Provision of Evidence of the Conservation Impacts of Energy Production

Total Page:16

File Type:pdf, Size:1020Kb

Provision of Evidence of the Conservation Impacts of Energy Production PROVISION OF EVIDENCE OF THE CONSERVATION IMPACTS OF ENERGY PRODUCTION Contract No: C08-0182-0021 A project for JNCC Support Co. FINAL REPORT 16/9/08 Graham Tucker, Samuela Bassi, Jason Anderson, Joana Chiavari, Kristin Casper and Malcolm Fergusson (IEEP) Citation and disclaimer This document should be quoted as follows: Tucker, G., Bassi, S., Anderson, J., Chiavari, J., Casper, K. and Fergusson, M. (2008): Provision of Evidence of the Conservation Impacts of Energy Production. Institute for European Environmental Policy (IEEP), London, [201] pp. & Annexes. The contents and views contained in this document are those of the authors, and do not necessarily represent those of the Joint Nature Conservation Committee or its Support Company. i TABLE OF CONTENTS ACKNOWLEDGEMENTS ..................................................................................... VI EXECUTIVE SUMMARY .....................................................................................VII ACRONYMS...............................................................................................................X 1 INTRODUCTION ................................................................................................1 1.1 Background .......................................................................................................1 1.1.1 UK Climate and Energy Policy ...................................................................1 1.1.2 Specific National Low-Carbon Energy Technology Policies......................2 1.1.3 Impacts of energy technologies on the environment and environmental objectives....................................................................................................................3 1.2 Objectives and scope of the study....................................................................3 1.3 Structure of the report......................................................................................4 2 METHODS............................................................................................................6 2.1 Information sources and search methods etc .................................................6 2.2 Review and selection of energy scenarios .......................................................6 2.3 Comparison of the impacts of selected energy scenarios on biodiversity....7 3 CHARACTERISTICS OF ENERGY TECHNOLOGIES AND TRANSMISSION.........................................................................................................9 3.1 Overview: UK energy .......................................................................................9 3.2 Coal...................................................................................................................15 3.2.1 Technology description.............................................................................15 3.2.2 Overview of potential environmental impacts...........................................16 3.3 Gas....................................................................................................................17 3.3.1 Technology description.............................................................................17 3.3.2 Overview of potential environmental impacts...........................................18 3.4 Oil .....................................................................................................................19 3.4.1 Technology description.............................................................................19 3.4.2 Overview of potential environmental impacts...........................................20 3.5 Nuclear.............................................................................................................21 3.5.1 Technology description.............................................................................21 3.5.2 Overview of potential environmental impacts...........................................22 ii 3.6 Hydrogen .........................................................................................................23 3.6.1 Technology description.............................................................................23 3.6.2 Overview of potential environmental impacts...........................................23 3.7 Hydro-electric power......................................................................................24 3.7.1 Technology description.............................................................................24 3.7.2 Overview of potential environmental impacts...........................................25 3.8 Wind.................................................................................................................26 3.8.1 Technology description.............................................................................26 3.8.2 Overview of potential environmental impacts...........................................26 3.9 Solar (PV and solar water heating) ...............................................................28 3.9.1 Technology description.............................................................................28 3.9.2 Overview of potential environmental impacts...........................................30 3.10 Wave .............................................................................................................31 3.10.1 Technology description.............................................................................31 3.10.2 Overview of potential environmental impacts...........................................31 3.11 