Crystallochemical Design of Huntite-Family Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Crystallochemical Design of Huntite-Family Compounds crystals Review Crystallochemical Design of Huntite-Family Compounds Galina M. Kuz’micheva 1, Irina A. Kaurova 1,* , Victor B. Rybakov 2 and Vadim V. Podbel’skiy 3 1 MIREA-Russian Technological University, Vernadskogo pr. 78, Moscow 119454, Russia; [email protected] 2 Lomonosov Moscow State University named M.V. Lomonosov, Vorobyovy Gory, Moscow 119992, Russia; [email protected] 3 National Research University Higher School of Economics, Myasnitskaya str. 20, Moscow 101000, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-495-246-0555 (ext. 434) Received: 18 December 2018; Accepted: 12 February 2019; Published: 15 February 2019 Abstract: Huntite-family nominally-pure and activated/co-activated LnM3(BO3)4 (Ln = La–Lu, Y; M = Al, Fe, Cr, Ga, Sc) compounds and their-based solid solutions are promising materials for lasers, nonlinear optics, spintronics, and photonics, which are characterized by multifunctional properties depending on a composition and crystal structure. The purpose of the work is to establish stability regions for the rare-earth orthoborates in crystallochemical coordinates (sizes of Ln and M ions) based on their real compositions and space symmetry depending on thermodynamic, kinetic, and crystallochemical factors. The use of diffraction structural techniques to study single crystals with a detailed analysis of diffraction patterns, refinement of crystallographic site occupancies (real composition), and determination of structure–composition correlations is the most efficient and effective option to achieve the purpose. This approach is applied and shown primarily for the rare-earth scandium borates having interesting structural features compared with the other orthoborates. Visualization of structures allowed to establish features of formation of phases with different compositions, to classify and systematize huntite-family compounds using crystallochemical concepts (structure and superstructure, ordering and disordering, isostructural and isotype compounds) and phenomena (isomorphism, morphotropism, polymorphism, polytypism). Particular attention is paid to methods and conditions for crystal growth, affecting a crystal real composition and symmetry. A critical analysis of literature data made it possible to formulate unsolved problems in materials science of rare-earth orthoborates, mainly scandium borates, which are distinguished by an ability to form internal and substitutional (Ln and Sc atoms), unlimited and limited solid solutions depending on the geometric factor. Keywords: huntite family; rare-earth scandium borate; optical material; crystal growth; rare-earth cations; X-ray diffraction (XRD); crystal structure; solid solution; order–disorder 1. Introduction Modern scientific and applied materials science requires both an appearance of new materials with a desired combination of functional properties and an improvement and optimization of physical parameters and structural quality of the known materials, which have already proven themselves in practice, with further control of their properties using external (growth and post-growth treatment conditions) or internal (activation, isomorphic substitution) effects. Isomorphic substitutions and activation are different in the concentration of ion(s) introduced into a crystal matrix and effects produced. Isomorphic substitution is a powerful and flexible way to obtain a desired physical parameter of material by a targeted change in the composition of specific crystal structure. Activation is one of the necessary and relatively simple technological actions for the appearance, modification, and improvement of crystal properties by introduction (sometimes, over stoichiometry) of small amounts Crystals 2019, 9, 100; doi:10.3390/cryst9020100 www.mdpi.com/journal/crystals Crystals 2019, 9, 100 2 of 49 of impurity ions into a crystal matrix that contributes to a self-organization and self-compensation of system’s electroneutrality. It is possible that dopant ions introduced into a crystal structure in low concentrations over stoichiometry are distributed over crystallographic sites in a different way than those introduced in high concentrations in the case of formation of solid solutions. However, low content of dopant ions can lead to significant changes in both local and statistical structures, in particular, in crystal symmetry. In this paper, all the above-mentioned aspects are reviewed for the huntite family compounds, interesting and important materials from both applied and scientific points of view, with the main focus on single-crystal objects, a detailed