SYSTEMATIC WOOD ANATOMY of CORNACEAE and ALLIES S. Noshirol & P. Baas the Wood Anatomy of Comaceae, Alangiaceae, Garryaceae

Total Page:16

File Type:pdf, Size:1020Kb

SYSTEMATIC WOOD ANATOMY of CORNACEAE and ALLIES S. Noshirol & P. Baas the Wood Anatomy of Comaceae, Alangiaceae, Garryaceae IAWA Journal, Vol. 19 (1),1998: 43-97 SYSTEMATIC WOOD ANATOMY OF CORNACEAE AND ALLIES by S. Noshiro l & P. Baas2 SUMMARY The wood anatomy of Comaceae, Alangiaceae, Garryaceae, and Nyssa­ ceae constituting the Comales in the sense of Cronquist (1981, 1988) is described in great detail and subjected to a cladistic analysis. A micro­ scopic identification key to the woods studied is given. The alliance in­ cludes seventeen genera, mostly of trees and shrubs, very rarely herbs. Although wood anatomically fairly homogeneous, variation exists in both qualitative and quantitative characters. Some of the latter show distinct latitudinal trends within individual genera, and character states have only been recognised taking their latitudinal dependencies into ac­ count. The character states ultimately recognised in these continuously varying quantitative characters coincide with intergeneric or intersec­ tional gaps. The cladistic analysis based on a datamatrix with twenty­ one characters (Table 3) and using Cereidiphyllum, Daphniphyllum, and Hamamelis as outgroups yielded a strict consensus tree with a quadrichotomy with two monophyletic clades, Hydrangea panieulata (a representative of the closely allied Hydrangeaceae) and Daph­ niphyllum (Fig. 81). One weakly supported clade includes Alangium, Camptotheea, Cornus, Curtisia, Davidia, Diplopanax, Mastixia, and Nyssa without any robust lineages among them. The other genera, Ara­ lidium, Aueuba, Corokia, Garrya, Griselinia, Helwingia, Melanophylla and Toricellia, constitute a second, well-supported clade. Two Hydran­ gea taxa included in the analysis nest in the second clade and a basal branching respectively. The wood anatomical diversity pattern thus supports a family concept of Comaceae including Cornus, Curtisia, Diplopanax, Mastixia, Alangiaceae, and Nyssaceae, and exclusion of the genera in the other clade. There is remarkable agreement between some of these wood anatomical r~sults and recent cladistic analyses of rbeL sequences by Xiang and co-workers. The infrageneric classifica­ tion of Cornus, Alangium and Nyssa is also discussed. Key words: Comaceae, Alangiaceae, Garryaceae, Nyssaceae, Hydran­ gea, wood anatomy, latitudinal trends, cladistic analysis. 1) Forestry and Forestry Products Research Institute, Tsukuba Norin, P.O. Box 16, Ibaraki 305, Japan. 2) Rijksherbarium/Hortus Botanicus, P. O. Box 9514, 2300 RA Leiden, The Netherlands. Downloaded from Brill.com10/09/2021 06:57:00PM via free access Table 1. Systematic treatment of the Comaceae alliance. 1:1: Cronquist Harms Wangerin Me1chior Hutchinson Takhtajan Eyde Thorne 1982 1898 1910 1967 1967 1997 1988 1992 Cornales Cornaceae Cornaceae U mbelliflorae Araliales Comales Cornaceae Cornales Comaceae Aralidium (Araliaceae) Araliaceae (Aralidiales) Aralidiaceae Aucuba * * * * (Aucubales) Aucubaceae Cornus * * * * * * * Corokia * * * * (Hydrangeales) (Hydrangeales) Curtisia * * * * Curtisiaceae Curtisiaceae Griselinia * * * * (Griseliniales) (H ydrangeales) Helwingia * * * Araliaceae (Helwingales) (Araliales ) Kaliphora * * * (Hydrangeales) (Hydrangeales) Mastixia * * * * Mastixiaceae * * Melanophylla * * * * (Hydrangeales) (Hydrangeales) Toricellia * * * * (Toricelliales) (Araliales) (Diplopanax) Araliaceae Mastixiaceae *1) * Nyssaceae Nyssa * Nyssaceae Nyssaceae Nyssaceae Nyssaceae * * Camptotheca * Nyssaceae Nyssaceae Nyssaceae Nyssaceae * * Davidia * Nyssaceae Davidiaceae Nyssaceae Davidiaceae * * Garryaceae ...... Downloaded fromBrill.com10/09/2021 06:57:00PM Garrya * Garryaceae Garryaceae Garryaceae (Garryales) Garryaceae Alangiaceae ;J>~ '-< Alangium * Alangiaceae Alangiaceae Alangiaceae Alangiaceae Alangiaceae 0 Araliaceae Araliaceae Vitaceae at= Umbelliferae Caprifoliaceae Gunneraceae f-. Haloragaceae Eucommiaceae ~ ...... Icacinaceae \D Cardiopteridaceae -----...... -------_... _-- '-' ...... * = inclusion in Cornaceae, () = exclusion from Cornaceae or Cornales. \D via freeaccess \D 1) Eyde & Xiang 1991. 