H* + 4«~ - 2A«* • SMjO 118.9

A|OH° + H - A| + H2O 12.0 3

Ag(OH)2" + 2H* - Ag* • 2H20 24.00

2 Ag2Se(l) + 3H.0 - 2Af* • SlOj " + 6H* + 6e~ -94.63

2 Ag2Se03(t) - 2Ag* + ScOj " -15.50

AgjSeO^U) + 2H* + 2e~ - 2Ag* + SeOj2" • HjO 20.77

2 AgjMo04(») • 2Ag* • Mo04 " -11.6

3 AgTOjU) + H20 - Af* + V04 " + 2H* -54.62

+ 3 + AgjHVO^tt) - 2Af • V0t " + H -81.04

+ 3 Ag2HV04-AlOH(t) - 3Ag * V04 " + HjO -104.32

2 Ag2Cr04(t) - 2Af* • Cr04 " -11.94

2 Ag2T«(i) - 2Ag* + T« ~ (-71.7) 18

ALUMINUM

Aid) - Al3* + 3«" 85.78

3 2 A12(S04)3(.) - 2A1 * + 3S04 " 19.817

3 2 A12(S04)3'6H20(») - ZA1 * + 3S04 " + 6HjO 2.317

J AlSOf - A1 + 90^ -3.02 3

3 2 A1(S04)2" - Al * + 2«>4 " -4.92 3

3 2 AlORSO^d) + H* - Al * • 904 " + HO -3.23 3

A1 (OH) » («) + 10»* - *A13* • 90 2" • IOHJO 4 10 4 4 22.7 3

3 3 AlN^(b«rlinit*) - Al * + FO ~ -22.84

3 »U}(.) -Al * + 3I~ 60.35

3 Air3C«) -Al * • 3F~ -17.25

3 AIF3° - Al ** 3F~ -17.02 20

2 A1F * - Al3** F" -5.740

3 AlFj* - AX ** 2F~ -12.750 20

A1F ~ - •I* • *F~ -19.720 20 A10 ~ • *•* - Al3* • "V 24.601

2 AIO* ** •* - Al3* • V 4.969 AKODj* • M* -Al3' ' • MjO 10.158

• «* 3 Alt«l>4' -Al * • •l^O 22.150

3 Alj03(a cwW • *•* - 2A1 * 21.415 ALOHMOH (coat)

taaction Lot K

3 A1203(.,Y) • 6H* - 2A1 * + 3120 22.3*0

3 Al(OR)3(«Tnthctic gibbaitc) + 3H* - i*l * + 36^0 8.089

3 " - Al * + 3B20 8.7*9

3+ Al(OH)3(a»rphoua) + 3H* - Al + 3H.0 10.359

3 A10(0H)(bo«h»ite) + 3H* - Al * + 2H20 9.609

3 A10(0B)(diaipore> • 3H* - Al * + 2H20 8.764

+ 3 Al2Si05(andaluaite) + 6H - 2A1 * + SiO,° + 3H20 16.596

AlgSiO.Uilliaanite) • 6H+ - 2A13+ + SiO ° + 3H 0 16.960

3+ 0 Al2Si05(kyanite) + 6H* - 2A1 «• SiOj + 3Hj0 If .326

+ 3+ Al2Si205(OH)4(kaolinite) + 6H - 2A1 + 2Si0° + 51U) 7.446

3 Al2Si4O10(0H)2(pyrophyllite) + bH* - 2A1 * + 4SI02° + 4Hj0 1.081

AWJRICIUM

A.2* - A-4* • 2." -11.29

A.3* - A.4* • e" -41.0

A>(a) - A«4* + 4e" 80.0

H 4+ A»02* + 4H* + e~ - AM + 2HjO 21.0 2+ + A»0 + 4H + 2e 4 2 - A» * + 2H20 48.0

*W* • H* - A-**+ H20 + e* -35.1

A»(0H> (a) + 3H* - 4 3 A* * + 3H20 • e" -18.6

A*(OR) (a) + *H* • 4 4 Aa * + 4HjO 3.84

4 AaOjOlKa) + 5H* • «' » Am * + 3H20 1.7

A^)2(OB)2(a) + it* * 2." - «•** + 4H20 34.29

Aa02(a) • AH* - «•** + 21^0 -6.23 2+ 4+ - - ABCI* -Am + CI + « -42.2

4 *** - A- * •!-•.- -44.4

4 F2* - A. * + 2»" • «" _47.!

4 _ r3° - A. * • 3*" + « -51.24

Fj(») - A»4* + 3F~ • «" -56.J1

2 4 »»3 * - *» * • «X>3~ • «" -41.26 + 4* 2- — V -*• **>4 *c •-'>•« Aa^JOjj" - A.4* • *•» * »4>l" " *•** • **>4*" • «" -45.03 ,1*-A»4**».3- *"W ••" • »4-^ • 21 • • -63.03 54

natron

laactioa t»«K

Sa(a) - la2* • 2«" M.Z&

1 2 lal(.) • MjO - I. * • 104 " • n* * U~ -17.3»

I*SO.<»ariee) - la2* + SO,2" -».»5 4 4 2 2 i.»4° - i. * • »4 - -2.7

2 2 laC03

2 iaCOj" - la * + C03" -2.78

2+ 2 Ba(HC03)2(a) - la + 2C03 " + 2H* -20.66 + 2+ - Ba«03 « la + W>3 0.97

2 Ba(»03)2(») - Ba * + 2M0" -2.25

2 Ba(M03)2° - Ba * + 2H03" -1.0

2 2 2 BaCa(C03)2(alatonite) - Ba * + Ca * + 2C0 ~ -17.99

2 2 2 BaCa(C03)2(barytocalcite) - Ba * + Ca * + 2t»3 ~ -17.84

BaO(») + 2H* « Ba2* + HO 48.62

2 BaOH* • H* - Ba * + H20 13.39

2+ Ba(OH)2-8H20(s) + 2H* - Ba + IOHJO 24.34

2 BaF2(«) - Ba * + 2F~ -5.97

2 BaCl2(i) - Ba * + 2Cl" 2.25 + 2+ - BaCl - Ba' + CI <0.13)

2 BaCl2"H20(») - Ba * + 2Cl" + H20 0.82

2 BaClj^HjOCa) - B« * + 2Cl" + 2H20 0.19

2 BaBr2(s) - Ba * + 2Br~ 5.59

2 BaBr2-2H20(a) - Ba * + 2Br" + ?H20 2.19

2 BaO-Si02(») + 2H* » Ba * + SiO° + H20 15.95

2 BaO-2Si02(») + 2H* - Ba * + 2Si02° • HjO 9.44

2 2BaO-Si02(i) + 4R* » 2Ba * + SiOj" + 2H20 44.56

2 2BaO-3Si02(s) + 4H* - 2Ba * + 3Si02° + 21^0 23.29

2 BaSiF62° + 4H* -32.93

2 3 BaTi03(i) + 6ii* + «" - Bl * + Ti * + 3^0 1.600

2 3 BaTiO^Ca) + 8H* + 3«~ - Ba * + Ti * + 4H20 -55.087

BaSrTiO,<») + 8H* «• e~ - Ba2* + Sr2* + li3* + 4H,0 36.855

•aCrO.(a) = 1«2* * CrO 2" -9.93 laMaO^Ca) + *•* - la2* + Ma2* • *«jO 108.30

2 laZc03(a) + *•* - la * + Zr** + 3*^0 27.45

2 2 laSV>3<») - 1» * • Sa03 " -6.58 55

IMtlOH (coat)

Maction ft: K l«f.

2 2 K5«04(s) • 2H* + 2«~ - »» * • f«03 " • «20 21.S5

2 2 1) - la * • Ho04 " -10.W

2 3 H»04(f) - la * • H* + »04 " -W.71 18(20°,0)

Ca(.) - Ca2* + 2e" 96.99

2 2 CaS(oldha«ite) + 4H20 - Ca * + S04 " + 8H* + 8e" -21.07

CaSO.(anhjHrite) » Ca2+ + SO,2" 4.62 18

2 2 CaSO^-1/2 H20(«acro a) - Ca * + S04 ~ + 1/2 H20 -3.52

2+ 2 CaS04'l/2 H20(«icro 6) » Ca + S04 " + l7? HjO -3.35

2 2 CaS04-2H20(gypau«) » Ca * + S04 " + 2H20 -4.85 20 2+ 2- CaCO,(ar«gonite) - Ca + CO, -8.22 18

2+ 2 CaC03() - Ca + CO., " -8.35 18

CaCO.(vaterite) • Ca2* + CO,2" -7.73

CaCO° • Ca2* + CO," -3.15 3 2+ 2- -7.54

CaCO,-H20(»onohydrocalcite) - Ca + C03 + HjO -18.06

2 2+ 2 CaMg3

Z 24 CaMg3(CO,)4(huntite) - Ca * + 3Mg * liCO*~ -11.33 18 CaHCOj* » Ca2* + H* + CO,2" 5.88 2 Ca(N03>2(8) - Ci * + 2N03" -0.6 18 2+ Ca(N0,)2° • Ca + 2N03" -0.7 18

2 Ca(N03)2'2H20(«) - Ca * + 2N03" + 2HjO 3.76

2 Ca(N03)2-3H20(a) - Ca * • 2H03" + 3Hj0 2.81

2.04

CaPO," - Ca2* + PO, 20 4 4 -6.46

2 3 Ca3(P04)2(vhitlockite) » 3Ca * + 2K>4 " -34.53

2 3 Ca3(P04)2(»,B) - 3Ca * • 2P04 " -32.63

Ca3

2 3 CaHP04(a) - Ca * + H* + K^ ' •19.05

CaHP0.° « Ca2* + H* + tO,3~ •15.05 20 4 4

2 3 •20.93 20 CaHjH^* - Ca * T 2H* + F04 "

2 3 18.91 CaHF04-2R20(a> - Ca * + H* + K>4 " • 2ay> 56

CALCIflH (coot)

«««ctio» Lot X

2 3 CidjM^j-ljOd) - Ca * + *H* + 2»4 " • «jO -40.2*

2 3 CgljC^jj-SljOC*) - 8Ca * + 2H* + 6»4 " • 5H20 -93.80

o 2 3 C«10(K>4)6<0!l)2 + 2H* - lOCa * + 6M4 " • 2H20 28.17

2 3 C*5(FOA)3OR(hydroxyap«tite) + H* - 5Ca * + 3PO ~ • 2H.0 -40.35

2 3 C«5(P04)3F(fluoro«p«tite) - 5Ca * + 3PO ~ + F" -54.53

C"9.4961"0.36M«0.144<,04'4.8(C03)1.2F2.48(FC03 «^elt«) " »-*«<=«2+ + 0.36M.+ 0.144Mg + 4.8PO 3" + 1.2C0 ,2~ + 2.48F~ -114.4

2 2 3 Ca2Ft(P04)2-4H20(anapaite) - 2Ca * + Fe * + 2H>4 ~ + 4HjO -34.14

+ 2+ 2 3 CaFe(P04)2(OH)2"8H20(«itrid«tite) + 2H + 2e~ - Ca + 2F« * + 2F04 " + 10H20 -27.24

2+ 2 3 CaFe4(0H)g(PO4)2-7H20(£oucherite) + 8H* + 4e~ » Ca + 4Fe * + 2PO ~ + 15^0 -25.14

CaSe(a) + 3H 0 - Ca2+ + SeO,2" + 6H+ + 6e~ -26.49

2+ 2 CaSeO,-2H20(a) - Ca + SeO, " + 2HjO -5.46

2 2 a * + Se03 " + 3H20 25.90 CaMoO.(povellite) - Ca * + MoO, " -8.71 CaCl,(hydrophilite) - Ca + 2C1~ 11.92

CaBr2(») - Ca + 2Br~ 17.16

2 CaBr2'6H20(a) - Ca * + 2Br" *• 6HjO 5.48 2+ - Cat (s) - Ca * 21 22.52

2+ _ CaF2(fluorite) - Ca + 2F -10.16

-0.94

CaO(lime) + 2H+ » Ca2+ + HO 32.71

+ 2+ 2H « Ca + 2H20 22.68

2 Ca * + H20 12.67 --1 - 2+ 2+ Ca <• 2Fe + 4H.0 43.31

2+ 2 Ca2Fe205

CaZrO.(s) + 6H* - Ca2+ + Zr4* + 3H-0 28.54 3V ' "" v "" -"'2 Ca2* + Ti3+ 3H,0 -0.171