Tidal..............................................................................................................32 3.11.1 Technology description.............................................................................32 3.11.2 Overview of potential environmental impacts...........................................33 3.12 Biomass.........................................................................................................34 3.12.1 Technology description.............................................................................34 3.12.2 Overview of potential environmental impacts...........................................34 3.13 Biofuel...........................................................................................................35 3.13.1 Technology description.............................................................................35 3.13.2 Overview of potential environmental impacts...........................................36 3.14 Waste ............................................................................................................37 3.14.1 Technology description.............................................................................37 3.14.2 Overview of potential environmental impacts...........................................37 3.15 Combined heat and power / district heating.............................................38 3.15.1 Technology description.............................................................................38 3.15.2 Overview of potential environmental impacts...........................................38 3.16 Microgeneration ..........................................................................................39 3.16.1 Technology description.............................................................................39 3.16.2 Overview of potential environmental impacts...........................................40 4 REVIEW AND SELECTION OF ENERGY TECHNOLOGIES AND SCENARIOS ..............................................................................................................48 4.1 Future energy scenarios .................................................................................48 4.2 Scenarios for analysis .....................................................................................55 iii 5 IMPACT ANALYSIS FOR SELECTED TECHNOLOGIES .......................59 5.1 Coal...................................................................................................................60 5.1.1 Characterisation of the technology in the UK ...........................................60 5.1.1 Environmental impacts..............................................................................65 5.2 Gas....................................................................................................................73 5.2.1 Characterisation of the technology in the UK ...........................................73 5.2.2 Environmental impacts..............................................................................76 5.3 Oil .....................................................................................................................81 5.3.1 Characterisation of the technology in the UK ...........................................81 5.3.2 Environmental impacts..............................................................................84 5.4 Nuclear.............................................................................................................87 5.4.1 Characterisation of the technology in the UK ...........................................87 5.4.2 Environmental impacts..............................................................................89 5.5 Wind.................................................................................................................95 5.5.1 Characterisation of the technology in the UK ...........................................95 5.5.2 Environmental impacts..............................................................................98 5.6 Tidal
Recommended publications
  • State of the Energy Market 2017 REPORT
    State of the energy market 2017 REPORT State of the energy market report Foreword The energy sector is changing rapidly, with significant • Third, the dramatic progress to ensure potential benefits for consumers. clean and secure electricity supplies has sometimes come at a higher cost to • In generation, new technologies, encouraged consumers than necessary. On average, by regulation and financial support, mean that consumers currently pay about £90 each year pollution is falling rapidly. Renewable power towards environmental policies. This will rise as sources now provide around a quarter of total low-carbon generation increases. Rapid falls electricity generation, compared to 5% in 2006. in the costs of wind and solar generation show • In retail markets, the number of accounts, not the scope for competition and innovation to limit including prepayment, on poor-value standard future cost increases. But consumers will lose variable tariffs has fallen from 15 million in April out if there isn’t effective competition for low- 2016 to 14 million only 12 months later (which we carbon support schemes and for measures to estimate to be around 12 million households). This help the energy system to work effectively. is because of near-record switching rates in 2017 so far. There are two major challenges to ensure that a transformed energy market works for all consumers. These changes are exciting, but looking at the state • Vulnerable consumers must be protected, of energy markets, we have three concerns about and able to engage in the market more how they currently work for consumers: effectively. We are consulting on extending our • First, the market works well for those who safeguard tariff to a further 1 million vulnerable engage.
