AR TICLE Cercosporoid Fungi (Mycosphaerellaceae) 4. Species

Total Page:16

File Type:pdf, Size:1020Kb

AR TICLE Cercosporoid Fungi (Mycosphaerellaceae) 4. Species IMA FUNGUS · 6(2): 373–469 (2015) doi:10.5598/imafungus.2015.06.02.09 Cercosporoid fungi (Mycosphaerellaceae) 4. Species on dicots ARTICLE (Acanthaceae to Amaranthaceae) Uwe Braun1, Pedro W. Crous2, and Chiharu Nakashima3 1Martin-Luther-Universitt, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany; corresponding author e-mail: [email protected] 2CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 3Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan Abstract: The present paper continues a series of comprehensive taxonomic treatments of cercosporoid fungi Key words: (formerly Cercospora s. lat.), belonging to the Mycosphaerellaceae (Ascomycota). The fourth contribution of this Ascomycota series initiates treatments of cercosporoid fungi on dicots and comprises species occurring on hosts belonging the Cercospora s. lat. the families Acanthaceae, Actinidiaceae, Adoxaceae, Aizoaceae, Altingiaceae, and Amaranthaceae. The species hyphomycetes are described and illustrated in alphabetical order under the particular cercosporoid genera, supplemented by keys taxonomy to the species concerned. A detailed introduction, a survey of currently recognised cercosporoid genera, a key to the genera concerned, and a discussion of taxonomically relevant characters were published in the rst part of this series. The following taxonomic novelties are introduced: Cercospora blepharidicola nom. nov., C. celosiigena sp. nov., C. justiciae-adhatodae sp. nov., C. justiciigena nom. nov., C. sambucicola nom. nov., C. thunbergiigena nom. nov., Cercosporella pseudachyranthis comb. nov., Pseudocercospora cyathulae comb. nov., P. depazeoides comb. nov., P. varia var. viburni-sargentii var. nov., P. viburnicola sp. nov., P. viburni-erosi sp. nov., and P. viburni-nudi sp. nov. Article info: Submitted: 26 September 2015; Accepted: 29 October 2015; Published: 10 November 2015. INTRODUCTION follows the principles circumscribed in part 1 (Braun et al. 2013). True cercosporoid fungi belong to Mycosphaerellaceae (Capnodiales, Ascomycota) and comprise a very large group of plant pathogenic, leaf-spotting, economically MATERIALS AND METHODS relevant species that cause diseases on a wide range of hosts, including numerous cultivated plants. In spite of the The present work is a compilation based on our papers enormous relevance of this fungal group, there is no modern and unpublished data, as well as the global literature. comprehensive treatment of Cercospora and allied genera, Details of methods are given in the papers cited under and the only monograph published by Chupp (1954) is references. As far as new examinations are concerned, seriously outdated. Therefore, a monographic series with fungal structures have been examined by standard methods treatments of cercosporoid fungi based on host families was of light microscopy, using an Olympus BX50 microscope, initiated (Braun et al. 2013) with the aim of working towards with distilled water and lactic acid as media, but without any a comprehensive monograph of this generic complex. staining. If possible, measurements of 30 conidia and other So far three contributions have been published: part one structures have been made at a magnication of ×1000. dealing with cercosporoid fungi on other fungi (mycophylic All illustrations have been prepared by UB. The following taxa), on ferns as well as gymnosperms (Braun et al. 2013); abbreviations are used: author names follow Brummit & part two dedicated to species on monocots, excluding true Powell (1992), journals Bridson (2004a, b), and exsiccatae grasses (Braun et al. 2014); and part three with a treatment http://www.botanischestaatssammlung.de/DatabaseClient/ of cercosporoids on hosts of Poaceae (Braun et al. 2015). IndExs/index.jsp (IndExs – Index of Exsiccatae). Taxonomy General chapters with generic descriptions and keys to and nomenclature of plant families, genera and species accepted genera are included in the rst part. The present are based on the “Angiosperm Phylogeny Website” (http:// contribution is the rst part devoted to cercosporoid fungi www.mobot.org/mobot/research/apweb/), Tropicos