2 3 Ca3Ti207(») + 14H* • 2e~ - 3Ca * + 2Ti * + 7H20 32.919

2 3 Ca Al2SiO;(gehlinitc) + 10H* • 2Ca * + 2A1 * + SiO ° + 5H 0 56.88

2 3 Ca3Al2Si30I2((roaaular) + 12H* - 3Ca * • 2A1 * • 3Si02° + 6H20 52.47

2 3 CaAl2Si06(Ca-Al pyx.) + 8H* - Ca * + 2A1 * + SiOj + 4H20 36.59

2 3 « * + 2A1 * + 2Si02° + 4^0 27.19

2 2 Ca3Fc2Si3012

2 2 CaFeSi206(htdcnbcr«itt) + *H* • Ca * • Fa * • 2Si02° + 2IL0 17.35 CA1CIDH

iMction Let K

2 2 C#fcSi04

2 2 c C«3Ht(SiOA)2(Mrwinitc) • 8H* - 3C» * + H» * • 2Ii02 • MjO M.55

+ 2 2 C«2H(Si207(«kcTBM>itc) + 6H • 2Ca * • M* * + 2!iO ° • 3H20 *5.39

2 2 CaHgSi206(dioplide) + *H* - Ca * + Hf * • 2SiO° • 2H20 21.07

2 C«2Si04(larnite) + 4H* « 2Ca * + SiO ° + 2H20 39.16

2 C»2Si04(C«-olivine> + 4H* - 2Ca * + Si02° + 2H20 37.67

C»,SiO. + 6H* - 3Ca + SiO° + 3H-0 73.84

+ 2 C»3Si207(rmkioite) + 6H - 3Ca * + SiO° + 3H20 48.62

CaSKLdrollaatonite) + 2H* - Ca2* + SiO ° + HJi 13.73

+ 2 C«Si03(p«udowoll«»tonite) + 2H - Ca * + SiO° • HO 13.87

+ 2 3+ C»TiSi05(»phene) + 6H • e" - Ca * + Ti • Si02° • 3ILO -9.140

2 3 C«Al2Si207(OH)2 • HjOtUwsonite) + 8H* • Ca * + 2A1 * + 2SiO° + 6H.0 22.81

2+ 3 CaAl2Si4012'2H20(wairakite) + 8H* - Ca + 2A1 * + 4SiO ° + 6HjO 18.68

2 3+ CaAl2Si4012-4H20(lai»ontite) + 8H* - Ca * • 2A1 + 4Si02° • SHjO 14.25

2 3+ CaAl2(Al2Ri2010)(OH)2(Mrgarice) + 14H* - Ca * + 4A1 + 2Si02° + 8H20 42.33

2 3+ Ca2Al3Si3O12(0H)(clinozoiiite) + 13H* » 2Ca * + 3A1 + 3Si02° + 71^0 44.16

2+ 3+ Ca2Al2Si3012(0H)(soi«ite) + 13H* - 2Ca + 3A1 + 3SiO ° + 1H-0 44.20

+ 2 3 2+ Ca2Al2FeSi30j2(0H)(epidote) + 13H + e" - 2Ca * + 2A1 * + Fe + 3Si02° + 1H 0 44.29

2+ 3+ Ca2Al(AlSi3010)(OH)2(prehnite) * 10H* - 2Ca + 2A1 • 3Si02° + 6HjO 33.51

2+ 2+ Ca2Mg5Si8022(0H)2(trenolite) + 14H* - 2Ca + 5Hg + 8Si02° + 8HjO 61.85

+ 2 A 3 Ca(U02)2(V04)2(tjuyaaranice) + 8H + 4e~ - Ca * + 2D * + 2V0 " + 4HjO (-34.74)

+ 2 4 2 Ca2DO2(CO3)3-10H2O(liebigite) + 4H + 2e~ - 2Ca * + U * + 3C0., " + 12H20 -27.75

+ 2 2 4+ 2 CaMgU02(C03)3*12H20(svart»ite) + 4H + 2e~ - Ca * + Mg * + U + 3C0 " + 14H-0 -28.66

2 4 Ca(U02)2(Si03OH)2(uranophane) + 14H* + 4e~ - Ca * + 2U * + 2SiO° + 8HjO 35.85

CADMIUM

Cd(o) - Cd2+ + 2e- 13.59

CdS(greenokite) + 4HjO • Cd2* + SO.2" + 8H* + 8e' -47.66

2 2 CdHS* • 4HjO - Cd * + S04 " • 9H* + 8e" -43.78

2 2 Cd(HS)2° + 8H20 - Cd * 2S04 " • UH* + 16e" -77.39

2 Cd(HS)3~ + 12^0 - Cd * + 3SO " + 27H* + 24e" -119.54

2 2 2 Cd(HS)4 " + 16HjO - Cd * + *S04 " • 36H* • 32«" -155.34

2 2 CdS04(.) - Cd * + »4 ~ ^).10 58

CAMCOH (coat) KMCtiwi Log K ft.

2 2 -2.4* 3 Cd»4° - C* * • J04 "

2 2 -l.tt CdW^-IjOC.) - Cd * • S04 " • •jO

2 2 CdSO^-8/3 H20(«) - Cd * • K)4 " + 8/3 HjO -1.8$

2 2 Cd3«W)4S04C«> + 4H* - 3Cd * + 4H20 • S04 ~ 22.51

2 Cd3(0«)2(S04)2(«) • 2H* - 3Cd * + 2H20 + 280^" 6.69

2 2 Cd4(0H)6SO4(») + 6H* - 4Cd * + 6%^ + SO^ " 28.4 3

2 2 2 Cd(S04)2 " - Cd * + 2S04 " -3.5 3

CdCO.(otaviCe) - Cd2* + COj2" -11.21

CdCOj" - Cd2* • COj2" -5.4 3

4 2 2 Cd(C03>3 " » Cd * + 3COj " -6.22 3

-2.1 3

-0.4 3

2 Cd(N03)2° - Cd * + 2HOj" -0.2 18

2 3 Cd3(P04)2(i) - 3Cd * + 2P04 " -32.54

2 2 CdSe03(») - Cd * + Se03 " -8.84

CdSeO, (s> + 2H* + 2e~ - Cd2* + SeO 2~ + H-0 26.77 4 3 2 CdTe(s) - Cd2* + Te2" <-41.5) 18

CdSb(«) + HjO - Cd2* + SbO* + 2H* 5e~ 0.79

-1.1 3

CdFjts) - Cd2* + 2F~ -2.98 3

CdF° - Cd2* + 2F~ -1.5 3

-1.98 3

CdCl-(s) - Cd + 2C1 -0.67

2 CdCl2° - Cd * + 2Cl" -2.6 3

CdClj" - Cd2* + 3C1~ -2.4 3

CdCl 2" - Cd2 + 4Cl~ -1.7 18 4 A* ^ -1.72

2 CdClj-5/2 H20<«) - Cd * + 2C1~ + 5/2 HjO -1.95

Cd(OH)CKl) • H* - Cd2* + Cl" + HjO 3.51

Cd(OH)Cl° + H* - Cd2* + Cl" + HjO 7.40 3 -2.17

2 Cd»r2(») - Cd ' + 2»r~ -1.88

-2.9 3 -3.15 59

CMMUM (coat)

tMction Lot K »«f

Cdlr^2" - C«2* • 4Ir" -2.»

2 Cdlr2-4H20(») - Co * • 21r" • 4BjO -2.44

-2.1

2 Cdl2(. ) - Cd * • 2I~ -3.5

2 cdi2° - Cd * + 2l" -3.6 3

2+ Cdl3" - Cd + 3I~ -4.6 2+ - Cdl,2~ - Cd* + 41 -5.4 4 CdO(aonteponite) + 2H* - C< 15.11

2 + 2z + cdo2 " * 4H - Cd + 2H20 46.85 + 2+ HCdO ~ + 3H - Cd^ + 2H 0 32.99

Cd(OH* + H* - Cd2* + HO 10.08 3

Cd(OH) (norphou*) + 2H* - Cd2* + 2H 0 13.73 3

2 Cd(OH)2(cryit«lline) + 2H* - Cd * + 2HjO 13.65 3

2 Cd(OH)2° + 2H*- Cd * + 2H20 20.35 3

2 Cd(OH)3" + 3H*- Cd * + 3H20 32.97

Cd(OH) 2" • •Cd2+ + 4H 0 46.88 4 »«*. 2

3 2 Cd2OH * • H* - 2Cd * + H20 9.39 3

Sl + Cd4(OH)4** + 4H* - 4Cd + 4H20 32.76 18

2 CdSi03(«) • 2H* - Cd * • 8i02° + HjO 7.49

Ce(i) - Ce3* + 3e~ 117.75

29.47

Ce.S.U) + 12H-0 - 2Ce3* + 3SO 2~ • 24H* + 24e~ -72.32 15 + 3+ 2- CeSO, - Ce + SO, -3.59 18 4 4

3 3 2 Ce(S04)2 " - Ce * + 2S0^ " -5.2 18

3 3 CeM^s) « Ce * • »4 ~ -21.3 15

CePO.° « Ce3* + M> 3~ (-18.5) 18 4 4 2+ T+ *i— + J -2.33 18 CeHjIO^ - Ce + K>4 + 2H 2+ 3+ - CeMOj - Ce° + BOj -1.09 15 -4.0 18

0.78

CtO.Cccrianite) • 41* • «~ • Ce + 2»,0 21.18 60

CE»IUH (coot)

K«ction U>g K

3 Ce203(«) + 6H* « 2C« * + 3H20 60.M

CeOH2* • H* « Ce3* + HjO 8.3 2

CeOH3* + H* + e~ - Ce3* + HjO 2S.37 15

Ce(OH) 2* + 2H* + e" - Ce3* + 2H.0 29.17 15

+ 3 Ce(0H)3(») + 3H - Ce * + 3H20 20.77

6+ + 3 Ce2(OH)2 + 2H + 2e~ - 2Ce * + 2H2<> 55.34 15

CeAOtt),5* * 2H+ + 2e~ " 2Ce3* + 3H,0 54.84 15

+ 3 Ce2(0H)4'* + 4H* + 2e~ » Ce * + 4iy> 55.44 15

4+ 3 Ce2(0H)2 + 2H* - 2Ce * • 2H2<> 15.5 15

4+ 3+ C«3(0H)5 + 5H* - 3Ce + SHjO 33.45 18

-52.40 15

Ca<») - C»4* + 4e~ 64.75 15

CnO„ +- 4—H +- e- - C». —' * + 21^0 45.65 15

2 4 CBOJ * + 4H* + 2e" - C« * + 2H20 79.46 15 2+ + 4+ - -49.00 CmOH + H » Cm* + 9.0 + e 15

+ + 4 Cm(0H)2 + H - C« * + 2H20 • e~ -43.3 15

-52.58 15

-55.74 15

CmF * « Cm4+ + 2F~ + e~ -55.74 15

CmF° » Cm4* • 3?" + «" -61.48 15 2+ 4+ - -52.97 15 CnNO, • Cm * l»3 + e + 4* 2- C«S0, » C« + SO. + c -54.26 15 4 4

2+ 4 3 C«H2f04 - C» * • 2H* + *>h ~ -74.32 15

CmPO.° - CM4* • *0 3~ + t" -72.6 15 4 4

3 2- CT * • 4«jO - Cr04 + 8«* • 3t" -67.08

2 Cr203(t> • SljO - ICtOt " + 1M* • *V -137.21

2 2 Cr20, " + «jO - 2CT04 " + 21* -14.4* 61

CMOMUM (cont)

Ke&-tion Lot K t«f.

2 HCr04" « H* + Cr04 ' -6.48 2- H CrO,° - 2H+ + CrO, 2 4 -6.28 2

2 2 + CrOH * + 3H20 - Cr04 " • 7H + 3e" -63.16 18

+ 2 + Cr(OH)2 + 2H20 - CrO^ " + 6H + 3e~ -56.40 18(25°,0

2 + Cr(OH)3(») + H20 - CrO. " + 5H • 3e" "54.91 18(25°,0

2 Cr(OH)3° • H20 - Cr04 ' + 5H* + 3e~ -49.08 2

2 Cr(OH)4" - Cr04 " + 4H* + 3e" -39.68 2

4+ 2- T Cr2(OH)2 + 6HjO > 2CrOA''" + 14H + 6e~ -129.10 4 2 2- Cr^OH)^ + 8HjO - 3Cr04 + 20H * 9e" -193.09 2

2 2 + CrF " + 4HjO - Cr04 " • p" + 8H + 3e" -72.28 18

2 _ + CrF3(«) * 4H20 - CrO^ " + 3F + 8H + 3e~ -81.55 2- -55.06 2- -54.86

C»(s) - Cs + e 49.70

CsNo_° « Co* + NO 0.10 23

C»C1° - Cs* + Cl" -0.50 23

CsBr° «• Cs* + Br" (-0.03) 23

Csl° • C«* + i" (0.03) 23

Cs20(s) + 2H - 2C« + HjO 124.41 23

ClOH(s) + H - Cl + H20 149.54 23

2+ Cu(s) * Cu «• 2e -11.48

-2.72

2 2 CuS(covellite) + 4HjO » Cu * + S04 " • 8H* + Be" -56.46

Cu.S(ch.lcocite) + 4H.0 » 2Cu2* • SO 2" + SB* * lOe" 2 2 4 -73.92

2 2 Cu(HS)3~ + 12H.0 - Cu * • 3SO ~ + 27H* • 2*«" -126.74 3

2 2 2 Cu0 9 *Cu0 2*S(bl«ubl«i I) + 4H,0 - l.ICa * • SO ~ • B>* * «.2l" -58.31 3

2 2 2 Cu^ S *C«^ 8*S(H«ukl«i II) • My) - l.*Cu * • »4 ~ + ••* • 8.8V -63.06 3

1 2 2 C«^>25 *Ca1>5*S<«iilitO • *1JO - 1.75Cn * • SO^ " • «•* • ».5«~ -69.57 3 62

COrttt (coat)