study of which can obtainin reliable information about the internal structure of materials. Complex orthoborates of rare-earth metals with the general chemical formula LnM3(BO3)4, where 3+ 3+ Ln = La–Lu, Y and M = Al, Ga, Sc, Cr, Fe, belong to the huntite family (huntite CaMg3(CO3)4, space group R32 [1]). Depending on the composition and external conditions, they can have both monoclinic (space groups C2/c, Cc, and C2) and trigonal (space groups R32, P321, and P312) symmetry with the presence (space group C2/c) or absence of center of symmetry. The most widely known and studied representatives of the huntite family compounds are 3+ 3+ aluminum borates LnM3(BO3)4 with the M = Al. The LnAl3(BO3)4 crystals with the Ln = Y, Gd, Lu doped with the Nd, Dy, Er, Yb, Tm (for example, [2,3]) and co-doped with the Er/Tb, Er/Yb, Nd/Yb ions (for example, [4,5]), as well as single-crystal solid solutions in the YAl3(BO3)4 – NdAl3(BO3)4 system [6], are promising materials for self-frequency-doubled lasers. YAl3(BO3)4 crystals doped with the Er3+ or Yb3+ ions are widely used in medicine and telecommunications as laser materials 3+ with a wavelength of 1.5–1.6 µm [4,5]. The LnAl3(BO3)4 crystals with the Ln = Tb, Ho, Er, Tm exhibit a magnetoelectric effect (HoAl3(BO3)4 is a leader among these compounds) (for example, [2,7]). 3+ The LnAl3(BO3)4 compounds with the Ln = Gd, Eu, Tb, Ho, Pr, Sm are used as phosphors (for 3+ 3+ example, [8,9]): the YAl3(BO3)4 crystals doped with the Eu and Tb ions is an environmentally friendly material for a white LED, having high intensity and luminescence power and low cost [10]; those doped with the Tm3+ and Dy3+ are able to be tuned from blue through white and ultimately to yellow emission colors and are attractive candidates for general illumination [11]; those doped 3+ 3+ with the Sm ions, as well as GdAl3(BO3)4:Sm , can be used as promising materials for orange-red lasers [8]. The simultaneous generation of three basal red–green–blue colors is obtained from a lone 3+ GdAl3(BO3)4:Nd bi-functional laser and optical nonlinear crystal [12], which is also of interest for the development of high-quality and bright displays. 3+ Rare-earth gallium borates LnM3(BO3)4 with the M = Ga are poorly studied. The LnGa3(BO3)4 3+ 3+ crystals, in particular LnGa3(BO3)4:Tb with the Ln = Y or Gd, are prominent luminescent materials with plasma-discharge conditions, converting a vacuum ultraviolet radiation into a visible light that can be used in high-performance plasma display panels and television devices [13]. In addition, gallium borates can be considered as promising materials not only for luminescent and laser applications, but also for use in spintronics: a large magnetoelectric effect was found in the HoGa3(BO3)4 [14]. 3+ Rare-earth borates LnM3(BO3)4 with the magnetic ions M = Fe or Cr, which are characterized by the presence of two interacting magnetic subsystems (3d- and 4f - ions) in the crystal structure, are even less studied. A long-range antiferromagnetic spin order of the Cr3+ subsystem is observed in the NdCr3(BO3)4 single crystals at TN = 8 K [15]. A phase transition from paramagnetic to antiferromagnetic state was found in the EuCr3(BO3)4 crystals at TN ≈ 9 K [16]. In addition, a magnetic phase transition is also observed in the SmCr3(BO3)4 at Tc = 5 ± 1 K [17]. In a number of rare-earth ferroborates, a significant magnetoelectric effect was found [18,19], which makes it possible to attribute them to a new class of multiferroics [18]. Maximum magnetoelectric and magnetodielectric effects were recorded for the NdFe3(BO3)4 and SmFe3(BO3)4 crystals [19,20]. Such materials can be used as magnetoelectric sensors, memory elements, magnetic switches, spintronics devices, high-speed radiation-resistant MRAM memory, etc. 3+ Rare-earth scandium borates LnM3(BO3)4 with the M = Sc demonstrate an anomalously low luminescence concentration quenching, which is caused by the large distance between the nearest Crystals 2019, 9, 100 3 of 49 Ln ions (~6 Å), and, hence, these compounds are promising high-efficient optical media that can be used in photonics, in particular, to create a diode-pumped compact lasers covering various optical spectral regions [21,22]. Currently, the best materials for medium-power solid-state miniature lasers 3+ are undoped and Cr -doped NdSc3(BO3)4 [22,23]. They are characterized by a high efficiency of laser transitions, on the one hand, and detuning of almost all cross-relaxation transitions, on the other. In addition, the NdSc3(BO3)4 crystals have a high non-linear dielectric susceptibility. Hence, in these crystals, it is possible to convert an infrared radiation of the neodymium laser into a visible one along a certain crystal orientation