database on dicots, encompassing species on hosts of the families (http://www.tropicos.org/), and The Plant List (http://www. Acanthaceae, Actinidiaceae, Adoxaceae, Aizoaceae, theplantlist.org). Altingiaceae, and Amaranthaceae. The structure of part 4 © 2015 International Mycological Association You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specied by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. VOLUME 6 · NO. 2 373 Braun et al. TAXONOMIC TREATMENT Cercosporoid species on dicots s. lat. (Acanthaceae to Amaranthaceae) Acanthaceae ARTICLE Cercospora Key to Cercospora species on Acanthaceae 1 Conidia in chains, 8–40 × 2–3 μm, (0–)1–3(–4)-septate, hyaline; on Justicia adhatoda [Adhatoda vasica] .............................................................................................................................. Cercospora justiciae-adhatodae Conidia formed singly ...................................................................................................................................................... 2 2 (1) Stromata large, 20–85 μm; conidiophores short, 10–40 × 3–5 μm, 0–4-septate; conidia short, acicular-subcylindrical, 20–50 × 2–4 μm, 0–5-septate ................................................................... C. balaghatensis Stromata lacking or smaller, 10–30 μm diam; and/or conidiophores much longer, 10–500 μm, pluriseptate throughout; conidia longer, 15–360 μm, pluriseptate ........................................................................... 3 3 (2) Conidia obclavate-cylindrical with obconically truncate base .......................................................................................... 4 Conidia consistently acicular, base truncate, or at least longer conidia acicular, mixed with shorter obclavate-cylindrical conidia ...................................................................................................... 6 4 (3) Conidiophores short, 10–40 × 2.5–5 μm, 0–1-septate; conidia 25–80 μm long; on Justicia spicigera, Central America (Guatemala) .......................................................................................................... C. jacobiniicola Conidiophores longer, about 30–185 μm, with more than two septa; conidia longer, about 20–170 μm ........................ 5 5 (4) Stromata 30–50 μm diam; conidiophores long and aseptate, 35–120 × 3–6 μm; on Justicia betonica, Asia (India) ....................................................................................................... C. justiciigena Stromata lacking or very small, < 25 μm diam; length of the conidiophores similar, but 1–6-septate; on Lepidagathis spp. ...................................................................................................................... C. lepidagathidis 6 (3) Conidia acicular to obclavate-cylindrical, base truncate to obconically truncate ............................................................. 7 Conidia consistently acicular, base truncate ................................................................................................................. 10 7 (6) Conidiophores relatively short, 10–30(–70) μm; stromata 10–70 μm diam; on Acanthus spp. ........................ C. acanthi Conidiophores longer, 25–155 μm; stromata lacking or small, 10–30 μm; on other hosts ............................................. 8 8 (7) Conidia narrow, 30–150 × 2–4 μm, average < 3 μm wide; on Andrographis spp. .............................. C. andrographidis Conidia wider, 3–5 μm, average > 3 μm; on other hosts ................................................................................................ 9 9 (8) Conidiophores to 195 μm long; on Justicia spp. ........................................................................................ C. justiciicola Conidiophores much shorter, to 62.5 μm; on Crossandra spp. ............................................................... C. crossandrae 10 (6) Stromata well-developed, 10–70 μm diam; conidiophores short, 10–40(–7) μm; on Acanthus sp. ................. C. acanthi Stromata lacking or small, about 10–45 μm diam; and/or conidiophores much longer, at least partly longer than 50 μm; on other hosts .................................................................................................... 11 11 (10) Conidiophores 40–310 × 4–8.5 μm; conidia rather broad, 40–360 × 3–8 μm; on Thunbergia spp. ....... C. thunbergiana Conidiophores and conidia narrower; conidia about 1.5–5 μm wide; on other hosts or if on Thubergia conidia only 2–3 μm wide ............................................................................................................. 12 12 (11) Conidia (2–)2.5–5.5(–6)