Reaction Lot K

2 Co 2 Cu SMj rl it,) 1 3 C 2+ • S0 " + 81* • 9.868a" b.066 * l.»68* " * * ^2° " -» * » 4 -72.61

2 2 2 CuFeS2(cbalcoayrite) • 8«20 " Cu * • Fa * + 2S0. " + 16«* + 16a" -102.05

2+ 2 2 CusFeS4(boniice) + 16H-0 - 5Cu + Fa * + *S04 " + 32H* + 36a" -250.09

CuS0,° - Cu2* * SO}~ 4 4 -2.31

CuS04(chalcocyanite) • Cu + SO, 2.94

2 2 CuS04'HjO(») - Cu * + SO. " + H,0 -2.54

2 2 CuS04-3H20(«) - Cu * + S04 " + 3H20 -3.89

2 2 CuS04-5H20(chalcanthite) - Cu * + S04 " + 5Hj0 -2.64

2 2 Cu2S04(s) - 2Cu * + S04 " • 2e" -7.39

2 2 Cu2OS04(») + 2H* - Cu * + S04 " + H20 11.53

2 2 Cu3(OH)4S04(antlerite) + 4H* - 3Cu * + S04 " • 41L0 8.73

2 2 Cu4(OH)6S04(broehantite) + 6H* - 4Cu * + S04 " + 6H20 15.32

Z 2 Cu4(0H)6S04-H2O(langita) • 6H* - 4Cu * + S04 " + 7H20 17.21

2 2 Cu(OH)15(SO4)0 2J(«) + 1.5H* - Cu * + 0.25S04 " + 1.5H20 3.82

2 3 Cu3(P04)2

2 3 Cu3(P04)2-3H20(l) - 3Cu * + 2P04 " * 3H20 -35.12

2 3 CuHPO,° - Cu * + H* + P04 " -15.55

CuMOj* » Cu2* • HOj" -0.5

2 Cu(N03)2° - Cu * + 2H03~ 0.4

2 Cu2(0H)3(H03)(i) + 3H* - 2Cu * + 3H20 + NOj" 9.25

CuCO, • Cu + CO, -6.73

CuCOjd) - Cu2* • CO,2" -9.63

2 2 2 Cu(C03)2 " » Cu * + 2C03 " -9.83

CuHCOj* - Cu2* + H* + CO,2" -13.03

2 2 Cu2(OH)2(C03Xmal«chita) • 2H* - 2Cu * + COj " + 2H20 -4.40

2 2 Cu3(OH)2(C03)2(aturita) + 2H* - 3Cu * + 2C03 " + 2H20 -11.51

2 2 CuMo04(») » Cu * • Mo04 " -8.31

2 2 CuCt04(») - Cu * • CrO " -5.44

2 2 CuS*03(») - Cu * + SaOj " -7.67

2 2 CuF«02(a) + *•* - Cu * • Fa * • 2»y> 1.35

2 2 CuF«204(t) • 8«* + 2a" - Cu * * 2Fa * • My) 31.89

Culr* • Cu * + lr~ -0.03

Culr(a) - e»** + lr" + a" -10.93

2 CatoyXaCMt^a) • *•* » «m * • Ilr" • Cft^O 15.35 CQtttM. (coat)

Kccction Lot K

CuCl* - Cu2* + Cl" -0.43 2+ - - CuCl bumtokite) - Cu + Cl 4 t -9.48

CuCl° » Cu2* + 2Cl" -0.16

CuCUCaeUnothdlite) « Cu2* + 2Cl" 3.73

CuCl" • Cu2* + 2Cl" + e" -8.22

CuCl -211,0(1) - Cu2* + 2C1~ + 2H-0 2.67

2 CuCl3" - Cu * + 3Cl" 2.29

CuCl,2" • Cu2* + 3C1~ + e" -8.46

CuCl,2" - Cu2* + 4Cl" 4.59 4

2 Cu2(OH)3Cl(«t«c««itt) • 3H* - 2Cu * + 3H20 • Cl" 7.3*

CuF* - Cu2* + F" -1.26 2+ — -* CuF(i) » Cu + F •.« 4.36

CuF,(i) - Cu2* + 2F~ -0.62

2 CUF^HJOU) - Cu * + 2F" + 2H20 -4.55

Cul(i) « Cu2* + l" + e" -14.55

CuO(tcnorit«) + 2H* - Cu • H,0 7.66 + 2+ - Cu,0(cuprite) + 2H « 2Cu + H.0 + 2e -7.35

2 2 Cu02 " • 4H* - Cu * + 2H20 39.44

2 HCu02" + 3H* - Cu * + 2Hj0 26.32

CuOH* + H* - Cu2* + ILO 8.0

2 Cu(0H)2° + 2H* - Cu * + 2H20 13.68

2 Cu(0H)2(«) + 2H* • Cu * + 2HjO 8.64

2 Cu(0H)3" • 3H* - Cu * + 3»20 26.9

Cu(OH)^2" • 4H* - Cu2 * 4BjO 39.6

2 2 CUj(«l)2 * • 2H* - 2Cu * + MjO 10.36

CuFtO.CcuBroua f«rrit«) • *»* • Cu2* • Ft2* + MjO -29.39

CuFc 0, (cvcric fcrritc) + •»* • 2«~ - Cu2* •• 2Fc2* • *1JO -29.62

CvHOylljOMioctuc) • 2«* » Cu2* • IiOj° • MjO 4.92

CUjTt(») » 2C»2* • T«2_ • 2«~ (-67.74) 64

Lot K Kef

5.94 15

3 Eu(i) - Eu * + 3t~ 100.59 15 + 3+ 2- -3.67 18

EuSO^ - Ell + S04 -5.41 18 3+ 2 Eu(S04)2" - Eu + 2S04 " -».80 15 3 2 Eu2 - Eu * + 3*>4 " + »H20 -1.23 IB EuHO 2* - Eu3* + HOj" 44.70 EuO(i) • 2H* - Eu3* + HjO + «' 53.33 3 EUj03(i) + 6H* - 2Eu * + 3H20 92.42 15 3 EUjO^d) + 8H* • 3Eu * + 4H20 + t" 16.37 18 Eu(0»),(i) + 3H* - Eu3* • 3H,0 2 3 EuOII * • H*- Eu ** H20 7.8 15

EuCl2* -Eu3* + Cl" -0.90 15

EuClj* -Eu3* + 2C1~ -0.19 15 2+ 3+ EuF* - EuJ + F -3.19 15

2 3 3 EUJPJOJ * + H20 - 2Eu * + 2H* • MO^ " -41.05 15

F« + * - Fc 13.01

Ft(») - Ft * • 2«~ 13.82

FcS(troilitt) + 4«j0 - F«2* + SO^2- • 8«* + 8t" -39.67

FtSCaackintvitt) • 41^0 - Ft2* • SO^2" • 81* + it" -38.26

2 FtS2(pyritt) + 8HjO - Ft * + 2*>^~ * 1*«* • Ut" -85.72

2 FtS2(urc«i.tt> + •MjO - Ft * + **»f~ * 1*»* • 14t~ -85.41

FtSCnrrrhotitt) • 4«jO - Ft2* • SO^2- + ••* • 8t~ -39.57

2 2 r«7S$(S-ricli nrrrhotitt) • 32»jO - 7F« * • HO^ " • *4«* • *2t" -320.29

2 2 FtjS^crUcit*) • l«ljO - 3F« * • **>4 ~ • 321* • Mt' -153.46 3

0 2 2 F»4 ~ • IM* • Urn" -74.17 3

FtWttj" • UBjO » Ft2* + )*>f~ * 27«* * 2*t"" -111.82 3

2 FtM4(t) - Ft * • »^~ 0.4*

l F**^" - !•** • »4 " -2.25 3

F»«Of* * •" • *•** * *>f~ 8.89

1 2 1M»4)," - I* * • M04 " 7.82

yngOMaaMritt) «It2* • tO^1" • njt -JM 3 65

HOW (cont)

Loi X Kef

2+ 2 F«2(S04)3(.) • 2e~ - 2F« + 3»4 " 29.6 3

2 2 *«Fc3(90.),(OH)6(Ma-jaroaitc) + 6H* + 3e~ • Ha* • 3F« * + 2S0 ~ + 6H.0 27.83 3

2+ 2 KF«3(S04)2(OH)6(K-j»roiite) + 6H* + 3e" - t* * 3F« + 2S>4 ~ + 6H20 24.23 3

+ 2+ 2 (H30)F«3(904)2(OB)6(l-j«ro»it«) • 5H + 3e" • 3Fe + 2S04 ~ + 7^0 26.93 3

FaHFO.° - F«2+ + H* + PO 3~ * 4 -15.91 20 F«HPO* + «" - F«2+ + H* • PO 3" 4 4 -4.73 20

+ 2 3 F«H2K>4 - Fa * + 2H* + »04 " -22.22 3

2+ 2 3 F«H2F04 + «" - Ft * + »4 " -11.94 3

2+ 3 F«ro4-2HjO(»trtntitt) + t" - F« + PO^ " + 2HjO -13.39 20

2 3 Fi3(K>4)2*IH20(vivUnitt) - 3F« * • 2P04 " + SHjO -36.02

2+ 3 Ftj

2+ 3- F«3(W4)2(OH)2(li»p«eo«l>it«) + 2H* + 2«" - 3F* + 2P04 + 2HjO -32.24 14

2 3 F*3(P04)2(Oil)3-3H20(tinticice) • 3H* • 3*~ • 3F« * + 2P04 " + 6H20 -30.04 14

2+ 3 F«4(F04)J(0«l)3"12«20(c«o»nit«) + 3H* • 3t~ - 4F« + 3K>4 ~ • UHjO -50.36 14

2+ 3 F*5(FO4)3(0H)s(Toek bridtic*) + SH* + 4*~ - 5F« + 3K>4 " + 5H.,0 -48.26 14

2+ 3 F*i(P04)4(OH>5-6l20(b«Tauiiite) + 5R* + 5«~ - 6Fe + 4P04 " + HHjO -68.78 14

2+ 2 F«Ho04(i) - F« + Ho04 ~ -10.51

2 2 F*C03(aid*rit«) • Fa * + CO, " -12.73

FaW>3 • « - Ft* • 1»3 12.02

2 3 F«Al204(h«rcynit«) • »•* - Fa * • 2A1 * + 41^0 27.28

2 3 F«Ti03(ilBM>itt) • *•* + «" - F« * • Ti * • SHjO -10.436

2 2 F«Cr204(c1iToaic«) • *»y> « Fa * + 2Cr04 " • 8H* + 6e~ -132.80

F.C12* • ." - Fa2* + Cl" 11.60

FaCUClavarcit*) - F«2* • 2Cl' 6.88

FaClj* • .- - Fa2* • 2CI" 10.92

FaCl.(a»:lyaita ) • «~ » F«2* • 24.34

2 F«Clj° + ." - Fa * • 3d" 11.88 3

2 F«CI4~ • «" - r« * * ««" 13.80 23

2 WtVM^jCl^^m) * 2.7H* • «" - Fa * • 2.7*^0 • 0.X1 9.97 3

FaF1* • «~ « Fa2* • F~ 6.54

Frfj* * «~ - Fa2* • IF~ 2.19

2 Faffj* • «T • Fa * • 3F~ -0.99 3

12.39 l»l** * «T - F»l* + I* 11.19 66

IRQ* (cont)

Reaction Log K

2 F«0 94?0(wuitite) + 2H* + 0.106a~ - 0.947Fa * + HjO 11.68

FeO(a) + 2H* - Fa2* + HjO 11.31

2 Fe203(heaatite) + 6H* + 2e" " 2Fe * + 3^0 21.69 + - 2+ Fe,0,(maghs«ice) + 6H + 2e » 2Fe + 3H-0 32.41 + — 2+

Fe,0, (ugnctitc) + BH + 2c • 3Fe + 4H 0 29.83

2 2 Fe02 " + 4H* - Fa * + 2H20 17.16

2+ HF«02" + 3H* - Fe + 2H.0 30.72

FeOR* + H* - Fa2* + HjO 9.5

2 2 FeOH * + H* + a" - Fa * + H20 15.17

+ 2 F«(0H)2(«) + 2H • F« * + 2H20 10.05

+ - 2 Fa(0H)2 + 2H* + a « Fa * + 2HjO 18.68

2+ Fa(OH)2° + 2H* « Fa • ZHjO 20.57

2 Ft(0H)3(i) + 3H* + a" - Fa * + 3HjO 17.90

2 F»(OH)3° + 3H* + a" • Fa * + 3^0 26.61

2 Fa(OH)3" + 3H* - Fa * + 31^0 30.71

2 2 Fa(OH)4 " + 4H* - Fa * + 4H.,0 45.13

2 Fa(0H)4" + 4H* + a" • Fa * + 4HjO 34.61

2 Fa2(OH)2** + 2H* + 2a" - 2Fa * + 2H20 28.87

5 2 Fe-COH), * + 4R* + 3a~ - 3Fa * + 4H20 45.33

2 Fa3(OH).(a> + 8H* + 2a~ • 3Fa * + 8HjO 46.24

FaOOR(taothita) + 3H* + a" - Fa2* + 2^0 13.51

2 Fa3Si2Os(OH)4(iraaaalita) + 6H* - 3Fa * + 2Sit>2° + i^O 17.65

2 F«3Sit010(OB)2(»ino«iotaita) + 61* - 3Fa * • 4Si02° + 4^0 7.34

FaSi(a) • 2«jO - Fa2* • SiOj," + 41* • 6a" , 63.84

2 FaSi2(B-laba»ita) + 4^0 • Fa * + 2Si02° + 8«* + 10a" 125.97

2 FaSij 33(a-labaaaite) • *.«*«20 - Fa * • 2.33fi02° + 9.321* + 11.32a" 150.18

2 F«3Si(.) + 2«jO - 3Fa * • Si02° • 41* + 10«" 87.82

FaSiO.(farroailita) * 21* • Fa2* + JiO° • 1,0 5.54

2 Fa2Si04(fay«lit«) • 41* - IFa * • SiOj° • 2LO 14.67

(-30.0) GAPOLIMUH

lUaction Loi K

GdOH2* + H* - Gd3+ + HjO 8.0

+ 3+ Cd(OH)3(«) + 3H - Gd + 3H20 16.27

3+ 2 Gd2(C03)3(») - 2Gd + 3COj " -32.2

GdS0.+ - Gd3+ + SO.2" -3.66 4 4

3 2 Gd(S0A),~ - Gd * + 2S04 " -5.21

-4.3

HYDROGEN

-H+ * HCOj" ' < -10.33

+ 2 H2C03° -2H * co3 " -16.69

HC1° * H+ + Cl" 6.10

HF°-I a* + F - -3.31

HP,*- H+ + 2F~ -2.81

+ H2F2° •-2H + 2F~ -6.77

HPO 2" -H+ -12.31 4 + «43- 3- 0 -2H* + PO, -19.52 V *' 4 -3H+ -21.67 V°4° ^4"