relative to the propagation of laser radiation. A miniature laser emitted in a green spectral region can be created based on the NdSc3(BO3)4. As can be seen from the short literature review on properties and possible areas of application of the huntite-family borates, these materials are characterized by a combination of different functional properties in one compound. In turn, physical and chemical properties are due to a real composition and crystal structure, influenced by initial composition (the type of rare-earth metal and the nature of M metal), synthesis conditions, and external effects. Determination of structure of huntite-family rare-earth borates becomes very important, since a possible structural transition from one space group to another can be accompanied by a loss (or acquisition) of the center of symmetry and results in an acquisition (or loss) of nonlinear optical and magnetoelectric properties.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • The Hydromagnesite Deposits of the Atlin Area, British Columbia, Canada, and Their Industrial Potential As a Fire Retardant
    Δελτίο της Ελληνικής Γεωλογικής Εταιρίας τομ. ΧΧΧΧ, Bulletin of the Geological Society of Greece vol. XXXX, 2007 2007 Proceedings of the 1 llh International Congress, Athens, May, Πρακτικά 1 Γ" Διεθνούς Συνεδρίου, Αθήνα, Μάιος 2007 2007 THE HYDROMAGNESITE DEPOSITS OF THE ATLIN AREA, BRITISH COLUMBIA, CANADA, AND THEIR INDUSTRIAL POTENTIAL AS A FIRE RETARDANT Stamatakis M. G.\ Renaut R. W.2, Kostakis K.1, Tsivilis S.3, Stamatakis G.4, and Kakali G.3 1 National & Kapodistrian University of Athens, Dept. of Geology & Geoenvironment, Panepistimiopolis, Ano Ilissia 157 84 Athens, Greece, [email protected] 2 Dept. of Geological Sciences, University of Saskatchewan, Saskatoon SK, S7N5E2, Canada National Technical University of Athens, Dept. of Chemical Engineering, 9 Heroon Polytechniou str., 157 73 Zografou, Athens, Greece 4 National & Kapodistrian University of Athens, Dept. of Chemistry, Panepistimiopolis, Ano Ilissia 157 84 Athens, Greece Abstract This research examines the potential of the hydromagnesite deposits at Atlin in British Columbia, Canada, for the mineral fire-retardant market. Mineral fire retardants, such as Mg- and Ca/Mg-carbonates, are environmentally friendly, producing non-toxic and non-corrosive gases during their thermal decomposition. During this research, 70 sediment samples and two bulk samples were collected from the study area and analysed. The results showed that the Atlin deposits are composed mostly of hydromagnesite with minor amounts of very fine-grained, soft and platy magnesite. The general conclusion is that the mineralogical composition of the samples, their behaviour during thermal decomposition, and their chemical and physical properties, make them suitable for use as white fillers for flame-retardants.
    [Show full text]
  • Mg-Rich Authigenic Carbonates in Coastal Facies of the Vtoroe Zasechnoe Lake (Southwest Siberia): First Assessment and Possible Mechanisms of Formation
    minerals Article Mg-Rich Authigenic Carbonates in Coastal Facies of the Vtoroe Zasechnoe Lake (Southwest Siberia): First Assessment and Possible Mechanisms of Formation Andrey A. Novoselov 1, Alexandr O. Konstantinov 2,* , Artem G. Lim 3 , Katja E. Goetschl 4, Sergey V. Loiko 3,5 , Vasileios Mavromatis 4,6 and Oleg S. Pokrovsky 6,7 1 Institute of Earth Sciences, University of Tyumen, Tyumen 625002, Russia; [email protected] 2 Center of Advanced Research and Innovation, Tyumen Industrial University, Tyumen 625000, Russia 3 BIO-GEO-CLIM Laboratory, National Research Tomsk State University, Tomsk 634050, Russia; [email protected] (A.G.L.); [email protected] (S.V.L.) 4 Institute of Applied Geosciences, Graz University of Technology, Graz 8010, Austria; [email protected] (K.E.G.); [email protected] (V.M.) 5 Tomsk Oil and Gas Research and Design Institute (TomskNIPIneft), Tomsk 634027, Russia 6 Géosciences Environnement Toulouse (GET), CNRS, UMR 5563, 31400 Toulouse, France; [email protected] 7 N.P. Laverov Federal Center for Integrated Arctic Research (FCIArctic), Russian Academy of Sciences, Arkhangelsk 163000, Russia * Correspondence: [email protected]; Tel.: +7-982-782-3753 Received: 12 October 2019; Accepted: 8 December 2019; Published: 9 December 2019 Abstract: The formation of Mg-rich carbonates in continental lakes throughout the world is highly relevant to irreversible CO2 sequestration and the reconstruction of paleo-sedimentary environments. Here, preliminary results on Mg-rich carbonate formation at the coastal zone of Lake Vtoroe Zasechnoe, representing the Setovskiye group of water bodies located in the forest-steppe zone of Southwest + 2 Western Siberia, are reported.