Recommended publications
  • Caracterización De Especies Nativas Con Potencialidad Ornamental Para Flor De Corte
    CARACTERIZACIÓN DE ESPECIES NATIVAS CON POTENCIALIDAD ORNAMENTAL PARA FLOR DE CORTE MARÍA FABIANA RODRÍGUEZ MAESTRÍA EN FLORICULTURA 2015 DRA. MARÍA SILVINA SOTO, COORDINADORA DEL PROGRAMA INTEGRADOR DE FLORES, AROMÁTICAS Y MEDICINALES DEL INTA Y DR. ÁNGEL CHIESA, PROFESOR TITULAR, HORTICULTURA, UNLZ- UBA, HACEN CONSTAR QUE LA TESIS TITULADA Caracterización de especies nativas con potencialidad ornamental para flor de corte QUE PRESENTA MARÍA FABIANA RODRÍGUEZ PARA ASPIRAR AL TITULO DE MAGISTER EN FLORICULTURA, HA SIDO REALIZADA BAJO SU DIRECCIÓN Y AUTORIZAN SU PRESENTACION Y PARA QUE CONSTE EXPIDEN LA PRESENTE EN LLAVALLOL, A LOS VEINTISEIS DÍAS DEL MES DE JULIO DE DOS MIL QUINCE FIRMA Y ACLARACION FIRMA Y ACLARACION Agradecimientos Agradezco profundamente a la Naturaleza por su magnificencia y diversidad, y a las Especies Selectas porque sin ellas esta tesis no tendría objeto. Agradezco profundamente a María Silvina Soto por su constancia y su claridad de pensamiento, y por estar con el espíritu dispuesto en el momento justo para allanar mi camino. Agradezco profundamente a Ángel Chiesa por su nobleza y su humildad, y por acompañarme desde los inicios de mi formación profesional y personal en las buenas y en las malas. Agradezco profundamente a Carlos López Sosa por su generosidad y su confianza, y por haberme legado saberes, tareas y manuscritos que atesoraré por siempre. Agradezco profundamente a Ingrid Villanova por su bondad y su sonrisa, y por tener siempre la mano tendida. Agradezco profundamente a mis compañeros de maestría (en orden alfabético): Ángel, Ariel, Claudio, Conrado, Doris, Edgardo, Enrique, Fernanda, Jorge, María Silvia, Mercedes, Soledad y Víctor por el afecto y la alegría, y por los abrazos que nos prodigamos cada vez que nos encontramos.
    [Show full text]
  • Pollen Diversity Studies in Some Taxa of Bicarpellatae from Nagpur
    Pollen Diversity Studies in Some Taxa of Bicarpellatae from Nagpur Sapna V. Awachat Department of Botany, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur Abstract: Dicots are the diverse group of plants on the basis of morphology, anatomy, cytogenetics, embryology and pollen morphology. Pollen diversity is the study of the variations in the morphology of pollen grains. Pollen has also proved to be an excellent tool in taxonomic studies. The application of pollen characters in solving controversial taxonomical and phylogenetic problems has now been widely recognized all over the world (Mandal, 2010). In the present paper, pollen diversity of several taxa belonging to Bicarpellatae (Apocynaceae, Asclepiadaceae, Boraginaceae, Convolvulaceae, Solanaceae, Scrophulariaceae, Acanthaceae, Thunbergiaceae, Verbenaceae, Lamiaceae, etc.) from Nagpur is selected. The pollen grains show variations with respect to exine ornamentation, aperture type, shape, size and NPC (number, position, character) classification etc. The pollen slides were prepared by using acetolysis method (Erdtman 1952) and documentation was done by using light microscope and digital camera. The pollen grain studies show variation in exine ornamentation (psilate to verrucate), aperture (porate to spiraperturate), shape (oblate to prolate) and size (small to large). The pollens described on the basis of NPC classification are presented. Pollen calendar and distribution was also noted in all taxa. It is found that the pollen grains with relative variations in pollen morphology help us to differentiate families. Keywords : Bicarpellatae, Pollen grains, Acetolysis. Introduction: Palynology involves the study of pollen and encompasses the structural and functional aspect of pollen. Pollen grains come in an infinite variety of shapes with complex surface ornamentation and occur on almost every surface in nature.