+ 3 HjPO^O - 3H + P04 " -16.35

+ 3 HjPO^-1/2 HjO(«) - 3H • P04 " + 1/2 HjO -18.34

HfOH3* + H* - H£4+ * HjO 0.29

4> Hf(0H)4° + 4R* - Rf + 4H20 10.7

+ Hf(OH)5~ + 5H* - Hf* + 51^0 17.15

HfOj(») • *H* » Hf*+ + 2HjO 1.16

HfO„2. + *H - Hf•>* • + 2HjO -9.566

•fF^U.aonoclinic) - Bf** • *F~ -25.746

•fCl4(a) - If** • 4C1" 32.095 68

P0TA11I8K

••actios. lo« K

««) - K* • «" 49.50

2 K»4~ -X* * S04 " -0.85

2 K2M4(arcanite> - 2K* + S04 ~ -1.76

3+ 2- KAlOO.)-(a) « K* + Al + 2SO. 3.77 4 2 4

3J+ 2- KAl3(0()6(S04)2(«lunite) + 6H* K* + 3A1 + 2S>/ * 6H 0 - 4 2 0.78

+ 3+ 2 1 ICAl(X>4)2-12H20Ulua K) - K • Al + 2S04 " + 12H20 -5.17

2 K2Ho04(.) - 2K* + Mo04 " 3.48

KCrO." « K+ + CrO 2~ (-0.57) 4 4 KHPO," - K+ + H* + PO 3~ -12.60 4 4 mOjdiiter) - K+ + MO," -0.10

+ n»3° - K + MO3" (0.15)

KCl(sylvite) - 1C+ + Cl" 0.85

KC1° - K+ + Cl~ (0.7)

KI° - H* * I" (0.19)

Klr(i) - K* + Br" 1.12

KOH° + H+ - K+ + H,0 14.49

KOH(l) + H* - K* + H20 24.65

+ K02(i) + 4H* + 3e~ - K + 2HjO 90.45

+ + K20(l) • 2K - 2K + H20 84.06 3+ KALSi3Og(K«p«r) + 4H* - f* * Al + 3Si02° + 2H20 0.05

+ 3+ KAlSi.O.Cux-auradine) + 4H " K * Al + 3Si02° + :2H 20 0.05

+ 3+ KAlSi,Og(hi(h sanidinc) + 4H - K + Al + 3Si02° + 2H20 1.25

+ 3+ KAlSi04(kal»ilit«) > 4H - X* + Al + Si02° + 2H20 11.23

+ + 2z + J+ KFe3UlSi3O10KOH)2Unni.te) + 10H - K + 3Fe + Al- + 3Si02° + 6H20 23.13

+ 2 3+ KHg3(AlSi3010)(OH)2(phlofopit*> + 10H* « K + 3M» * + Al • 3Si02° * 6H20 38.17

+ 3 KAl,(AlSi3O10)(OH) (auacovitc) * 10H * - K + 3A1 * • 3Si02° + 6H20 14.56

+ 3 K2(002)2(V04)2(c«rnoti«) + 8H* + 4c " - 2K* + 2U* + 2TO ~ + 4H.0 4 2 -37.87

+ 2 I^MSO^'^OU) - 4K • Pu** + 4S04 " + 2HjO -18.0 t««ction Log K

2 3 w* **-*--H - L. * • HjO g.4»

La(Ofl),(s) • 3H* - L»3* • 3H,0 21.27

6 3 + La5(OH)9 * + 9H20 - 5L» * + 9B 71.11

L«„(CO,),(») - 2L»3* + 3C0,2~ -33.4

-3.64

3 2 L.(S0.),4'2 ~ - L« * + 2S04 ~ -5.29 -3.6

Mgd) - Mg2+ + 2e" 79.69

MgS(») + 4H,0 - MgZ+ + SO 2" + 8H+ + Be' -15.94 "2" "• ""4 MgSO (.) - Mg2* + SO 2" 5.04

2+ 2 MgS0A° - Mg + S0A " -2.23

2 2 MgS04'HjO(l) - Mg * + S04 " + H20 1.36

2 2 MgS0A-6H20(.) - Mg * + S04 " + 6Hj0 -1.73

2+ 2 MgS0A-7H20(epioaite) - Mg + S04 " + 7HjO -2.07

2 3 HgPOA" - Mg * + P04 " -6.59

2 3 Mg3(P04)2(i) - 3Mg * + 2P04 " -23.90

2 3 MgHP04° - Mg * + H* + K>4 " -15.18

+ 2 + 3 MgH2P04 - Mg * • 2H • P04 " -21.03

2 2 MgMo04U) - Mg * + Mo04 * -0.87

2+ 2 MgC03° - Mg + C03 " -2.98

2 2 MgHCOj* - Mg * • H* + C03 " -11.31

2 2 MgC03(«agn«ite) • Mg * + CO, " -7.91

3H MgC0,-3R20(ne»quehonite) » Mg + °°3 * 2° -5.23

2 2 MgCO3-5H20(lM.fordite) « Mg * + COj " * SHjO -5.45

2 2 MgJ(OI)2(003)4-4R2O(hydr

MgjCCHOjCOjOHjOUrtinitt) + 2H* - 2Mg2* + COj2" + SHjO 9.62

2 2 Mg4(0»)2(C03)3-3H20(») + 2B* - 4Mg * + 3<»3 " + 5BjO -2.64

2 Ht(l»3)2(«) - Kg * • 2K>3" 15.53

2 Mgdnj^'iBjOCa) - M» * + 2«03~ + «l20 3.49

NgCljCcUmoMgaMitc) - Mg2* + 2Cl" 22.00

MgClj-BjOl.) - M«2* • 2C1" • nj> 16.24 70

HACTESIDH (coat)

Reaction Log K

2 MfCl^HjOd) - Mg * + 2Cl" + 2H20 12.8«

2 M»Cl2-4H20(«) - Mg * + 2Cl" + 4H20 7.43

2 MtCl2'6H20(«) - Mg * + 2Cl" • 6H20 4.42

2 MgF2(«ell»ite) + Mg * + 2F~ -9.49

MgF* - Mg2* + F" -1.82

2 MgBr2(s) - Mg * + 2Br~ 27.87

2+ MgBr,-6'2 ""2H 0(«" ) - Mg + 2Br~ + 6H-0 5.19

Mgl (») > Mg2+ + 21" 35.13

2+ 3 MgV206(metavan«d«te) + 2H20 » Mg + 2VO ~ + 4H* -45 66

2 3 + Mg2V20?(pyrovan«date) + HjO - 2Mg * + 2V04 ~ + 2H -30.59

+ 2 3 MgTi03(geikilite) + 6H + e" - Hg * + Ti * + 3H20 -1.547

MgTiOjGnetatitanate) + 6H* + e" - Mg2* + Ti3* + 3H.0 -1.567

2 3+ MgTi205(s) + 10H* + 2e" - Mg * + 2Ti + 5H 0 -18.880

24 3+ Mg2Ti04(orthotitanate) + 8H* • e" « 2Mg + Ti + 4H 0 21.144

MgO(periclaae) + 2H* - Mg2+ + HO 21.48

+ 2 Mg(OH)2(brucice) + 2H - Hg * + 2H20 16.43

2 MgOH* * H* - Hg * + H20 11.42

2 MgH2(s) - Mg * + 2H* + 4e~ 73.39

4 2 Mg4(0H)4 * • fcH* - 4Mg * + 4H20 39.66

2 3 MgAl204(spinel) + 8H* - Hg * + 2A1 * + 4H20 38.42

2 2 MgCr204(picrochromite) + 4H 0 » Hg * + 2CrO ~ + 8H* + 6e" -123.91

2 MgFe204(magnesioferrite) + 8H* + 2e~ - Hg + 2Fe * + 4H,0 42.77

2 Mg2Si(s) + 2HjO - 2Hg * + SiOj" + 4H* + 8e~ 209.12

2 2 MgCu2(a,B) - Hg * • 2Cu * + 6e~ 96.72

MgCd(a) - Hg2* + Cd2* + 4e" 90.57

2 2 MgCd3(s) - Mg * + 3Cd * + 8e" 117.02

2 2 Hg3Cd(a) - 3Hg * + Cd * + B*~ 248.90

HgNijCl) - Mg2* + 2Mi2* • 6e~ 86.22

2 Mg2Si04(for«ceriCc) + 4H* - 2Mg * + SiO° • 21U> 28.14

HgSi03

2 3 Hf2*l3(AlSis018)(cordi«rit«) + 16H* - 2H» * + 4A1 * + 5Si02° + 8HjO 53.88

2 MgjAljCAlSijOjjj-HjOChydroua coxdicxiU) • ISH* - 2Hf * + 4A1 + 5Si02° • 9ILO 51.39

2 Mt7Sis022«M)2(antbophyllit«) + 141* - 7Mg * + JSiOj" • SHjO 67.75

2 HtjSijOjCoa^Cchryaotilc) • 6«* - 3Mg * • 2Si02° • 51jO 31.52 71

MAGHESIUM (cont)

Keaction Log K

2 Hg4gSi34Og5(OH)62(«ntigorite) • 96H* - 48Mg * + 3*Si02° • 791^0 483.58

2+ Mg3Si4O,0(OH)2(talc) + «H* - 3Mg + 4Si02° + WJ3 21.5*

2+ 3 Mg5Al(AlSi301())(OH)8(7 clinochlore) + 16H* - 5Mg + 2A1 * + 3SiO° + 12H20 71.92

2+ 3 Hg5Al(AlSi3010)(OH)8(14 clinochlore) + 16H* - 5Mg • 2A1 * + 3Si02° + 12H2<> 68.55

2 Hg4Si6O15(OH)2'6H20(»epiolite) + 8H* - 4Mg * + 6Si02° + HHjO 30.94

2+ Kg3Si401()(OH)2-3H2OCkerolite) + 6H* - 3Mg + 4Si02° * 7H20 23.54

2 4+ 2 Hg2U02(C03)3-18H2Otbayleyite) + 4H* - 2Mg * + U + 3C(>3 " + 20HjO -27.59

Mg2(U02)6(S04)3(OH)10-8H20

2 4+ 2 - 2Mg * + 6U + 3S04 " + 30H2O 49.03

2+ Mn(s ,a) - Mn + 2e' 39.9 5

Mn(s ,Y> - Mn2+ • 2e' 40 .20

Mn3+ + e «Mn2+ 25 .51

MnS(alabandite) + 4K. 0 - Mn2+ + SO,2 + 8H+ • 8e~ -34 .04 - 4 2.6 8

MnSO0. °° -» Mn2+ * SSO.O 2~2 -2.2-2 .266 3 4 4

2+ 2 Mn,(S04),-.s) + 2e~ - 2Mr. * 3S04 ~ 445.35 .31 23

MnHPO, (s) » Ml>2+ + H+ + PO ,3~ -25 .27 4 4 3- -23,.8 3 3

2+ 3 Mn3(P04)2-3H20(reddingite) - 3Mn + 2P04 + 3HjO -36.8-36 .84 14

)2(PO4)2"8H20(l«veit 2+ 2+ 3- - Mn' + 2Fe + 2P0.J + 10H„C 4 2 -27,,3 4 HnMoO,ts) - Mn2+ + MoO,2~ -4.,6 1 4 4

MnCO-(rhodochrosite) - Hn2+ • CO 2~ -10.,5 4

2 c0 2 -6. MnCO° - Mn * + 3 " 5

MnHCO * - Mn2+ + H+ + CO2" •11. 25

2+ Hn(B03)2° - Hn + 2N03~ 0.4 0 -0.6 1

2+ HnCl2(scacchite) - Mn • 2Cl" 8.7 7

2 MnCl2° - Hn * + 2C1" -0.C 4

2 MnCl2-H20(.) - Hn * + 2Cl" • HjO 5.5 1

2 MnCl2-2H20(«) » Hn * + 2Cl" + MLO 3.96 72

HUKUKtt (coat)

Lot K ««f

2 MnCl2-4H20(.) « Hn * + 2Cl" + 41j0 2.«t

MnClj" - Mo2* + Kl" 0.31

-0.85 3

MnO(»«ng«noiite) + 2H* - Mn2* + H,0 17.91

2 Hn02(pyrolucite) + 4H* + 2e~ - Mn * • 2H20 41.55

2 Mo02(birne«.ite) + 4H* • 2e~ • Mn * • 2H-0 43.60 3

MnO,(n>utiCe) + 4H* <• 2e~ - Mn2* + 2H.0 43.01 3

+ 2 Mn04" + 8H + 5e~ - Mn * + 4H.0 127.79

2 2 Mn04 " + 8H* + 4e~ - Mn * • 4H20 118.40

2 Mn203(bixbyite) + 6H* + 2e~ » 2Mn * + 3H,0 50.17

2 Mn304(h«uss«anite) + 8H* • 2e~ - 3Mn * + 4H-0 61.28

MnOH* • H* - Mn2* + HjO 10.54

2 Mn(OH)2

2 Mn(OH)3" + 3H* - Mn * + 3HjO 34.18

2 Mn(OH)3(s) + 3H* + e" - Mn * + 3H.0 31.84 25

2 2 Mn(OH)4 " + 4H* - Mn * + 4H 0 48.26 3

MnOOH(s) + 3H* + e" - Mn2* + 2HjO 25.27 3

3 2 Mn2(OH) * * H* - 2Mn * + H,0 10.59 18

2 Mn2(OK)3* • 3H* - 2Mn * + 3HjO 23.87 18

2 MnSi03(rhodonite) + 2H* - Mn * + SiO ° + H,0 9.72

Mn,SiO.(tephroite) + 4H* - 2Mn2* + SiO," + 2H,0 23.47

(-15.9) 18

MOLYBDENUM

2 2 MoS2(aolybdenite) • 12HjO - MoO. ' • 2S0 ~ <• 24H* + 18e~ -143.30

2 MoOj(s) + 2HjO - Mo04 " • 4H* +2e" -30.01

MoO-(s) + H„0 « MoO* + 2H "3"" T "2" " """4 -12.12 2- -4.24 18(20°,0)