00 Noshiro & Baas - Systematic wood anatomy of Comaceae 45 INTRODUCTION Comaceae and allies constitute a group oftrees and shrubs (very rarely herbs) which has its main distribution in the northem hemisphere. The circumscription of this alli­ ance has been in constant dispute and varies greatly between systematists (Table 1; cf. also Xiang et al. 1993). Harms (1898) recognised 15 genera in seven subfamilies in his treatment of Comaceae. Wangerin (1910) divided Comaceae into four separate farnilies, Comaceae, Nyssaceae, Alangiaceae, and Garryaceae. In more recent years Cronquist (1981) adopted the family circumscription of Harms (1898) in his Comales and regarded the four families ofWangerin (1910) to constitute the order. Cronquist (1988) later included Nyssaceae in Comaceae following the opinions of Eyde (1988). Hutchinson (1967) included Comaceae, Alangiaceae, Garryaceae, and Nyssaceae to­ gether with Araliaceae and Caprifoliaceae in his Araliales, and Melchior (1964) in­ cluded the four families with Araliaceae and Umbelliferae in his series Umbelliflorae. Dahlgren (1980) and Thome (1992) have the broadest concept of the Comales. Dahlgren included 22 families in his Comales besides the above four families whose constituent genera he placed in eight families. Thome (1992) included four suborders in his Comales, nine families in Comineae, and Davidia, Camptotheea, Nyssa, Di­ plopanax, Mastixia, and Cornus in Comaceae. In contrast, others adopted a much nar­ rower circumscription for Comales or Comaceae. Takhtajan (1997) included only eight genera in his Comales and placed the other nine genera in seven separate orders. He adopted narrower family circumscriptions and established eight families among the nine genera of Comales. Eyde (1988) limited his Comaceae to only six genera, including the latest addition of Diplopanax formerly placed in Araliaceae (Eyde & Xiang 1990). He was not sure of the affinity of Alangium with the Comales, but con­ sidered the other genera to be remotely related. In recent years rbeL sequences of the Comaceae alliance have been analysed (Xiang et al. 1993 and Xiang & Soltis in press) based on the circumscription of the Comales by Cronquist (1981) with the addition of Diplopanax. These results showed a Coma­ ceous clade that included only some genera; the other genera were scattered among several other clades. The Comaceous clade is quite close to the Hydrangeaceae. To obtain results comparable to those of the rbeL sequences, we studied all the genera of Cronquist's Comales, and selected three outgroup genera from the taxa used for the rbeL analyses. The Comales in this study consist of Alangiaceae, Comaceae, Garryaceae, and Nyssaceae (Cronquist 1981). Diplopanax is provisionally included in the Comaceae following Eyde & Xiang (1990). The infrageneric subdivision of the studied genera and species circumscription follows Bloembergen (1939) for Alangium with revi­ sions of nomenclature by Eyde (1968), Murrell (1993) for Cornus, Matthew (1976) for Mastixia, and Dahling (1978) for Garrya. Besides these revisions, we follow Fang (1983) for Chinese Alangium, Ricket (1945) for North American Cornus, Soong (1990) for Chinese Mastixia, Aueuba, and Helwingia, Hu (1990) for Cornus s.l. and Torieellia, Burckhalter (1992) for North American Nyssa, Fang (1983) for Asian Nyssa, and Dudley & Santamour (1994) for Cornus angustata. Downloaded from Brill.com10/09/2021 06:57:00PM via free access 46 IAWA Journal, Vol. 19 (1), 1998 The genus Cornus has been regarded as a single genus in the broad sense or has been subdivided into several genera, and