    [Show full text]
  • Black Law Windfarm Which Comprises 54 Operational Turbines, Only Two of Which Are Located Within the North Lanarkshire Area
    AGENDA ITEM Ma. ..*.-'k...).. Application No: Proposed bevelopment: 11/00544/CNS Black Law Wind Farm Extension Phase 2 (Erection of 11 Turtdnes 80m to hub and 126.5m to blade tip) and assodated infrastructure. Site Address: Black Law W indfarm Allanton MEQPJ Date Registered: 12th May 201 1 Applicant: Agent: Scottish Power Renewables NIA Cathcart Business Park Spean Street Glasgow (344 4BE Appllcatlon Level: Contrary to Development Plan: Other Application Level No Ward: Repremntatlone: 01 2 Fortissat 334 letters of representation received. Charles Cefferty, Thomas Cochrane, James Robe ttson , Recommendation: Object for the Following Reaeone:- 1. The proposed development is contrary to policies DSP4, NEE 38, EDI 3A of the North Lanarkshire Local Plan, supplementary planning guidance SPG 12 "Assessing Wind Turbine Developments" and Scottish Planning Policy In that the submitted ES, Addendum and additional supporting information have not sufficiently addressed the potential cumulative noise impact of the proposed windfarm. In addition, given the proximity of the turbines to the settlements; adverse visual impact on selected recepton and furVler erosion of recreational space there are concerns that this extension (in addition to the already approved schemes) is such that the amenity enjoyed by local residents will be reduced to an unacceptable level. Margaret Mitcheli MSP, Neii Findlay MSP, Siobhan McMahon, Parneta Nash MP, 15 Outwith the piEtn 8FBa Prcrdumd bv Ptrnn In$ and DevalWm &fit N Emironmrntil Srrvi No rM LJnrkthlrr C Fleming How*
    [Show full text]
  • A Scoping Study On: Research Into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations
    A Scoping Study on: Research into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations Laurent Amoudry3, Paul S. Bell3, Kevin S. Black2, Robert W. Gatliff1 Rachel Helsby2, Alejandro J. Souza3, Peter D. Thorne3, Judith Wolf3 April 2009 1British Geological Survey Murchison House West Mains Road Edinburgh EH9 3LA [email protected] www.bgs.ac.uk 2Partrac Ltd 141 St James Rd Glasgow G4 0LT [email protected] www.partrac.com 3Proudman Oceanographic Laboratory Joseph Proudman Building 6 Brownlow Street Liverpool L3 5DA, www.pol.ac.uk 2 EXECUTIVE SUMMARY This study scopes research into the impacts and benefits of large-scale coastal and offshore marine renewable energy projects in order to allow NERC to develop detailed plans for research activities in the 2009 Theme Action Plans. Specifically this study focuses on understanding changes in sediment dynamics due to renewable energy structures. Three overarching science ideas have emerged where NERC could provide a significant contribution to the knowledge base. Research into these key areas has the potential to help the UK with planning, regulation and monitoring of marine renewable installations in a sustainable way for both stakeholders and the environment. A wide ranging consultation with stakeholders was carried out encompassing regulators, developers, researchers and other marine users with a relevance to marine renewable energy and/or sediment dynamics. Based on this consultation a review of the present state of knowledge has been produced, and a relevant selection of recent and current research projects underway within the UK identified to which future NERC funded research could add value. A great deal of research has already been done by other organisations in relation to the wind sector although significant gaps remain, particularly in long term and far-field effects.
    [Show full text]
  • The Economics of the Green Investment Bank: Costs and Benefits, Rationale and Value for Money
    The economics of the Green Investment Bank: costs and benefits, rationale and value for money Report prepared for The Department for Business, Innovation & Skills Final report October 2011 The economics of the Green Investment Bank: cost and benefits, rationale and value for money 2 Acknowledgements This report was commissioned by the Department of Business, Innovation and Skills (BIS). Vivid Economics would like to thank BIS staff for their practical support in the review of outputs throughout this project. We would like to thank McKinsey and Deloitte for their valuable assistance in delivering this project from start to finish. In addition, we would like to thank the Department of Energy and Climate Change (DECC), the Department for Environment, Food and Rural Affairs (Defra), the Committee on Climate Change (CCC), the Carbon Trust and Sustainable Development Capital LLP (SDCL), for their valuable support and advice at various stages of the research. We are grateful to the many individuals in the financial sector and the energy, waste, water, transport and environmental industries for sharing their insights with us. The contents of this report reflect the views of the authors and not those of BIS or any other party, and the authors take responsibility for any errors or omissions. An appropriate citation for this report is: Vivid Economics in association with McKinsey & Co, The economics of the Green Investment Bank: costs and benefits, rationale and value for money, report prepared for The Department for Business, Innovation & Skills, October 2011 The economics of the Green Investment Bank: cost and benefits, rationale and value for money 3 Executive Summary The UK Government is committed to achieving the transition to a green economy and delivering long-term sustainable growth.