2 Hj,Mo04(») - 2H* + Mo04 " -12.16

2 H2MoOt° - 2H* + Mo04 " -8.24 18(20°,0)

2 Mo3Si(l> + UJIjO - 3Ho04 " + SiOj° • 28H* • 22«" -13.08 AmOWIUM

Reaction lot X

«H,OH° + H* • Ml * + HjO *.2t

MH.HSd) • 4H_0 - m* * SO.2- + 9H* • 8e" 4 2 4 4 -30.6* HH.SO," - NH.* + SO,2" 4 4 4 4 -1.11

2 (HH4)2S04(u>c*fnite) - 21IH4* + SO^ " 0.33

HH.A1CS0, ),(») - TO * + Al3* + 2S0,2" 4 4 2 4 4 3.47

3+ 2 NH.AKSO. ),-12H,0(u) - NH, * + AI • 2SO, ~ + 12H20 -5.97 4 4 2 2 4 4 NH,HO,(«««onium niter) » NH* • NO," 1.25 4 3 4 3 NH.H.PO, (») - NH* + 2H+ • PO,3" 4 2 4 4 4 -19.64

3 3 H6(NH4)3Al5(POA)g-18H20(«) « 6H* • 3NH4* + 5A1 * + 8P04 " • 18H20 -1S5.74

NH, VO-(s) + H-0 - NH * + VO 3~ + 2H* 4 3 2 4 4 -25.72 NH.HSe(s) + 3H.0 • NH,* + 7H* + SeO 2" + 6e" -50.03 4 2 4 3 NH.Brd) « NH * • Br" 4 4 1.43 NH,Br,(t) + 2e" - NH, * + 3Br" 35.52 4 3 4 NH.ClUalanaroniac) » NH * • Cl~ 4 4 1.22 NH,F(s) - NH,+ • F~ 2.05 4 4 NH,HF,(l) - NH * + H* + 2F" 4 2 4 -1.66

NH4K») • NH4* + I" 3.30

NH, !,(•) • 2e" - NH,* + 3l" 4 3 4 20.24 NH.ICl.U) + 2e" - NH,* + i" + 2Cl" 4 2 4 28.33 HH.ICl, (a) + 4e" - NH, * + i" + 4Cl" 4 4 4 71.62 NH,IBr.(s) + 2e" - NH, * + i" + 2Br" 25.08 4 2 4

NH4BrI2(«) + 2e" « NH4* + Br" + 2l" 17.13

NH,IBrCl(s) + 2e" - NH, * + l" + Br" • Cl" 4 4 26.12 (NH ) SiF (l,hex«»on«l) + 2HjO - 2NH * • SiO + 4 2 6 2°* 6F" + 4H -28.26

(NH4)2SiF6d,cubic) + 2HjO - 2NH4* + SiO° • 6F" + 4H* -28.27

NOj" • 10H* + 8e" - NH4* + 3HjO 119.04

SODIUM Na(a) « Na • e~ 45.89

2 NaS04" - Na* + S04 " -0.70

Ma,SO.(thcnarditc) - 2»a* + SO.2" -0.18

2 Na2S04-10NJO(»irabilit«) - 2»a* • WO^ ' • lOijO -1.17

HalBO ~ - Ha* • •* • »0.3" -12.60 7*

«o>nw (c

Kaactioa lo« K »«f.

+ 2- «a2HoO.(i) • 2Ma • MoC^ 1 .03

-0.96 23

2 ««2C03-g20(th«™oo»trit*) « 2»V + COj " + HjO 0.120 .125 20

2 Na2C03'10l20(aatron) - 2Ha* + COj " + lOHjO --1.31 .31 20

DalKO.Cnahcolitc) - Ma* + R* + CO 2~ -10.88 20 j 2 MaHC03" - Ma' • H~ + COj " -10.08 20

2 Ha3H(C0,)2'2H,0(troiia) - 3Ha* + H* • 2C0 ~ + 2Hj0 -11.1-11 .12 20

3 2 N«AlCO,(OH)2(d«wiOtlitt) + 2H* - Ma* + Al * + COj " + 2H.0 -5 .67

NaN03(s) - Ha* + «03" i .09

!UfUhalite) - Ha* + Cl" 1 .59

NaCl° - Ma* • Cl" 0 .90

NaF(villiaualtc) - Ha* + F~ -0 .59

3 Na3AlF6(crjrolit«) - 3Ha* + Al * • 6F" -32 .14

Ma20(a) + 2H* - 2Ha* + HjO 67 .44

20, .92

14, .19

3 NaAlSi206(jadeite) + *H* - Ha* • Al * + 2Si02° + 2H20 8. .71

2 2 HaCa2Mt4(Al2Si6022)(OH)2(par|afitc) + 22H* " Ha* + 2Ca * • 4Mf *

3 + 3A1 * + 6Si02° + 12H 0 103. .45

3 NaAlSi.O.-IUOCanalciM) + AH* • Ha* + Al * + 2810° • 3H20 7, .27

3 NaAlSi206(dahydratca analciac) + *H* - Ha* + Al * + 28i02° • 2H20 11. 98

3 HaAlSijOgdow albitc) + 4H* - Ha* + Al * • 3Si02° + 2^0 3. 09

3 NaAlSl3Og(hi(h albita) + 4H* - Ha* + Al * + 38i02° + 2H20 4. 41

3 HaAlS104(ncphalina) + 4H* • Ha* + Al * + S102° + 2BLO 14. 13

3 0 HaAl2(AlSl3010)(OH)2(|MTa(ooitc) + 10H* - Ha* + 3A1 * + SSiOj + 6H20 18. 49

Na2Ca!K>2(C03)3-6H20(aBdcTaoolt«) + 4H* • 2a" 2- SCO"3, + 8Hj0 -98. 73

M.Si7013(0B)3-3H20(mala«it«) + •* - Ha* • 7S102° • SHjO -25. 36 75

Lot K »ef

2+ 3 HdOH' - Hd * + H20 7.M 18

Nd(OH)3(s) + 3H - H

3 Hd(OH)4" + 4H* - Hd * + 4HjO 37.36 18

4+ + 3+ Hd2(OH)2 + 2H - 2Md + 2HjO 13.88 18

3 2 Hd2(C03)3(«) - 2Nd * + 3C0j " -33.0 18 + 3+ 2- HdSO, - Hd^ + SO, 3.64 18 4 4 Nd.SO 4* » Nd3+ + 2S0 2" 5.1 18 2 4 4

Nits) - Hi2+ + 2e" 7.99

2 NiS(millerite) + 4H.0 • Hi T 8H + 8e -42.85 "2" "" '4

2+ 2 NiS(«,a) + 4H20 - Hi + SO " + 8H* + Be" -40.1 18

2+ 2 NiS(i,B) + 4H20 - Ni + SO^ " + 8H* + 8e" -45.6 18

NiSU.Y) + 4H 0 - Hi2* + SO 2~ + 8H* + Be" -47.3 18

2 2 Ni^Oieazlewoodite) + 8Hj0 - 3Ni * + 2S04 " + 16H* -82.03

NiSO,(•) - Hi2* + SO 2" 5.33 4 4 -2.29 3

2 2 2 Hi(S04)2 " - Ni * + 2S04 " -1.02 3

2 2 HiS04'6H2O(a, green retgerlite) - Hi * + S04 " + 6H-0 -2.01

2 2 NiS04-7H20(Borenosite) - Hi * + SO. " + 7H.0 -2.36 3

2 2 Ni4(OH)6S04(«) + 6H* - 4Hi * + S04 " + 61^0 31.92

2 2 Hi?(OH)g(S04)3(t) + 8H* - 7Hi * + 3S04 ' + BHjO 132.28

2 3 HiPO,. Hi * • »4 " -2.08 18(25°,0.1) -.•2* Hi3(P04)2(») - 3Hi + 2K>4 -31.24

HiCOjd) - Hi2* + COj2* -6.84

2 2 HiC03° - Hi * • C03 " -6.87 3

2 2 2 Hi(C03)2 " - Hi * + 2C03 " -10.11 3

HiRCO, ' Hi2* • H* + CO 2" -12.47 3

NiMO, "3 " " ""3 -0.4 18 HiCl* - Hi2* • Cl" -0.4 3 .2* 8.41 76

MICHEL (coot)

»t«ctio» Loi K

MiCl^HjOU) - Mi2* • 2C1" + 2MjO 3.(9

2 HiCl2-*H20(.) - Mi * + 2C1~ + 4MjO 3.78

2 MiCl2-6H20(a) - Mi * + 2C1~ • 6H20 3.06

-1.3

2 SiF2(») - Mi * + 2F" 0.616

2 _ MiF2-*H20(.) - Mi * + 2F + 4Hj0 -4.434

i2* • »r" -0.5

NiO(bun««nit«) + 2H* - Mi2* + U.0 12.466

MiOH* + H* - Mi2* + HjO 9.660

2 Ni(0H)2(») + 2H* - Mi * • 21^0 12.7J3

2 Mi(OH)2° + 2H* - Mi * + 2Hj0 19.0

2 Mi(OH)3" + 3H* - Mi * + 3HjO 30.0

2 2 MiFc204(Crcvoritt) + 8M* + 2i~ " Mi * • 2F« * + 4HjO 31.358

Ni22)6(SO4)3(OM)10-BH2O(Mi-tipp«it«) + 34H* + 12«"

2 2 - 2Mi * + 6U** + 3*04 " + 30B2O 49.53

3 2 Hi2(OH) " + H* - 2Mi * + HjO (10.69)

Ni. (OH)** + 4H* - 4Mi2* + 4MjO 27.66

NiTe(«) - Mi2* + T«2~ (-38.1)

NpJ - Np* + « -2.57

Mp(l) - Hp** • 4«" 91.56

MpOj,* • 4H* • «" - Mp** • 2MjO 10.91

2 HpOj * • 4H* + 2«~ - Mp** + 2M20 30.33

MpOj3* • 4H* + 3«" - Mp** • 2MjO 40.64

MpOH3* + H* - Up** • MjO 2.05

Mp02OM° • 5M* • «' « Up** • 3MjO 20.91

MpOjOM* + 5M* + 2«" - Mp** • JMjO 33.70

_ Mp(OH)3(s) + 31* - Up** • 3»jO • « 19.42

Mp(0«)4(l) • *B* - Up** • *iy> 0.74

«p02(0«)(t) »• 51* • •" - Up** • 3»jO 15.81

Mp02(«l)2t») • *•* • 2«" - Up** • M^O 35.61 77

mFTCTIUH (cont)

R—ction Lot K ««f,

«p02<() + 41* - Up** • 2H20 -2.6* 8

HpCl3* - Up** • Cl" 0.04 15

2+ »pCl2 - Up** • 2Cl" 0.24 15

»p02Cl° + 4H* + «" - Up** + Cl" + 2H20 11.21 15

HpOjCl" + 4H* + l" - Up** + Cl" + 2HjO 30.68 15

«pF3* - Up** • F" -4.82 15

+ »p02r + 4R* + 2e" - Up** + F" + 2H20 26.47 15

Mp02F2° + 4H* + 2«" - Up** • 2F" + 2HjO 23.36 15 3+ 4+ - -0.38 15

Hp»03 - Up* + MOj -0.08 15 2 4+ Mp(*03)2 * - Np + 2H03" 11.16 15 0 ltpOjUOj + 4H* + t" - Up** + «03" + 2H20 31.31 15 + Hp02«03 • 4H* + 2t~ » Up** + H03" + 2Hj0 -2.43 15 2 2 HpSO^ * - Up** + K>4 " -3.47 15 2 Hp(S04)2° - Up** + 2$04 " 28.43 15 0 2 HpOjSO^ + 4H* + 2«" - »p** + S04 " + 2HjO 27.56 15 2 2 »p02(S04)2 " + 4H* + 2«" « Up** + 2S04 " + 2H20 -4.78 15 3 HpO.HPO~ + 3H* + «" » Mp** + PO. " + 2H20 -1.85 15 MpO,HCO,° + 3H* • «" - Mp** + CO,2" + 2H,0

+ H - HjOrt) 13.99

FbU) - M>2* • 2«" 4.28

FbS(gal*na) • 4B.0 » Ft2* + SO^2" • 81* • 8e~ -48.40

0 2 2 »b(IIS)2 * MjO - 1» * + HO^ " • UI* • 1««" -82.49 3

2 2 »»(«S)3~ • 12«jO » »» * • 3»t ~ • 27«* + »«" •117.40 3

2 2 F»K4(«tl«»i«:«) • J» * • I04 " -7.74

VMItf - I.2* • SO^2" -2.75 3

2 2 IM*^),*" - J» * • I»04 " -3.47 3 78

IMP (coat)

Lot K K«f.