there is as yet no consensus (Murrell1993). In this study we employed the broad genus concept following Eyde (1987). This finds at least some support in the rather uniform wood structure within Cornus S.l. The systematic position of Alangium grisolleoides within Alangiaceae is in dis­ pute. Eyde (1968) included it in sect. Constigma mainly based on fruit structure, but later he doubted his former decision because pollen morphology and wood anatomy suggested a different section (Eyde 1972). After comparing available morphological and chemical characters, Eyde (1988) was still uncertain about its placement within Alangium. According to our observation, wood of this species fits closely with that of sect. Marlea, not only in the type of perforation p1ates, but also in vessel element length and occurrence of paratracheal parenchyma. We therefore treat this species in sect. Marlea. Wood anatomy of the Comales has so far been studied independently within some families, such as Comaceae (Adams 1949), Nyssaceae (Titman 1949), and Garryaceae (Moseley & Beeks 1955), or broadly but using a limited number of twig sampies (Li & Chao 1954). The results ofthese studies were mainly interpreted using the classical Baileyan evolutionary trends of decreasing tracheary element length in advanced taxa, and of correlated changes in other wood anatomical features. Thus taxa with Ion ger andnarrowervessel elements having scalariformperforations with numerous bars were considered primitive (cf. Adams 1949). Majorregional studies of Comales include Kanehira (1926) and Yamabayashi (1938) for Japan and Korea, Tang (1936) forChina, Suzuki et al. (1991) for Nepal, Purkayastha & Bahadur (1977) for India, Moll & Janssonius (1914) and Philipson et al. (1980) for the Malesian region, Patel (1973) for New Zealand, and Sudworth & Mell (1911) and Panshin & De Zeeuw (1980) for North America. These studies are descriptive and do not include systematic analyses. In recent years studies of ecological trends
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • The Pollen of Genus Alangium in Cenozoic Deposits of Georgia
    saqarTvelos mecnierebaTa erovnuli akademiis moambe, t. 8, #3, 2014 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol. 8, no. 3, 2014 Palaeobiology The Pollen of Genus Alangium in Cenozoic Deposits of Georgia Irina Shatilova*, Irma Kokolashvili** * Georgian National Museum, Institute of Palaeobiology, Tbilisi **Georgian Technical University, Tbilisi (Presented by Academy Member David Lordkipanidze) ABSTRACT. In geological records the genus Alangium is known from the Paleogene. Morphologically different pollen grains were determined in the Eocene deposits of both hemispheres: the pollen of Alangium sp. A in North America, Alangiopollis eocaenicus Krutzsch in Europe and Alangium sibiricum Lubomirova in the Western Siberia. The species A. barhoornianum Traverse was described from the Upper Oligocene Brandon lignite of Vermond (North America). The same pollen grains were revealed in Europe. The European pollen remains were similar to Traverse’s Alangium barhoornianum and only the generic name was changed. On the territory of Europe the species Alangiopollis barhoornianum (Traverse) Krutzch is known mainly from the Paleogene till the Middle Miocene. Approximately in the same interval of time the species A. simplex Nagy and A. rarus Cernjavska were determined. On the territory of Georgia the genus Alangium is also known from Paleogene. The species Alangiopollis eocaenicus was described from the Middle Oligocene deposits of Southern Georgia. In Sarmatian the genus was represented by two species A. eocaenicus and A. barhoornianum. After Sarmatian the history of Alangium was connected only with the area adjoining the Black Sea, where the accumulation of marine deposits continued during the whole Pliocene and Pleistocene. In Meotian the pollen grains of two species were determined - the extinct taxon A.