    [Show full text]
  • Small-Scale Renewable Energy Technological Solutions in the Arab
    Regional Initiative for Promoting Small-Scale Renewable Energy Applications in Rural Areas of the Arab Region Small-Scale Renewable Energy Technological Solutions in the Arab Region: Operational Toolkit - December 2020 VISION ESCWA, an innovative catalyst for a stable, just and flourishing Arab region MISSION Committed to the 2030 Agenda, ESCWA’s passionate team produces innovative knowledge, fosters regional consensus and delivers transformational policy advice. Together, we work for a sustainable future for all. E/ESCWA/CL1.CCS/2020/TP.8 Economic and Social Commission for Western Asia Regional Initiative for Promoting Small-Scale Renewable Energy Applications in Rural Areas of the Arab Region Small-Scale Renewable Energy Technological Solutions in the Arab Region: Operational Toolkit December 2020 UNITED NATIONS Beirut © 2020 United Nations All rights reserved worldwide Photocopies and reproductions of excerpts are allowed with proper credits. All queries on rights and licenses, including subsidiary rights, should be addressed to the United Nations Economic and Social Commission for Western Asia (ESCWA), e-mail: [email protected]. The findings, interpretations and conclusions expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations or its officials or Member States. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Links contained in this publication are provided for the convenience of the reader and are correct at the time of issue.
    [Show full text]
  • Annex A: Progress on Actions
    UK Renewable Energy Roadmap Update 2012 Annex of Actions Annex A: Progress on Actions = Actions that are in progress = Actions that have been completed CROSS CUTTING Actions Result Comments Facilitating Access to the Grid: In February 2012 the Electricity Networks Strategy Group published an updated assessment by Reform the onshore grid to ensure cost-effective the network companies of the network investment potentially required to accommodate new grid investment and connection. generation to 2020. It concluded that around £8.8bn of strategic investment may be required and that, provided the identified reinforcements were taken forward on time and the planning consents secured in a timely manner, the reinforcements can be delivered to required timescales. In April 2012 Ofgem approved Price Controls for 2013-21 with the Scottish Transmission Owners allowing up to £6bn of investment. In July 2012 Ofgem announced its Initial Proposals, worth up to £11.6bn of investment for National Grid’s Business Plan for the same period. Ofgem plans to publish its Final Proposals for National Grid in December 2012. This should help ensure that new generation can be accommodated on the transmission network in a timely and cost-effective manner. In addition, Ofgem announced in January 2012 a further £72m of funding for strategic transmission network investment and in July approved funding for a 2.25GW sub-sea transmission link between Scotland and England valued at around £1.1bn. Facilitating Access to the Grid: Ofgem concluded its review of the transmission charging regime through Project TransmiT in May Work with Ofgem through Project TransmiT to 2012 with an instruction to National Grid and the Connection and Use of System Code (CUSC) help plan grid investments and the regime for industry group to develop changes to the charging methodology based on the Improved charging for new connections to the Investment Cost Related Pricing (ICRP) approach.
    [Show full text]
  • Renewable Energy
    Renewable Energy Abstract This paper provides background briefing on renewable energy, the different types of technologies used to generate renewable energy and their potential application in Wales. It also briefly outlines energy policy, the planning process, possible problems associated with connecting renewable technologies to the electricity grid and energy efficiency. September 2005 Members’ Research Service / Gwasanaeth Ymchwil yr Aelodau Members’ Research Service: Research Paper Gwasanaeth Ymchwil yr Aelodau: Papur Ymchwil Renewable Energy Kath Winnard September 2005 Paper number: 05/032/kw © Crown copyright 2005 Enquiry no: 05/032/kw Date: September 2005 This document has been prepared by the Members’ Research Service to provide Assembly Members and their staff with information and for no other purpose. Every effort has been made to ensure that the information is accurate, however, we cannot be held responsible for any inaccuracies found later in the original source material, provided that the original source is not the Members’ Research Service itself. This document does not constitute an expression of opinion by the National Assembly, the Welsh Assembly Government or any other of the Assembly’s constituent parts or connected bodies. Members’ Research Service: Research Paper Gwasanaeth Ymchwil yr Aelodau: Papur Ymchwil Contents 1 Introduction .......................................................................................................... 1 2 Background .........................................................................................................