    [Show full text]
  • The Thermal Decomposition of Natural Mixtures of Huntite and Hydromagnesite
    Article The thermal decomposition of natural mixtures of huntite and hydromagnesite Hollingbery, L.A. and Hull, T Richard Available at http://clok.uclan.ac.uk/3414/ Hollingbery, L.A. and Hull, T Richard ORCID: 0000-0002-7970-4208 (2012) The thermal decomposition of natural mixtures of huntite and hydromagnesite. Thermochimica Acta, 528 . pp. 45-52. ISSN 00406031 It is advisable to refer to the publisher’s version if you intend to cite from the work. http://dx.doi.org/10.1016/j.tca.2011.11.002 For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>. For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/ All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the policies page. CLoK Central Lancashire online Knowledge www.clok.uclan.ac.uk L A Hollingbery, T R Hull, Thermochimica Acta 528 (2012) 54 - 52 The Thermal Decomposition of Natural Mixtures of Huntite and Hydromagnesite. L.A.Hollingberya,b*, T.R.Hullb a Minelco Ltd, Raynesway, Derby, DE21 7BE. [email protected]. Tel: 01332 673131 Fax: 01332 677590 b School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, PR1 2HE Keywords: hydromagnesite, huntite, fire, flame, retardant, filler 1 Abstract The thermal decomposition of natural mixtures of huntite and hydromagnesite has been investigated.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • REFLECTANCE SPECTRA of ANHYDROUS CARBONATE MINERALS: IMPLICATIONS for MARS. E. A. Cloutis1, D. M. Goltz2, J. Coombs2, B. Russell1, M
    Lunar and Planetary Science XXXI 1155.pdf REFLECTANCE SPECTRA OF ANHYDROUS CARBONATE MINERALS: IMPLICATIONS FOR MARS. E. A. Cloutis1, D. M. Goltz2, J. Coombs2, B. Russell1, M. Guertin1, and T. Mueller1. 1Department of Ge- ography, University of Winnipeg, 515 Portage Ave., Winnipeg, MB, Canada R3B 2E9 ([email protected]; [email protected]; [email protected]), 2Department of Chemistry, University of Winnipeg, 515 Portage Ave., Winnipeg, MB, Canada R3B 2E9 ([email protected]; [email protected]). Introduction: The spectral reflectance properties in the 2.8-4.3 µm region: two sets of multiple, over- of a range of anhydrous carbonate minerals have been lapped absorption features in the 3.25-3.5 µm and investigated. The purpose of this study was to deter- 3.75-4.0 µm regions. The bands in the 3.25-3.5 µm mine the range of spectral variability which this class region are probably attributable to overtones and com- of minerals exhibits and whether they are plausible binations of C-O stretches near 7 µm [6,7]. The bands candidates for the absorption features reported in in the 3.75-4.0 µm region are probably attributable to Earth-based Martian spectra by [1]. combinations of the C-O stretching bands near 7 µm A number of criteria suggest that carbonates may and the C-O bending band near 9 µm [6,7]. The pre- be present on the surface of Mars, including weather- cise positions of these bands are a function of both ing models [2], detection of preterrestrial carbonates structure and type of cation present [8].