    [Show full text]
  • Caterpillars Moths Butterflies Woodies
    NATIVE Caterpillars Moths and utter flies Band host NATIVE Hackberry Emperor oodies PHOTO : Megan McCarty W Double-toothed Prominent Honey locust Moth caterpillar Hackberry Emperor larva PHOTO : Douglas Tallamy Big Poplar Sphinx Number of species of Caterpillars n a study published in 2009, Dr. Oaks (Quercus) 557 Beeches (Fagus) 127 Honey-locusts (Gleditsia) 46 Magnolias (Magnolia) 21 Double-toothed Prominent ( Nerice IDouglas W. Tallamy, Ph.D, chair of the Cherries (Prunus) 456 Serviceberry (Amelanchier) 124 New Jersey Tea (Ceanothus) 45 Buttonbush (Cephalanthus) 19 bidentata ) larvae feed exclusively on elms Department of Entomology and Wildlife Willows (Salix) 455 Larches or Tamaracks (Larix) 121 Sycamores (Platanus) 45 Redbuds (Cercis) 19 (Ulmus), and can be found June through Ecology at the University of Delaware Birches (Betula) 411 Dogwoods (Cornus) 118 Huckleberry (Gaylussacia) 44 Green-briar (Smilax) 19 October. Their body shape mimics the specifically addressed the usefulness of Poplars (Populus) 367 Firs (Abies) 117 Hackberry (Celtis) 43 Wisterias (Wisteria) 19 toothed shape of American elm, making native woodies as host plants for our Crabapples (Malus) 308 Bayberries (Myrica) 108 Junipers (Juniperus) 42 Redbay (native) (Persea) 18 them hard to spot. The adult moth is native caterpillars (and obviously Maples (Acer) 297 Viburnums (Viburnum) 104 Elders (Sambucus) 42 Bearberry (Arctostaphylos) 17 small with a wingspan of 3-4 cm. therefore moths and butterflies). Blueberries (Vaccinium) 294 Currants (Ribes) 99 Ninebark (Physocarpus) 41 Bald cypresses (Taxodium) 16 We present here a partial list, and the Alders (Alnus) 255 Hop Hornbeam (Ostrya) 94 Lilacs (Syringa) 40 Leatherleaf (Chamaedaphne) 15 Honey locust caterpillar feeds on honey number of Lepidopteran species that rely Hickories (Carya) 235 Hemlocks (Tsuga) 92 Hollies (Ilex) 39 Poison Ivy (Toxicodendron) 15 locust, and Kentucky coffee trees.
    [Show full text]
  • Anthelmintic Activity of Alangium Salviifolium Bark
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library J. Nat. Prod. Plant Resour ., 2012, 2 (6):717-720 (http://scholarsresearchlibrary.com/archive.html) ISSN : 2231 – 3184 CODEN (USA): JNPPB7 Anthelmintic activity of Alangium salviifolium bark Ravi Shankar Pandey SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G _____________________________________________________________________________________________ ABSTRACT Alangium salviifolium (AS) is a novel medicinal plant used for the treatment of various diseases including helminthiasis by the traditional healers of Chhattisgarh. So an attempt has been taken to explore it scientifically. Preliminary phytochemical investigation reveals that there is presence of flavonoids, Saponins, phenols, bitter principles and steroids. Three different concentrations (50, 100 and 150 mg/ml) of crude extract of hexane, ethyl acetate, chloroform and methanol were tested against earthworms (Pheretima posthuma), which involved the evaluation of paralysis and death period of the worm. Methanol and chloroform extracts exhibited significant anthelmintic activity at highest concentration of 150 mg/mL. Piperzine citrate was selected as standard compound and DMF as control. The anthelmintic activity of Methanol and chloroform of bark of AS has therefore been evaluated for the first time. Key words: Alangium salviifolium; helminthiasis; Pheretima posthuma; Piperzine citrate and Paralysis _____________________________________________________________________________________________ INTRODUCTION Helminthiasis is a macroparasitic disease of humans and animals caused due to parasitic worms such as pinworm, roundworm, or tapeworm. These worms some times live in the gastrointestinal tract, may also burrow into the liver, lymphatic system, or other organs [1]. The clinical picture of consists of skin infection, skin nodules, and ocular lesions. The skin lesions include oedema, papules, scab-like eruptions and altered pigmentation.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Alangium-Presentation [Lecture Seule]