    [Show full text]
  • Renewable Energy Sources and Their Applications
    RENEWABLE ENERGY SOURCES AND THEIR APPLICATIONS Editors R.K. Behl, R.N. Chhibar, S. Jain, V.P. Bahl, N.El Bassam AGROBIOS (INTERNATIONAL) Published by: AGROBIOS (INTERNATIONAL) Agro House, Behind Nasrani Cinema Chopasani Road, Jodhpur 342 002 Phone: 91-0291-2642319, Fax: 2643993 E. mail: [email protected] All Rights Reserved, 2013 ISBN No.: 978-93-81191-01-9 No part of this book may be reproduced by any means or transmitted or translated into a machine language without the written permission of the copy right holder. Proceedings of the “ International Conference on Renewable Energy for Institutes and Communities in Urban and Rural Settings, April 27-29, 2012” Organized by: Manav Institute of Technology and Management, Jevra, Disst.Hisar( Haryana) , India All India Council for Technical Education, New Delhi-110 001 Published by: Mrs. Sarswati Purohit for Agrobios (International), Jodhpur Laser typeset at: Yashee computers, Jodhpur Cover Design by: Shyam Printed in India by: Babloo Offset, Jodhpur ABOUT THE EDITORS Prof. Rishi Kumar Behl formerly served as Professor of Plant Breeding and Associate Dean, College of Agriculture, CCS Haryana Agricultural University, Hisar, and is now working as Director, New Initiatives at Manav Institute, Jevra.Disst.Hisar (Haryana). He obtained his B.Sc (Agri) from Rajasthan University, Jaipur, M.Sc (Agri,) and Ph.D from Haryana Agriculture, University, Hisar, India, with distinguished academic carrier. He has been editor in chief of Annals of Biology for about three decades Prof. Dr. Rishi , Associate Editor of Annals of Agri Bio Research, Editorial Board Kumar Behl Member of Archives of Agronomy and Soil Science(Germany), International Advisory Board Member of Tropics( Japan), Associate Editor, Cereal Research Communication (Hungary), Associate Editor, South Pacific Journal of Natural Science (Fiji), Sr.
    [Show full text]
  • Appendix 6.1: List of Cumulative Projects
    Appendix 6.1 Long list of cumulative projects considered within the EIA Report GoBe Consultants Ltd. March 2018 List of Cumulative Appendix 6.1 Projects 1 Firth of Forth and Tay Offshore Wind Farms Inch Cape Offshore Wind (as described in the decision notices of Scottish Ministers dated 10th October 2014 and plans referred to therein and as proposed in the Scoping Report submitted to MS-LOT in May 2017) The consented project will consist of up to 110 wind turbines and generating up to 784 MW situated East of the Angus Coast in the outer Forth and Tay. It is being developed by Inch Cape Offshore Windfarm Ltd (ICOL). This project was consented in 2014, but was subject to Judicial Review proceedings (see section 1.4.1.1 of the EIA Report for full details) which resulted in significant delays. Subsequently ICOL requested a Scoping Opinion for a new application comprising of 75 turbines with a generating capacity of 784 MW. Project details can be accessed at: http://www.inchcapewind.com/home Seagreen Alpha and Bravo (as described in the decision notices of Scottish Ministers dated 10th October 2014 and plans referred to therein and as Proposed in the Scoping Report submitted to MS-LOT in May 2017) The consents for this project includes two offshore wind farms, being developed by Seagreen Wind Energy Limited (SWEL), each consisting of up to 75 wind turbines and generating up to 525 MW. This project was consented in 2014, but was subject to Judicial Review proceedings (see section 1.4.1.1 of the EIA Report for full details) which resulted in significant delays.