    [Show full text]
  • 6 – Magnesite & Huntite
    Chapter 6 – Magnesite & huntite 188 C H A P T E R S I X M A G N E S I T E & H U N T I T E INTRODUCTION Numerous authors, among them Berzelius (1820 B, 1821), Soubeiran (1827), Fritzsche (1836), Nörgaard (1851), De Marignac (1855), Beckurts (1881 A), Genth & Penfield (1890), Pfeiffer (1902), Von Knorre (1903), Redlich (1909 B), Leitmeier (1910 B), Wells (1915), Wilson & Yü-Ch'Ih Ch'Iu (1934) and Walter-Lévy (1937), have described unsuccessful attempts to precipitate anhydrous magnesium carbonate from a magnesium bicarbonate solution kept at room temperature and under atmospheric pressure. Instead a hydrated magnesium carbonate (nesquehonite, MgCO 3.3 H 2O or lansfordite, MgCO 3.5 H 2O) or one of the more complex magnesium hydroxide carbonates precipitated under such conditions. 1 Magnesite may well form under conditions of room temperature (around 298 K) and atmospheric pressure. This conclusion is based on a number of detailed descriptions of occurrences of magnesite in Recent sediments, sediments that lack any indication of the actions of high temperature and/or high pressure. Such occurrences of modern magnesite have been described for example by Alderman & Von der Borch (1961), Skinner (1963), Von der Borch (1965), Irion (1970), Perthuisot (1971), Gac et al. (1977), and Wells (1977). The obvious discrepancy between finding magnesite of modern age, magnesite that must have formed under conditions of room temperature & atmospheric pressure, and the noted absence of any such syntheses, has led to what might be called " the magnesite problem ". No lack of theories on the formation of magnesite under atmospheric conditions exists.
    [Show full text]
  • Download Preprint
    2+ 1 The impact of Mg ions on equilibration 2 of Mg−Ca carbonates in groundwater and brines 3 Preprint version of the article published in Geochemistry - Chemie der Erde, 4 https://doi.org/10.1016/j.chemer.2020.125611 a a 5 Peter Möller , Marco De Lucia a 6 Helmholtz Centre Potsdam, GFZ German Research for Geosciences, Section 3.4 Fluid Systems Modelling, 7 Telegrafenberg, 14473 Potsdam, Germany 8 Abstract a 2+ a 2+ At temperatures below 50 °C, the log10( Mg = Ca ) values in groundwater and brines, irrespective of their origin - either carbonaceous or siliceous rocks/sediments - cover the range between -1.5 and +1.0. Calculations of thermodynamic equilibria between the minerals calcite, aragonite, dolomite and huntite suggest a spread of a 2+ a 2+ a 2+ a 2+ log10( Mg = Ca ) between minus infinity and +2.3. Log10( Mg = Ca ) in solution of dissolving ordered dolomite at 25 °C fits the thermodynamical equilibrium between disordered dolomite and calcite and nearly corresponds to that of pure calcite with a dolomitic surface layer due to exchange of Ca2+ against Mg2+ in Mg2+-containing solutions. This observation suggests that the solubility of Mg-Ca carbonates is controlled by the composition of their monomolecular surface layers in equilibrium with the ambient aqueous phase. Incongruently dissolving minerals such as dolomite attain equilibrium between individual surface compositions of different carbonates. The bulk composition of these carbonates hardly if ever equilibrates with the ambient solution due to extremely low ion mobility in the lattice. Because the thermodynamical equilibria are based on the composition a 2+ a 2+ of bulk minerals, their estimates of equilibria between carbonates, i.e., log10( Mg = Ca ) in solution, differ significantly from values established by the chemical composition and structure of the surface layer of carbonates.