2 2 Pb*>4-Pb0(«) + 2»* - 2Pb * * J04 " + «20 -0.21

2 2 Pb»4'2Pb0(«) + 41* - 3Pb * + S04 " + 21j0 10.87

2 2 Pb904'3H>0<») + 61* - 4Pb * + S04 ~ + 31^0 22.09

2 2 Pb4

2 3 PbHP04° - Pb * + H* + P04 " -15.41 18

2 3 PbHP04d) - Ft) * + K* + !«4 " -27.77 3

2 3_ PbH2P04* - M. * • 2R* + K>4 -21.02 18

2 3 Pb3(P04)2(t) - 3Pb * • 2W4 " -44.29 3

2 3 Fb5(»4)3Cl(Cl-pyrow>tphit«) - 3Pb * + 3»4 " • Cl" -84.43 3

2 3 W>j(F04)3(«l(hydroui •yraaorphit*) + H* - 5Pb * • 3P04 " • HjO -62.79 3

2+ 3 3 PbAl3(W4)j(0I)j'l20(»lu*otUMit«) • 5K* • Pb + 3A1 * + 2K>4 ' + 6H20 -32.79 3

2 3 3 2 PbAl3P04S04(0«)6(hiin<«lit«) • «•* - Pb * + 3A1 * • K>4 " + M4 " • 61^0 -2.5 3

2 2 3_ Pb2CuP04(0H)3'3JI20(t»<»bit«) • 3«* - 2Pb * • Cu * + P04 + 6HjO -9.79 3

PbMoO.hnil finite) • Pb2* + HoO2" -15.94

2 2 PbC03(c«rru.it«) - Pb * * COj " -13.47

0 2 2 PbCOj - Pb * + C03 " -7.24 3

2 2 2 Pb(C03)2 " - Pb * • 2C03 " -10.64 3

PbHCOj - Pb' + R+ COj -13.23 3

2 2 PbCl2-PbC03(pho«t*nitt) - 2Pb * • 2Cl" + COj " -19.81

2 2_ PbO-PbC03(t> * 1M* • 2Pb * + C03 + HjO -0.50

2 2 2PbO-PbC03(s) + 4** - 3Pb * + COj " + 2HjO 11.02 3

2 2_ 2PbC03-Pb(OR)2(hydroc*rruait«) + 2«* - 3Pb * < 2eOj + 2H20 -17.46 3

2 PbM03* - Pb * + 1»3" -1.04

PbCl* - Pb2* + Ol~ -1.602

PbCl,

2 PbCl2° - Pb * + 2C1" -1.80 3

2 PbCl3~ - Pb * • 3Cl" -1.43

2 1 PbCl4 " - Pb * • *C1~ -1.38 3

PbClFCaatlockit*) - Pb2* * Cl~ • t~ -».43 3

2 Pb2(oa)3Cl

PbOKKIaariwit*) + 1* - Pb1* * Cl~ • ljO 0.62

2 ZPbCl^N^CKs) » JPb * • SCl" • »»4* -10.24

-1.25 3

PbPjC.) » M>1* • 2F~ -7.44 3 LEAD (cont)

Reaction Lot *•

2+ _ PbF2° - Pb + 2F -3.42 2- 2+ - PbF^ - Pb^ • 4F -3.10 PbBr* - Pb2+ + Br" -1.77

2 PbBr2° - Pb * + 2Br~ -1.44

2+ PbBr2(t) - Pb + 2Br" -5.18

2+ PbBr3" - Pb + 3Br" -3.0

PbBr,2* - Pb2+ + 4Br" 4 -2.3 PbBrF(a) - Pb2+ + Br" + F" -8.49

Pbl" « Pb2* + i" -1.94

Pbljts) - Pb2+ + 2l" -8.07

2 Pbl2° - Pb * + 21" -3.2

2+ Pbl3" « Pb + 3l" -3.26

2 2+ Pbl4 " - Pb + 41" -3.99

2 2 PbSe(clauathalitt) + 3H20 - Pb * + SeOj " + 6H* + 6e" -73.37

+ 2+ 2 PbSe04(«) + 2H + 2e" - Pb + SeOj " + HjO 22.15

PbTe(i) - Pb2* + le2" (-46.3)

+ 2+ PbSi03(») + 2H - Pb + Si02° + H20 5.75

2 Pb2SiO^(s) + 4H* - 2Pb * + Si02 ° • 21^0 18.19

2 2 Pb(Mn04)2'3PbO(t) • 6H* + 2e" - 4Pb * + 2Mn04 " + 31^0 146.63

2+ PbOQitharge, red) + 2H* - Pb • H20 12.67

FbO(aa»icot, yallow) • 2H+ - Pb + H,0 12.78

2 PbO.Cplattnerite) • 4H* + 2e~ - Pb * • 2H20 -49.65

2 Pb203(») + 6H* + 2e" - 2Pb * + I»H 20 61.04

: Pb304(ainiiK) + 8H* + 2e" - 3Pb** + 4H20 73.66

2 PbOH* + H* - Pb * + H20 7.71

Pb(OH)j(a) + 2H* - Pb2* + 2HjO 8.13

2 Pb(OH)2° + 2H* - Pb * + 2H20 17.12

2 Pb(OH)3" + 3H* - Pb * • 3H20 28.05 Pb(OH)^2" + *H* - Pb2* • 4HjO 39.7 PbjOH3* + H* - 2W>2* • H-0 6.36 PbjtOH)^2* • *•* - IPb2* + tljO 23.32

Pb^tMO^** + *•* - **»** + ttjO 19.23

»s«*i)t** • ••* - «•** * M^O 42.60

1 »M>a~ • 31* - I* * + MjO 28.07 80

LEAD (coat)

Reaction tot K

+ 2+ PbO-1/3 H20(i) + 2H - Pb + 4/3 H. 12.97

2+ PbO'Pb(OH)2(«) + 4H* - 2Pb + 3H20 26.20

PALLADIUM

Pd(s) - Pd2+ + 2e" -30.94

PdS(s) + 4H.0 - Pd2+ + SO.2" • SH* + 8e~ -78.40

2+ 2 PdS2(») + 8H20 - Pd + 2S04 " + 16H* + 14e" -115.46

2+ 2 + Pd4S(s) + 4H20 - 4Pd + S04 " + 8H -171.22

-6.10

PdCl-Ci) - Pd2+ + 2Cl" -6.86

PdClj0 - Pd2* + 2Cl" -10.70

2 PdCl3" - Pd * + 3C1" -13.10

PdCl,,2" - Pd2+ + 4Cl" -15.40

2+ PdBc3" - Pd + 3Br" -12.05

PdBr,.2" « Pd2+ + 4Br" -13.77

PdBr 2" + 2e" » Pd2+ + 6Br' 19.67 0 2+ Pdl2(a) - Pd + 2l" -23.74

Pdl,2" « Pd2+ + 41" -22.41 4 Pdl.2" + 2e" - Pd2+ + 6I~ -6.20

PdOH* + H* " Pd2+ + HO 0.99

+ 2+ Pd(0ft)2° • 2H - Pd + 2H20 -11.81

+ 2+ Pd(OH)2(.) + 2H - Pd + 21^0 -14.51

PKOWETHIWI

3 PB(OB)3(S) • 3H* - tm * • 3^0 7.97

3+ P^03(a) • 6H* " 2P» • 3«jO 42.04 2+ 3* + 3-

**2*Ok - *• • 21 • »4 -22.03 81

PIASEODTHIUH

K«action Lot X »«f.

2+ + 3 PrOH + H - Pr * + H20 8.10 2

+ 3+ Pr(OH)3(l) + 3H - Pr + 3H20 20.47 18

3 2 PrSO,* - Pr * T+ SO, " -3.62 18 ~4 " -~4

Pu(s) - Pu + 4e 84.38 3+ 4+ - Pu - Pu* + e -17.01 PuS0,+ - Pu4* + SO,2" + e" -20.48 4 4 9+ 4+ 2- PuSO, - Pu* + SO/ -5.74

4 2 Pu(S0.) ° - Pu * + 2S0A " -10.16

PuO„SO,° + 4H+ + 2e" - Pu** + SO,2" + 2H.0 31.62 2 4 4 2 Pu(HS0,) * - Pu4+ + 2H+ + 2S0 2" + e" -22.00 4 2 4

2+ 4+ + 3 Pu(HPO/4) - Pu + H + P04 " -25.33

Pu(HPO,) ° - Pu4+ + 2K+ + 2PO,3" -48.46

PuCRPO, ),(») - Pu4+ + 2H* • 2PO 3" -52.62 4 2 4 PutHPO,},2" • Pu4+ + 3H* + 3PO,3" -70.35 4 3 4 Pu(HPO. ),4" » Pu4+ + 4H+ + 4PO 3" -92.16 4 4 4 PuH-PO,2* - Pu4* + 2H+ + PO,3" + e" -38.97 2 4 4

+ 4+ 3 Pu02HP04

PuO (HPO.) (s) + 2H* + 4e" • Pu4* + 2PO 3" + 2H 0 30.83

4+ 3 Pu + P04 " + 2H20 11.37

3 4+ PuN03 * « Pu + N03" -0.72 2+ 44 2-

H PuCOj » Pu • C03 -40.71

''* + CO 2" + 2H.0 22.86

2 4+ 2 Pu02(C03>2 " + 4H* + 2e" - Pu • 2COj " + 2HjO 19.94 3HjO 25.03 4 + - 4+ 2 PuO„CO,(OH) 2~ + 6H* + 2«" - Pu** • CO,2" + 4H.0 39.84 4

-8.51 4

-1.12

PuO,Cl* * *H* + 2«~ « Pu** + Cl" • 2«-0 35.C7

" Pu** • Cl" • 2^0 18.69 17

- Pu** * 2Cl" • TMJi 35.52 4 82

runowBH (c<«t>

Resctioa Log K

PuF3* - Pu** «• t- -8.09

4 PuT3(>) - Pu * + 3F~ * «" -27.56

4 PuP4(«) - Pu * + 4F~ -13.72

+ 4 Pu02r + 4H* + 2e" - Pu * • F~ * 2HjO 29.05

4 Pa02F2° + 4H* + 2e" - Pu * + 2F~ + 2H20 23.68

4 Po02F3" + 4H* + 2e" - Pu * + 3F~ + 2H20 18.60

2 4 Pu02F4 " + 4H* • 2e~ - Pu * + 4F" + 2H20 15.57

4 Pu02(«) + 4H* - Pu * + 2H,0 -7.36

+ 4+ Pu02 + 4H* + e" - Pu + 2H20 18.52

2 4 PuO * * 4H* + 2e~ « Pu * + 2H20 34.86

4 hex-Pu203(«) + 6H* - 2Pu * + 3H20 + 2e~ 14.10

PuOH3* + H* - Pu4* + HO 1.0

2 4 PuOH * + H* - Pu * + H20 + e" -9.03

2 4 M0H)2 * + 2H* - Pu * + 2H20 2.31

4 Pu(OH)3* + 3R* - Pu * + 31^0 5.23

4 Pu(OH)3C») + 3H* - Pu * + 3H 0 + e" 5.45

4 Pu(0H)4° + 4H* - Pu * • 4H20 9.47

4 Pu(OH)4(») + 4H* - Pu * + 4H20 0.74

Pu(OH).(aaorphoul) + 4H* - Pu4* + 41L0 5.72

4 Pu(OH>5" + 5H* - Pu * • 5HjO 14.95

4 Pu02(OK)<*Borphou*) + 5H* + e" - Pu * + 3H 0 24.00

4 Pu02(0H)° + 5H* + e~ - Pu * + 3H20 28.18

4 Pu02(0H)* + 5H* • 2e~ - Pu * + 3H20 40.49

4 PuO2(0B)2(») + 6H* + 2e" - Pu * + 41^0 38.42

4 Pu02(0H)2° + 6H* + 2e~ » Pu * + 4HjO 46.20

4 Pu02(OH)3" + 7«* + 2e~ - Pu * + SBjO 55.07

2 4 (Pu02)2(0«) * + 10»* • 4«~ - 2Pu * + 61L0 77.98

4 (Pu02)3(OB)s* • 171* + 6e~ - 3Pu * • IIBJO 126.22 83

UH10H

EwctlOP 101 K

*a(s> - la2* + 2«~ M.3J

RaSO.U) - R«2* + to.2" -10.43 * ft

2 ««(II03)2(«) - ». * + 2I»3" -2.05

2 laClj'MjOU) - R» * + 2Cl" + 2H20 -0.80

RUBIDIUM

Rb(«) - Rb* • e" 51.12

RbCl0 - Rb+ + Cl~ 0.55 18

Rblc « Rb* + l" -0.04 18

Ru3* - Ru** • e" -11.35 15

A+ RuCl3(s) - Ru + 3C1" + e" -6.39 15 * 4+ 4.51 15 RuO (worphom, hjrdrated) + 4H « Ru + 2H 0 -3.55 15 Ru(OH) («) + 3H+ - Ru** + 3HjO + e" 3 12.30 15 Ru(OH).(«) + 4H* - Ru** + 4H 0 2 4.73 15 Ru(OH) 2+ + 2H+ - Ru** + 2HjO 2 -8.13 15 RuCl.(OH)2-" • H* - Ru** + 5Cl" + H 0 2 144.86 15

+ 2 RuS («) + 8H 0 • Ru** + 16H + 2S04 ~ + 16e~ RuO.(•) + 8H* + 4e" - Ru** + 4H,0 100.55 15 4 2 RuO " + 8H* + 3e~ - Ru** + 4H.0 82.20 15 4 2 RuO.° + 8H* + 4«T - Ru** + 4H,0 99.43 15 4 2 RuO,2" + 8H* + 2e" - Ru** + 4H,0 72.01 S5 4 2 84

SULFDt

tttctioa lot K

2 S(») + *H20 - S04 " • M* + 6«~ -35.73

2 2 S " • «20 - S04 " + 8H* + 8«~ -20.70

2 HS" • *H20 - S04 " + 9H* + 8e" -33.61

H2S° • 4H20 - SO^ + 10H* + 8e" -40.62

2 HS04" » H* + S04 " -1.99

Sb(«) + HO - SbO + 2H + 3e -10.51

2 Sb2S3(atibnite) + I4H20 - 2Sb0* + 3S04 ~ + 28H* + 24e~ -158.64

2 + 2 Sb2S4 " + 18H20 - 2SbO + 4S04 " + 36H* + 30e" -181.42

SbCl3(() + H20 - SbO* + 2H* • 3C1" 1.763

+ SbBr3(>) + H20 - SbO* + 2H + 3Br" 2.21

SbF3(«) + H20 - SbO* + 2H* + 3F~ -10.44

SbOF° - SbO* + F~ -5.51

Sb(0H)jFO - SbO* + F* + HjO -5.15

— 4- 4.