    [Show full text]
  • Uranium Isanaturallyoccurring,Verydense,Metallic Definition Andcharacteristics Deposits Definition, Mineralogyand Proportion Ofu-235Tobetween 3And5percent
    Uranium March 2010 Definition, mineralogy and Symbol U nt deposits Atomic number 92 opme vel Definition and characteristics Atomic weight 238.03 de l Uranium is a naturally occurring, very dense, metallic 3 ra Density at 298 K 19 050 kg/m UK element with an average abundance in the Earth’s crust ne mi of about 3 ppm (parts per million). It forms large, highly Melting point 1132 °C e bl charged ions and does not easily fit into the crystal struc- Boiling point 3927 °C na ai ture of common silicate minerals such as feldspar or mica. st Accordingly, as an incompatible element, it is amongst the Mineral Hardness 6 Moh’s scale su r last elements to crystallise from cooling magmas and one -8 f o Electrical resistivity 28 x 10 Ohm m re of the first to enter the liquid on melting. nt Table 1 Selected properties of uranium. Ce Minerals Under oxidizing conditions uranium exists in a highly soluble form, U6+ (an ion with a positive charge of 6), and is therefore very mobile. However, under reducing conditions Other physical properties are summarised in Table 1. it converts to an insoluble form, U4+, and is precipitated. It is these characteristics that often result in concentrations Mineralogy of uranium that are sufficient for economic extraction. Uranium is known to occur in over 200 different minerals, but most of these do not occur in deposits of sufficient Uranium is naturally radioactive. It spontaneously decays grade to warrant economic extraction. The most common through a long series of alpha and beta particle emissions, uranium-bearing minerals found in workable deposits are ultimately forming the stable element lead.
    [Show full text]
  • *** DRAFT ** Sustainable Development and CO2 Capture and Storage
    *** DRAFT ** Sustainable Development and CO2 Capture and Storage A report for UN Department of Economic and Social Affairs Prepared by Dr Paul Freund 31 August 2007 Executive Summary The threat of climate change and the importance of fossil fuels in global energy supply have recently stimulated much interest in CO2 capture and storage (CCS). The most important application of CO2 capture would be in power generation, the sector which is responsible for 75% of global CO2 emissions from large stationary industrial sources. Two options for capture are based on well established technology - post-combustion capture using chemical solvent scrubbing would be used in current designs of power stations; pre-combustion capture using physical solvent separation involves a small modification to the design of gasification based systems which are increasingly being considered for future power plants. A third approach, oxyfuel combustion, has not yet been demonstrated at full scale but several pilot plants are under construction. Captured CO2 would be transported by pipeline to storage in geological formations – this might be in disused oil or gas fields or in deep saline aquifers. Use of the CO2 to enhance oil or gas production offers the possibility of generating some income to offset part of the cost of CCS. CCS increases the energy used for power generation by about 25-50% and reduces emissions by about 85%. The levelized cost of electricity generation would be increased by between 40% and 90% depending on the design of the plant and type of fuel. There is sufficient capacity worldwide for CO2 storage to make a substantial contribution to reducing global emissions, although the capacity is not distributed evenly.
    [Show full text]
  • The Energy River: Realising Energy Potential from the River Mersey
    The Energy River: Realising Energy Potential from the River Mersey June 2017 Amani Becker, Andy Plater Department of Geography and Planning, University of Liverpool, Liverpool L69 7ZT Judith Wolf National Oceanography Centre, Liverpool L3 5DA This page has been intentionally left blank ii Acknowledgements The work herein has been funded jointly by the University of Liverpool’s Knowledge Exchange and Impact Voucher Scheme and Liverpool City Council. The contribution of those involved in the project through Liverpool City Council, Christine Darbyshire, and Liverpool City Region LEP, James Johnson and Mark Knowles, is gratefully acknowledged. The contribution of Michela de Dominicis of the National Oceanography Centre, Liverpool, for her work producing a tidal array scenario for the Mersey Estuary is also acknowledged. Thanks also to the following individuals approached during the timeframe of the project: John Eldridge (Cammell Laird), Jack Hardisty (University of Hull), Neil Johnson (Liverpool City Council) and Sue Kidd (University of Liverpool). iii This page has been intentionally left blank iv Executive summary This report has been commissioned by Liverpool City Council (LCC) and joint-funded through the University of Liverpool’s Knowledge Exchange and Impact Voucher Scheme to explore the potential to obtain renewable energy from the River Mersey using established and emerging technologies. The report presents an assessment of current academic literature and the latest industry reports to identify suitable technologies for generation of renewable energy from the Mersey Estuary, its surrounding docks and Liverpool Bay. It also contains a review of energy storage technologies that enable cost-effective use of renewable energy. The review is supplemented with case studies where technologies have been implemented elsewhere.
    [Show full text]