    A Targeted Enrichment Strategy for Sequencing of Medicinal Species in the Indonesian Flora Berenice Villegas-Ramirez, Erasmus Mundus Master Programme in Evolutionary Biology (MEME) Supervisors: Dr. Sarah Mathews, Harvard University Dr. Hugo de Boer, Uppsala University Introduction • Up to 70,000 plant species are used worldwide in traditional medicine. • At least 20,000 plant taxa have recorded medicinal uses. • Main commercial producers are in Asia: China, India, Indonesia, and Nepal. • Indonesia has c. 7000 plant species of documented medicinal use. • But…… Transmigration and Farming Herbarium Specimens • Plastid genes rbcL and matK have been be adopted as the official DNA barcodes for all land plants. • rbcl ~ 1428 bp • matK ~ 1500 bp • Herbarium specimens often require more attempts at amplification with more primer combinations. • Higher possibility of obtaining incorrect sequences through increased chances of samples becoming mixed up or contaminated. • Lower performance using herbarium material due to lower amplification success. • Caused by severe degradation of DNA into low molecular weight fragments. • But fragmented DNA is not a curse! Next-Generation Sequencing • Fragmented DNA is less of a problem • Only a few milligrams of material are necessary Targeted Enrichment • Defined regions in a genome are selectively captured from a DNA sample prior to sequencing. • The genomic complexity in a sample is reduced. • More time- and cost-effective. Hybrid Capture Targeted Enrichment • Library DNA is hybridized to a probe. • Pre-prepared DNA or RNA fragments complementary to the targeted regions of interest. • Non-specific hybrids are removed by washing. • Targeted DNA is eluted. Easy to use, utilizes a small amount of input DNA (<1-3 ug), and number of loci (target size) is large (1-50 Mb).
    [Show full text]
  • From the Late Eocene of Hordle, Southern England
    Acta Palaeobotanica 59(1): 51–67, 2019 e-ISSN 2082-0259 DOI: 10.2478/acpa-2019-0006 ISSN 0001-6594 Fruit morphology, anatomy and relationships of the type species of Mastixicarpum and Eomastixia (Cornales) from the late Eocene of Hordle, southern England STEVEN R. MANCHESTER1* and MARGARET E. COLLINSON2 1 Florida Museum of Natural History, Dickinson Hall, P.O. Box 117800, Gainesville, Florida, U.S.A.; e-mail: [email protected] 2 Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom Received 26 October 2018; accepted for publication 29 April 2019 ABSTRACT. The Mastixiaceae (Cornales) were more widespread and diverse in the Cenozoic than they are today. The fossil record includes fruits of both extant genera, Mastixia and Diplopanax, as well as several extinct genera. Two of the fossil genera, Eomastixia and Mastixicarpum, are prominent in the palaeobotanical literature, but concepts of their delimitation have varied with different authors. These genera, both based on species described 93 years ago by Marjorie Chandler from the late Eocene (Priabonian) Totland Bay Member of the Headon Hill Formation at Hordle, England, are nomenclaturally fundamental, because they were the first of a series of fos- sil mastixioid genera published from the European Cenozoic. In order to better understand the type species of Eomastixia and Mastixicarpum, we studied type specimens and topotypic material using x-ray tomography and scanning electron microscopy to supplement traditional methods of analysis, to improve our understanding of the morphology and anatomy of these fossils. Following comparisons with other fossil and modern taxa, we retain Mas- tixicarpum crassum Chandler rather than transferring it to the similar extant genus Diplopanax, and we retain Eomastixia bilocularis Chandler [=Eomastixia rugosa (Zenker) Chandler] and corroborate earlier conclusions that this species represents an extinct genus that is more closely related to Mastixia than to Diplopanax.