    [Show full text]
  • Studies on Aragonite and Its Occurrence in Caves, Including New South Wales Caves
    i i “Main” — 2006/8/13 — 12:21 — page 123 — #27 i i Journal & Proceedings of the Royal Society of New South Wales, Vol. 137, p. 123–149, 2004 ISSN 0035-9173/04/0200123–27 $4.00/1 Studies on Aragonite and its Occurrence in Caves, including New South Wales Caves jill rowling Abstract: Aragonite is a minor secondary mineral in many limestone caves throughout the world and is probably the second-most common cave mineral after calcite. It occurs in the vadose zone of some caves in New South Wales. Aragonite is unstable in fresh water and usually reverts to calcite, but it is actively depositing in some NSW caves. A review of the cave aragonite problem showed that chemical inhibitors to calcite deposition assist in the precipitation of calcium carbonate as aragonite instead of calcite. Chemical inhibitors physically block the positions on the calcite crystal lattice which otherwise would develop into a larger crystal. Often an inhibitor for calcite has no effect on the aragonite crystal lattice, thus favouring aragonite depositition. Several factors are associated with the deposition of aragonite instead of calcite speleothems in NSW caves. They included the presence of ferroan dolomite, calcite-inhibitors (in particular ions of magnesium, manganese, phosphate, sulfate and heavy metals), and both air movement and humidity. Keywords: aragonite, cave minerals, calcite, New South Wales INTRODUCTION (Figure 1). It has one cleavage plane {010} (across the “steeples”) while calcite has a per- Aragonite is a polymorph of calcium carbon- fect cleavage plane {1011¯ } producing angles ◦ ◦ ate, CaCO3. It was named after the province of 75 and 105 .
    [Show full text]
  • Aerobic Biomineralization of Mg-Rich Carbonates: Implications for Natural Environments
    Chemical Geology 281 (2011) 143–150 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Research paper Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments Mónica Sánchez-Román a,b,c,⁎, Christopher S. Romanek b,d, David C. Fernández-Remolar c, Antonio Sánchez-Navas e, Judith Ann McKenzie a, Ricardo Amils Pibernat c, Crisogono Vasconcelos a a ETH-Zürich, Geological Institute, 8092 Zürich, Switzerland b NASA Astrobiology Institute and Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29808, USA c Centro de Astrobiología, INTA-CSIC, Ctra Ajalvir Km 4, 28850 Torrejón de Ardoz, Madrid, Spain d Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA e Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Campus Universitario de Fuentenueva, 18071 Granada, Spain article info abstract Article history: We studied the formation of Mg-rich carbonate in culture experiments using different aerobic bacterial Received 5 September 2010 strains and aqueous Mg/Ca ratios (2 to 11.5) at Earth surface conditions. These bacteria promoted the Received in revised form 11 November 2010 formation of microenvironments that facilitate the precipitation of mineral phases (dolomite, huntite, high Accepted 15 November 2010 Mg-calcite and hydromagnesite) that were undersaturated in the bulk solution or kinetically inhibited. Available online 29 November 2010 Dolomite, huntite, high Mg-calcite, hydromagnesite and struvite precipitated in different proportions and at Editor: U. Brand different times, depending on the composition of the medium. The Mg content of dolomite and calcite decreased with an increasing Ca concentration in the medium.
    [Show full text]
  • Diagenesis of a Drapery Speleothem from Castaã±Ar Cave: From
    International Journal of Speleology 41(2) 251-266 Tampa, FL (USA) July 2012 Available online at scholarcommons.usf.edu/ijs/ & www.ijs.speleo.it International Journal of Speleology Official Journal of Union Internationale de Spéléologie Diagenesis of a drapery speleothem from Castañar Cave: from dissolution to dolomitization Andrea Martín-Pérez1*, Rebeca Martín-García2, and Ana María Alonso-Zarza1, 2 Abstract: Martín-Pérez A., Martín-García R. and Alonso-Zarza A.M. 2012. Diagenesis of a drapery speleothem from Castañar Cave: from dissolution to dolomitization. International Journal of Speleology, 41(2), 251-266. Tampa, FL (USA). ISSN 0392-6672. http://dx.doi.org/10.5038/1827-806X.41.2.11 A drapery speleothem (DRA-1) from Castañar Cave in Spain was subjected to a detailed petrographical study in order to identify its primary and diagenetic features. The drapery’s present day characteristics are the result of the combined effects of the primary and diagenetic processes that DRA-1 underwent. Its primary minerals are calcite, aragonite and huntite. Calcite is the main constituent of the speleothem, whereas aragonite forms as frostwork over the calcite. Huntite is the main mineral of moonmilk which covers the tips of aragonite. These primary minerals have undergone a set of diagenetic processes, which include: 1) partial dissolution or corrosion that produces the formation of powdery matt-white coatings on the surface of the speleothem. These are seen under the microscope as dark and highly porous microcrystalline aggregates; 2) total dissolution produces pores of few cm2 in size; 3) calcitization and dolomitization of aragonite result in the thickening and lost of shine of the aragonite fibres.
    [Show full text]