12.97 !.'«

SbjOjCorthorhcmbic valentinite) + 2H* - 2SbO* + H,0 -2.32

Sb203(»,cubic) + 2H* - 2Sb0* + HjO -3.05

Sb20,(»,rho«bic) + 2H* - 2SbO* + H,0 -6.20

Sb204(s) + 4H* * 2e~ - 2Sb0* + 2H20 5.73

SbjOjd) + 6H* + 4e~ - 2Sb0* + 3Hj0 41.42

Sb,0,(a,cubic) + 4H* - 4Sb0* + 2H-0 -14.97

Sb40,(a,orthorho«bic) + 4H* « 4Sb0* + 2H.0 -12.33

Sb(OH)2* « SbO* + HjO -0.20

Sb(0H)° • H* - SbO* + 2H20 1.18

Sb(0H)3(a) + H* - StO* + 2HJO -5.95 — 4- 4. 12.97

2 Sb2Te3(a) + 21^0 - SSbO* + 3T« ~ + 4H* -142.13 85

SELEHIUH

Lot K «ef.

Se(») + 3H,0 - Seb,2~ • 6H* • 4e" -59.85 "2" "~3

2 2 + Se " • 3H-"20° -" SeSeO°32 " • 6H + 6e" -37.25 HSe" + 3H,0 - SeO,2" • 7H+ + 6e~ -52.15

2 + H2Se(«) + 3H20 - Se03 " + 8H + he' -55.96

HSeO," - H+ • SeO 2~ -7.30

HSeO " • H* - SeO,2" + HO + 2e" 27.11

SeO.2" + 2H* + 2e" » SeO,2" + H-0 29.02

SeO,2 + 2H* -11.25

2 _ SiFft " + 2Hj0 - Si02° + 4H* + 6F -27.01

SiO,(a and B quartz) » SiO ° -4.00

SiO,(cristobalite) » SiO ° -4.18

SiO (tridymite) - SiO ° -3.58

SiO (coesite) - SiOj" -3.19

SiO (stishovite) - SiO ° 5.36

SiOj(glasB) - Si02° -3.00

SiO (chalcedony) " SiO ° -3.73

SiO (anorphoue) - SiO ° -2.71

-3.84

-1.56

2 0 H2Si04 " + 2H* + 2e" - SiO., + 2H20 22.90

+ HjSi04" + H + e" - Si02° + 2H20 9.80 o n

-1.58

-4.44

-6.92

-8.35

HSi(OH)6" + VT - Si02° • 4Hj0 8.29

H2Si(0H)6° - Si02° + 4H20 -1.61 85

SMiMtIDH

Enaction Loi K

2 3 S«0H * + H* - S» * + H20 7.»0

3 Si(OH)3(«) + 3H* - S« * + 3H20 16.50

3 2 S»2

S»S0 * - S» + SO,2" -3.67

Sm(S0, )" - S»3* + 2SO 2" -5.20 4 2 4

TIN

Sn(s) » Sn2+ * 2e" 5.23

Sn(s, II grey) - Sn2* • 2e~ 5.25

2 2 SnS(herzenbergite) + 4H.0 - Sn * + S06 " + 8H* + 8e" -48.85 2+ - 2+ 2- Sr.SO, + 2e - Sn + SO, 8.80 4 4 SnCl+ - Sn2* + Cl" -1.51

SnCl ° - Sn2+ + 2Cl" -2.25

SnCl " - Sn2* + 3Cl" -2.0

SnCl,2" - Sn2* + 4C1~ 4 -1.5

SnOHCl-H20(a) + H* - Sn + Cl" + 2H20 -2.30 + 2+ SnBr - Sn + Br -1.16

SnBr ° » Sn * 2Br" -1.70 + 2+ - SnF - Sn + F -4.25

SnO(s) + 2H* - Sn2* + HO 1.78

2 SnO„(caasiterite) + 4H* + 2e" - Sn * • 2H20 -2.76

SnOH* + H* - Sn2+ + H,0 3.40

2+ Sn(OH)2° * 2H* • Sn + 2H20 7.06

2 Sn(OH) (a,precipitated) + 2H* - Sn ** 2H20 2.19

2 Sn(OH) " + 3H* - Sn * + 31LO 16.61

2 2 Sn2(OH)2 * • 2H* > 2Sn * + 2HjO 4.77

2 2 Sn3(OH)4 * • 4H* " 3Sn * + 4HjO 6.88

2 SnO(OH)* + 3H* + 2e" - Sn * + 2J'2 ° 5.27

2 2 SnTe(s) - Sn * + Te " (-44.7) 87

STKOKTIUW

Ruction tot K

Sr(f) - *r2* + 2e" n.o3

SrS(») • *H,0 - Sr2* + SO.2" + 8H* + 8e" -16.30

SrSO,(celeitite) - Sr2* + SO 2" -6.42 4 4 SrSO,° - Sr2* • SO,2" -2.55 4 4 2+ 3- SrPO, - Sr* *• PO, -4.18 4 4

2 3 Sr3(H>4)2(») - 3Sr * + 2P04 " -27.8

SrHPO, (j) - Sr2* + H* + PO.3" -19.31 4 4 SrHoO.(s) - Sr2* + MoO^2" -8.46 2+ 2— SrCO,(stronti»nite) " Sr + CO -9.25

2 SrN03* - Sr * + tK>3" -0.82

2 Sr(N03>2(>) - Sr * + 2N03" 0.59

2 Sr{N03)2° - Sr * + 2N0j" -0.8

2 Sr(N03>2'4H20(s) - Sr * + 2N03" + 4H20 0.05

SrF (s) - Sr2* + 2F" -8.54

SrF ° - Sr2* + 2F~ -2.02

SrBr (») - Sr2* + 2Br" 12.53

2 SrBr2-H20(») » Sr * + 2Br" + HjO 8.79

2 SrBr2-6H20(t) - Sr * + 2Br" + 6HjO 2.78

SrCl (s,a) « Sr2* + 2Cl" 7.15

2 SrCl2° - Sr * + 2Cl" 0.00

2 SrCl2"H20(^) - Sr * • 2Cl" + HjO 3.98

2 SrCl2'2H20(») - Sr * + 2C1~ + 2H20 2.50

SrCl -dHMt) - Sr2* + 2Cl" + 6HjO 0.63

SrO(s) + 2H* " Sr2* + HO 41.39

SrOH* + H* - Sr2* + HO 13.19

Sr(OH)° + 2H* - Sr2* + 2H.0 28.51

SrSiO (•) + 2H* - Sr2* + SiO ° + HO 14.06

2 SrSiO.d) + 4H* + 2e~ - Sr * + SiO° • 2H20 -56.78

2 4 SrZrO («) + 6H* » Sr * + Zr * + 3H20 29.28

SrTiOjd) tL' . . - Sr2* + Ti3* • 3H^O -1.44

SrTiO.(l) • 8H* + 3e" - Sr2* + Ti3* + 4H 0 -63.31 88

TECHMTIPM

Lot K l«f.

TcO(OH) TcO2* • HjO 1.39 li(2O°,0.1) «2+ TcO(OH), 3.71 18(21)0,0.1)

TELLURIUM

Te(s) • 2e~ -37.1*

-1.41

Te(OH), 0.57

-40.68

Th(s,a) » Th + 4e~ 123.46 59.17 2+ 44- ThSO, > Th* 4 -5.45 4+ 2- TlT + 2S0/ -9.72 4 -10.47

Th(SO,),*~ - Th*+ + 4S0.2" 4 4 4 -8.44 ThH,PO,3* » Th** + 2H* + PO, 3~ -24.16 2 4 4

2+ 3 Th(H2P04)2 - Th** + 4H* + 2P04 " -47.95 -8.16 2+- 4+ -14.50 ThF2 « Th + 2F ThF * ' Th*+ + 3F~ -19.27 -22.81 -30.66 (-33.67) -1.12 2*- 4+ ThCl * Th 4- 2C1 -0.84 -1.67

-1.25 ThCl, (s) - Th** *• 4C1 23.68

Th02(») + 4H* - Th** 4- 21^0 6.27

Th02(thoriuite) + 4H* > Th** + 21^0 1.76 ThOH3* • H* - Th** • H-0 3.21 TBOtlUH (cont) Kcaction lot K

2 Th(0B)2 * + 2H* - Th** • 2H20 S.»3

Th(OH)3* + 3H* - Th** + 3H20 (11.68)

Th(0H)4° + 4H* - Th** + 4H20 15.84

Th(OH)ft(«) + 4H* - Th** + UO -9.45

Th(OH),2' + 6H* - Th** + 6H.0 49.62

6+ + Th2(OH)2 + 2H - 2Th** + 2HjO 6.13

Th (OH).8+ + 8H+ - 4Th** + 8H 0 21.06

9+ + Th5(OH)15 + 15H* - 6Th* + ISHjO 36.64

Ti(»> - Ti3+ + 3e" 54.20

3+ TiBr3(») - Ti • 3Br" 8.86 — 3+ — TiBr (») + e • Ti + 4Br 23.79 TiCl-(i) - Ti3+ + 2Cl" + e" 18.82 3* TiCl,(s) - Ti3+ + 3Cl" 8.52

Til,.(«) + e" - Ti3+ + 41" 25.48

.-3J + TiH2(») - li + 2H + 5e 40.12

TiO(») + 2H* - Ti3+ + HjO + e" 5.81

TiOjCrutile) + 4H+ • e~ • Ti3* + 2HjO -18.55

TiO Un*ta»e) + 4H+ + e" - Ti3+ + 2H O -17.47

Ti,0,(») + 6H+ - 2Ti3+ + 3H,0 -18 20

3 Ti305(»,cO + 10H* • e" - 3Ti * + 5H 0 -35.70

+ 3 Ti 0?(t) + 14H + 2e~ « 4Ti * + 7H O -55.35

TiOH2* + H* « Ti3+ + HjO 1.29

Ti-(OH) ** + 2H+ « 2Ti3* + 2H.0 3.6

OMNIUM

O(i) - U** + 4e 93.04

U3* - u** • ." 8.80

2+ «so4 - u** • -5.52 2 "* ~ 2- acso4)2° - o** • 2S04 -9.7»

2 U0jS04° + *•* • 2«~ - **>* " «2° 6.25 90

UMIIIPH (coat)

Reaction toi K

4+ 2 U02C0j(«) + 411* + 2«~ - H + C03 " + 2I20 -4.89

4 2- B02C03° + 4H* •: 2«~ - 0 * + C03 • 2H20 -0.86

2 2 D02(C03)2 " + 4H* • 2«" - 0** + 2C03 '' + 21^0 -7.85

4 2 I»2(C03)3 " + 4H* + 2e" - 0** + 3C03 "' + 2H20 -12.27

3 (U02)3(F04)2(«) + 12R* + 6e" - 3D** + 2P04 " + 6H20 -21.36

3_ (U02)2(HK>4)2(.) + 6H* + 4«~ - 20** + 2P04 + 41^0 -29.62

3 0(HP04)2-4H2O(») - U** • 2P04 " + 2H* + 4H 0 -51.'o

3 IK>2HP04° + 3H* + 2e" « D** + P0 ~ + 2IL0 -11.51

2 3

U02(HP04>2 " • 2H* + 2e~ - D** + 2H>4 '" + 2K20 -33.98

3 U02(H2M4)* + 2H* • 2«~ - D** + P04 " + 2H20 -13.27

3 U02(H2P04)2° + 2e" - 0** + 2H>4 " + 2H20 -35.37

3 U02(H2P04)," + 2e~ - 0** + 3P04 " + 2H* + 2B20 -56.55 2-f 4+ + 3- BHPO.'' - IT + H + P0.J 4 4 -24.38

3 0(HP04)2° - U** + 2H* + 2P04 " -46.63

2 3 U(HP04)3 " - U** + 3H* + 3P04 ' -67.64

3 U(HP04)4*" - B** + 4H* + 4K>4 " -87.91 3+ 4+ - -2.73 ucr - B* + ci

U02C1* + 4H* + 2«~ - U** + 01" + 2H20 7.43

UF3* - B4* • F" -8.77

2 4 UF2 * - D * • 2F" -14.71

4+ BF3* - U + 3F" -19.42

4 UF4° - U * + 4F" -24.13

4 UF4(«) - B * + 4F~ -23.99

UFj" « U** • 5F~ -25.92

2_ 4 UFft - B * + 6F~ -28.39

4 UF4'2.5 H20(«) - 0 * + 4F~ • 2.5 HjO -28.10

UOjF* + 4H* + ?«' - B** + F* • 2HjO 3.91

DO F ° + 4H* + 2«~ - D** • 2F" • 2H 0 0.20

UOjF ~ «• I A* * 2«~ « 0** • 3F~ • 2«jO -2.59

2 4 U02F4 " + 41* + 2«~ » D * • 4F" • 2BjO -3.78

4 D02('J + «»* - D * + 2»jO -4.66 rjj* • 4«* • «" - D4* + 21j0 6.42

OOj1* • M* + 2«~ • 04* • IlgO 9.20

WJ(*,Y) • *•* • 2«~ - •** * 3«jO !«.•» 91

UMN7UM (cont)

Reaction Lot K

+ U03-2H20(») •. 6H* + 2«f - U* + 5H20 14.80

+ U30g(a,a) + 16H* !• 4e~ - 3U* + 8H20 21.06

4B*+ * 9H-0 -3.15

U(OH)3* + H* - DA+ + Hjl 0.42

2+ + 4+ U(OH)2 + 2H - U + 2h,0 2.39

+ + U(OH)3* + 3H - tl* • 3H2C 5.08

+ 4+ D(OH)4° + 4H - U + 4H20 8.51

+ 4+ U(0H> ~ + 5H - U + 5H20 13.41

+ + U02(0H) + 5H + 2e" « U** + 3Hj0 14.98

+ 4+ UO2(0H)2° + 6H + 2e~ ' M + 4H20 21.12

+ v U02(OH)2(a,B) + 6H + 2e~ - U* + 4HjO 14.96

2+ + + (U02)2(OH)2 + 10H + 4e" « 2u'* + 6H20 23.95

1, (U02)3(OH)5* +17H* +6e" - 3U* + IIHJO 43.15

(UO,),(OH)," + 19H+ • 6e" - 3U4+ + '3H.0 58.30 2'3W '7 2

44++ USi0044(cof£inite) + 4l4HT* - U + Si022"° t 2Hj2a0^ (-9.20)

U0,Si0(OK)ujSiOtOHjj* + 5H+ + 2e" - U** + SiO,Si0j° + 4H,0 (11.58)

VANADIUM

V(a) + 4H.0 - VO,3" + 8H* • 5e" -8.66

3+ 3 V + 4H20 • V04 ~ + 8H* + 2e~ -51.04

3_ 2 VOSO.(a) + 3HjO - V04 + SO^ " + 6H* i e" -43.82

3 2 V0S04° + 3H20 - V04 " + SOA " + 6H* + e" -47.77

(V0),(W, ),(«) + 9H,0 - 3VO ,3~ + 2PO 3" + 18H* + 3e~ -161.10 3 4 2 2 4 4

3 VCl2(a) + 4HjO - V04 " • 2C1~ + 8H* <• 3e" -33.74

3 VCl3(l) + 4HjO - V04 ~ + 3C1~ + 8H* + 2e~ -29.26

3 VO(«) * 3HjO ' VOk ~ * 6H* • 3e" -37.94

2 3 VO * + 3HjO - V04 " + 6H* + e" -45.33

3 V02* + 2HjO - V04 " + *H* -28.41

3 V03" * HjO - V04 " + 2a* -21.32

3 VjOjCfcarelianitc) * 511,0 • 2V04 " + 10H* • *e" -92.25

J V204(a) • ABjO - 2V04 " + JR* • 2e" -82.13

3 VjOjta) • 3»jO - 2W>4 ~ • iH* -58.28 V?*~ * h° " 2W*3~ * *"* -27.77 92

Reaction Lot 1C Ref.