    [Show full text]
  • Phytogeographic Review of Vietnam and Adjacent Areas of Eastern Indochina L
    KOMAROVIA (2003) 3: 1–83 Saint Petersburg Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina L. V. Averyanov, Phan Ke Loc, Nguyen Tien Hiep, D. K. Harder Leonid V. Averyanov, Herbarium, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, Saint Petersburg 197376, Russia E-mail: [email protected], [email protected] Phan Ke Loc, Department of Botany, Viet Nam National University, Hanoi, Viet Nam. E-mail: [email protected] Nguyen Tien Hiep, Institute of Ecology and Biological Resources of the National Centre for Natural Sciences and Technology of Viet Nam, Nghia Do, Cau Giay, Hanoi, Viet Nam. E-mail: [email protected] Dan K. Harder, Arboretum, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A. E-mail: [email protected] The main phytogeographic regions within the eastern part of the Indochinese Peninsula are delimited on the basis of analysis of recent literature on geology, geomorphology and climatology of the region, as well as numerous recent literature information on phytogeography, flora and vegetation. The following six phytogeographic regions (at the rank of floristic province) are distinguished and outlined within eastern Indochina: Sikang-Yunnan Province, South Chinese Province, North Indochinese Province, Central Annamese Province, South Annamese Province and South Indochinese Province. Short descriptions of these floristic units are given along with analysis of their floristic relationships. Special floristic analysis and consideration are given to the Orchidaceae as the largest well-studied representative of the Indochinese flora. 1. Background The Socialist Republic of Vietnam, comprising the largest area in the eastern part of the Indochinese Peninsula, is situated along the southeastern margin of the Peninsula.
    [Show full text]
  • Taxonomy of Alangium Section Conostigma (Alangiaceae)
    Blumea 62, 2017: 29–46 ISSN (Online) 2212-1676 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/000651917X695164 Taxonomy of Alangium section Conostigma (Alangiaceae) W.J.J.O. de Wilde1, B.E.E. Duyfjes1 Key words Abstract Alangium Lam. sect. Conostigma Bloemb. is largely confined to the Malesian area and contains 19 species. By using the characters as found in the original species-descriptions, and with emphasizing the nature of Alangiaceae the indument of the leaf bud, the confusingly variable Alangium javanicum s.l.-complex could be dismantled for a Alangium sect. Conostigma great part. Four new species: A. ledermannii, A. pallens, A. plumbeum, and A. subcordatum, and two new varieties: Malesia A. meyeri var. macilentum and A. ebenaceum var. insignis are recognised. Two taxa are raised to specific status: new species A. nobile subsp. denudatum to A. denudatum and A. javanicum var. minahassicum to A. minahassicum. A key to taxonomy the species is presented, and the concerned taxa are enumerated, referenced, described and some are figured. Published on 14 February 2017 INTRODUCTION In the present paper we propose to re-instate the majority of names of species formerly described in this complex of A. ja- The section Conostigma is one of the four sections recognised vanicum s.l., but later on sunk into synonymy. Also, some new in Alangium by Bloembergen (1935, 1939). His division into taxa are proposed. Unfortunately, occasional specimens remain sections was later corroborated with anatomical and molecular difficult to determine, and some of the species accepted seem characters (Eyde 1968, Feng et al.
    [Show full text]
  • Systematics, Climate, and Ecology of Fossil and Extant Nyssa (Nyssaceae, Cornales) and Implications of Nyssa Grayensis Sp
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2013 Systematics, Climate, and Ecology of Fossil and Extant Nyssa (Nyssaceae, Cornales) and Implications of Nyssa grayensis sp. nov. from the Gray Fossil Site, Northeast Tennessee Nathan R. Noll East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biodiversity Commons, Climate Commons, Paleontology Commons, and the Plant Biology Commons Recommended Citation Noll, Nathan R., "Systematics, Climate, and Ecology of Fossil and Extant Nyssa (Nyssaceae, Cornales) and Implications of Nyssa grayensis sp. nov. from the Gray Fossil Site, Northeast Tennessee" (2013). Electronic Theses and Dissertations. Paper 1204. https://dc.etsu.edu/etd/1204 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Systematics, Climate, and Ecology of Fossil and Extant Nyssa (Nyssaceae, Cornales) and Implications of Nyssa grayensis sp. nov. from the Gray Fossil Site, Northeast Tennessee ___________________________ A thesis presented to the faculty of the Department of Biological Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology ___________________________ by Nathan R. Noll August 2013 ___________________________ Dr. Yu-Sheng (Christopher) Liu, Chair Dr. Tim McDowell Dr. Foster Levy Keywords: Nyssa, Endocarp, Gray Fossil Site, Miocene, Pliocene, Karst ABSTRACT Systematics, Climate, and Ecology of Fossil and Extant Nyssa (Nyssaceae, Cornales) and Implications of Nyssa grayensis sp.
    [Show full text]