3 VjOjCl) + 7H20 - 3TO4 " + 14H* -136.40

V,03" + 3H.0 - 6H+ + 3VO 3" -71.61 18 3- -177.05

V.O.j*" + 4H O " 8H+ + 4V0 3" -95.34 2

V + 13HjO * 10VO + 26H 10°27 4 -346.08 18(20°,O.l)

3 H V 6 *• 12H 0 - 10V0 " + 24H 10°28 " 2 4 -334.80 18(20°,0.1)

2 + 33 - HV04 " - H + V04 -13.27

H V0 " - 2H* + VO ,3~ 2 4 4 -21.33 3H* + VO ,3~ 4 -25.33 18 4H* + VO3" vV - 4 -28.42 3 + 3 HVj07 " + H20 > 3H + 2V04 " -40.53

-53.06

KV10°285" + 12H2° " 251!+ * I0V043" -341.7',

H2V10°284"" * 12H2° * 26H+ * 10V043" -345.41

2+ 3 + VOH + 3HjO - V04 " + 7H * 2e" -48.79

V(OH)2 + 2H?0 =• V04 • 6H + 2e (-45.20)

(-40.09)

V(OH)3(s) + H20 - V04 + 5H + 2e~ -43.46 18

-98.29 18 -39.67

-40.85 18 VO(OH). - VO, + 3H 3 4 -25.11 2 24.28

(VO) (OH) 2+ + 4HjO » 2V0 3" + 10K* + 2e" 2 2 4 -83.99 18 3- 26.98 3- "Wl +2e 2HT 26.76 3- -22.81 2

VO-(OH)2" « VO.3" + H* 3 4 -14.26 2

3 + V206(0H),*~ - 2VO, " + 2H -26.54 2

3 V10026(OH)j*" • I2H20 - WV04 " • 26H* -273.43 2

S 3_ V10Oj7(OH) " + ] 2HjO - 10V04 • 25H* -269.83 2 93

Lot K Kef

121.55 + 3+ 2- YSO, - Y + SO/ -3.47 18 4 4

3+ 2 -5.3 18 Y(S04>2~ - Y + 2S04 '

3+ 2 -0.944 Y2(S04)3(s) - 2Y + 3S04 "

3+ 2 -9.65 Y2(S04)3-8H20(s) - 2Y + 3S04 ~ + BHjO 2+ 3* YN03 * Y + NO, 0.04

3+ 2 Y2(C03)j(s) = 2Y + 3C03 " -31.00

-4.8 18

-8.5 18

3+ 18 YF3° = Y - 3F" -12.1

YFJCS) - Y3* + 3F_ -18.91

-1.12

+ YClj-fiKjCCs) = Y + 3Cl" + 6«20 5.78

3+ 9.26 Y{OH)2«(s) + 2H* - Y + Cl" + 2H20

3+ Y(OH)5Cl(s) + 5H* + 3c" - Y *• Cl" + 5HjO -94.38

-0.70

Y,0,(s,cubic) + 6H+ 2Y3+ + 3H,0 49.45 *2"3V -

YH.CsH i9i) "-= Y" 3* + 2H + 5e 101.17

3+ + YH3(s) - Y + 3H + 6e~ 97.22

YOH2+ + H+ - Y3+ + HO 7.7 2

+ 3+ Y(OH)3(s) • 3H = Y + 3H20 17.5 2

+ + 3+ Y2(OH)2* + 2H - 2Y + 2H20 14.26

+ + 3+ Y3(OH)5* + 5H - 3Y + 5HjO 31.55 18

133.87

YZn,(s,a) - Y3+ + 2Zn2+ + 7e" 150.14

3 2+ YEn3

3 2 YZn4(s) - Y * + 4Zn * + lie" 195.30

3 2 YZn5(s) - Y * + 5Zn * + 13e~ 216.55

3+ 2 YZnu(s) - Y • llZn * + 25e" 355.76

3 2+ YjZnl7(s) - 2Y * • 172n • *0<" 585.51 2+ 3+ + 3- -22.17 18 YHjPO^ - Y • 2H + H>k 94

Lot t Kef.

25.(0

2 2 ZnS(sphalerite) + 4H 0 - Zn * + S04 ~ + 8H* + 8e~ -45.08

ZnS(wurtzite) + 4H 0 - Zn2* + SO^2" + 8H* + 8e" -42.78 2+ 2- + — ZnS(amorphous) + 4H-0 • Zn + SO, + 8H + 8e -42.67 3

2 2 + Zn(HS)2° + 8H20 « Zn * + 2S04 " + 18H + 16e" -82.17 3

2+ 2 Zn(HS>3~ + 12H20 - Zn + 3S04 " + 27H* + 24e" -116.94 3

ZnS04(zinko»ite) « Zn + SO, ~ 3.57

ZnSO, ° » Zn2* • SO,2" 4 4 -2.37

ZnSO^-HjOfs) » Zn2* + SO 2~ + HjO -0.54

2 2 ZnS04•6H20(bi»nchite) » Zn * + S04 ~ *• 6H-0 -:1.69

2+ 2 ZnS04'7H20(go«Urite) - Zn + S04 " + 7H.0 -1.89

Z 2 2- Zii(S04)2 " - Zn * + 2S04 -3.28 3

2 2 ZnO-2ZnS04(s) + 2H* " 3Zn * + 2S04 ~ + HjO 19.14

Zn,(0H)-S0, (s) + 2H* - 2Zn2* + 2H-0 + SO,2" 2 2 4 2 4 7.56 Zn, (OH),SO, (s) + 6H* » 4Zn2* + 6H.0 + SO,2" 4 o 4 2 4 2S.4 3 ZnHPO," - Zn2* + H* + PO 3" 4 4 -14.71 18(37,0.15)

2 3 ZnH2P04* - Zn * + 2H* + P04 " -20.72 18(37,0.15)

2 3 Zn3P04)2-4K20(s) - 3Zn * + 2P04 ~ + 4HjO -35.3 18

ZnMoO,(s) - Zn2* + MoO,2" 4 4 -6.07

ZnCO,(smith«onite) • Zn2* + CO, -9.88

2 2 ZnC03° - Zn * + COj " -5.3 3

2 2 ZnC03-H20(s) » Zn * • C03 " + ly) -10.26 3

? 2 2 Zn(C03)2 " - Zn * + 2C0 " -9.63 3

2 2 ZnHCOj* - Zn * + H* + C03 " -12.43 3

2 ZnN03* - Zn * + N03~ -0.4 18

2 Zn(N03)2° » Zn * • 21K>3" 0.3 18

2 ZnOWjjj-SHjOCs) - Zn * • 2W>3~ • 6H20 3.44 3

2 Zn5(OH)g(H03)2(») + 8H* - SZn * + 21W3" • 81^0 42.74

-1.15 3

2 Znr2(: .) - Zn * * 2F" -1.52 3

Z=Sr* - Zn2* * Br" 0.623 fclr,. r«) - Zn2* • 21r 7.S5* in*.-" - Z»J* . 21r" 0.98 3

^aA~, ••5*.V » 1 ' • Zn2* . 5.249 95

ZIBC (cont)

Reaction Lot X »«f.

ZnBr^ -Z„2* + 3Sr" 1.602

Znl+ - Zn2* * i" 3.009

- ,Z n 2* ZnI2U) + 2I~ 7.384

2+ Znl2° -• Zn • 2l" 1.69 3

Znl," - Zn2* • 3I~ 1.994 2- Znl, - Zn2* •• 4l" 4 2.587

2 ZnCl* - Zn * + Cl" -0.43 3

ZnCl,(s ) - Zn2* + 2Cl" 7.03 3

2 ZnCl2° * Zn * + 2C1" -0.45 3 2+ ZnCl ~ - Zn + 3C1 -0.5 3 , 2+ ZnCl4"~ " Zn + 4Cl" -0.2 3 2+ Zn(OH)Cl° + H* - Zn + Cl 7.513

Zn,(OH) Cl(s) * 3H+ - 27n2* + Cl" + 3H,0 15,249

2 Zn5(OH)fcCl (s) + 8H* - 5Zn * + 8H.0 + Cl" 38.5 3

ZnO(zincite) + 2H+ - Zn + H,0 11.20

ZnO(active) + 2H+ - Zn2* + HO 11.31 3

2 + 2 Zn02 " + 4H - Zn * + 2H20 41.57

ZnOH* + H* - Zn2+ + H,0 8.96 3

Zn + HO 11.86

+ 2+ Zn(OH)2(s,B) + 2H » Zn + 2H 0 11.91

2+ Zn(OH)2(s,£) + 2H* - Zn + 2HjO 11.64

2 Zn(OH)2(aif!>vphous) + 2H* - Zn * • 2H 0 12.46 18

+ 2 Zn(OH)2(.r'-/it) + 2H * Zn * + 2H,0 12.2 3

Zn(OH) ° + 2H* » Zn2+ + 2H 0 16.88 18

Zn(OH) ~ + 3H* « Zn2+ + 3H 0 28.80

2 2 Zn(0H)4 " + 4H* - Zn * + 4HjO 41.55

HZnOj" + 3H* - Zn2+ + 2HjO 28.81

?n„OH3* + H* « 2Zn2* + H-0 z 2 8.99 18

2 2 Zn2(OH)6 " + 6H* - 2Zn * + 6HjO 57.8 2

2 2 ZnSe(s) <• 3H20 * Zn * + SeO ' * 6H* + 6e" •62.64

ZnSeO.-HjOCs) - Zn2* -6.76

ZnSiO.(s) + 2H* - Zn2* + SiO ° + HO •19.85 3

5Zn2* * SiO,c • 2» 0 13.89 96

ZIHC (coot) Lot K

2 2 ZnF.jO^U) • SB + 2« - Zo'* •* 2FM.« * • 4H.*H20 33.29

1) + 8H* • «" - 2Zn2* + Ti3* • 4H,0 3.21 Zti,Ti04(Zo-Ti »pine!

101.46 Zr(.) -Zr** + 4t~

4 -3.79 15 ZrSO^2* -Zr * • so/- 15 3+ -0.3 Zrl»3 -Zr** + iw3" , .3+ _ -9. SO 15 ZrF • Zr** + t" 4+ — -18.72 ZtF.d^BKmoelinic) ' tt * 4F -0.30 15

37,53 ZrCl^U) « Zr*+ • Ml" 78.88 ZrH2(«) 1.86 16 Zr02(b«ddtl«yit») + 4H*

3 4 15 ZrOB * • H* » Zr * + HjO -0.3

2 4 1.7 15 Zr(0«)2 * • 2H* - Zr * + 2BjO

4 5.1 15 Zr(OH)3* + 3H* - Zr * + 3HjO

4 9.7 15 Zr(OH)t° + 4R* - Zr * + 4HjO

4 16.0 15 Zr(M»5~ + 5H* « Zr * + 5HjO

4 0.6 15 Zr3«HI)4** + 4H* • 3Zr * + 41^0

7 4 -3.7 15 Zr3(0«)5 * + 5H* - 3Zr * + 5HjO

4 -6.0 2 Zr4(OH)j** • 88* - 4Zr * • 8^0

ZrSiO^Uircon) + 4H* - Zr4* + SiOj0 + 2HjO -5.64 97

TABLE 3. BASIS SPECIES

+ Pu«+ Ag

2 Al3+ H2O SO4 -

+ Hf4+ SbO+ Am*

2 21 Se0 ' Ba * I~ 3 Br" K+ Si02 La3+ Sm3+ C032"

24 Ca2+ Mg2+ S* *

21 Cd24" Ita " S^

24 : Ce3+ Mo04 TcO " Te2~ Cm*+ NO3"

+ fh4+ CrO2" Na

24 3+ Cs+4 Nd " Ti

24 „4+ Cu24" Ni "

3 CI" Np*+ VO4 "

Y3+ e~ P043-

24 24 Eu3+ Pb " En "

3 pd2+ Zr + F"

21 Fe2*" P.3+ Ra "

3+ + Gd3+ Pr Rb Ru21*