    [Show full text]
  • Download Full Article in PDF Format
    Cryptogamie, Mycologie, 2014, 35 (2): 151-156 © 2014 Adac. Tous droits réservés Two new species of Passalora and Periconiella (cercosporoid hyphomycetes) from Panama Roland KIRSCHNERa & Meike PIEPENBRINGb aDepartment of Life Sciences, National Central University, No. 300, Jhong-Da Road, Jhongli City, Taoyuan County 32001, Taiwan (R.O.C.) email: [email protected] bDepartment of Mycology, Cluster for Integrative Fungal Research (IPF), Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany Abstract – New species of Passalora on Aphelandra scabra (Acanthaceae) and of Periconiella on Persea americana (Lauraceae) are described from tropical lowland vegetation in Panama. The new Passalora species differs from congeneric species on members of Acanthaceae by its external hyphae giving rise to conidiophores. The new Periconiella species can be distinguished from other species of the genus by its conidiogenous cells being conspicuously oriented outwards from the conidiophore head and by its sizes being intermediate between those of P. machilicola on the one hand and of P. longispora and P. rapaneae on the other. Anamorphic Dothideomycetes (Ascomyocta) / microfungi / Mycosphaerella / neotropics INTRODUCTION Plant-associated hyphomycetes with relationships to Mycosphaerella and related taxa of Dothideomycetes (Ascomycota) are generally considered cercosporoid fungi with frequently changing generic concepts. Reviews and keys of the present stage of generic concepts in the cercosporoid hyphomycetes are provided by Crous & Braun (2003). Species of two genera with pigmented conidiophores and conidia with blackened conidiogenous loci and conidial hila are treated in this study, namely of Passalora and Periconiella. Species of Periconiella are additionally characterized by conidiophores differentiated into a stipe and head composed of branches and conidiogenous cells.
    [Show full text]
  • Amaranthaceae As a Bioindicator of Neotropical Savannah Diversity
    Chapter 10 Amaranthaceae as a Bioindicator of Neotropical Savannah Diversity Suzane M. Fank-de-Carvalho, Sônia N. Báo and Maria Salete Marchioretto Additional information is available at the end of the chapter http://dx.doi.org/10.5772/48455 1. Introduction Brazil is the first in a ranking of 17 countries in megadiversity of plants, having 17,630 endemic species among a total of 31,162 Angiosperm species [1], distributed in five Biomes. One of them is the Cerrado, which is recognized as a World Priority Hotspot for Conservation because it has around 4,400 endemic plants – almost 50% of the total number of species – and consists largely of savannah, woodland/savannah and dry forest ecosystems [2,3]. It is estimated that Brazil has over 60,000 plant species and, due to the climate and other environmental conditions, some tropical representatives of families which also occur in the temperate zone are very different in appearance [4]. The Cerrado Biome is a tropical ecosystem that occupies about 2 million km² (from 3-24° Lat. S and from 41-43° Long. W), located mainly on the central Brazilian Plateau, which has a hot, semi-humid and markedly seasonal climate, varying from a dry winter season (from April to September) to a rainy summer (from October to March) [5-7]. The variety of landscape – from tall savannah woodland to low open grassland with no woody plants - supports the richest flora among the world’s savannahs (more than 7,000 native species of vascular plants) and a high degree of endemism [6,8]. This Biome is the most extensive savannah region in South America (the Neotropical Savannah) and it includes a mosaic of vegetation types, varying from a closed canopy forest (“cerradão”) to areas with few grasses and more scrub and trees (“cerrado sensu stricto”), grassland with scattered scrub and few trees (“campo sujo”) and grassland with little scrub and no trees (“campo limpo”) [3,9].
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Expression Analysis of the Expanded Cercosporin Gene Cluster In
    EXPRESSION ANALYSIS OF THE EXPANDED CERCOSPORIN GENE CLUSTER IN CERCOSPORA BETICOLA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Karina Anne Stott In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology May 2018 Fargo, North Dakota North Dakota State University Graduate School Title Expression Analysis of the Expanded Cercosporin Gene Cluster in Cercospora beticola By Karina Anne Stott The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Gary Secor Chair Dr. Melvin Bolton Dr. Zhaohui Liu Dr. Stuart Haring Approved: 5-18-18 Dr. Jack Rasmussen Date Department Chair ABSTRACT Cercospora leaf spot is an economically devastating disease of sugar beet caused by the fungus Cercospora beticola. It has been demonstrated recently that the C. beticola CTB cluster is larger than previously recognized and includes novel genes involved in cercosporin biosynthesis and a partial duplication of the CTB cluster. Several genes in the C. nicotianae CTB cluster are known to be regulated by ‘feedback’ transcriptional inhibition. Expression analysis was conducted in wild type (WT) and CTB mutant backgrounds to determine if feedback inhibition occurs in C. beticola. My research showed that the transcription factor CTB8 which regulates the CTB cluster expression in C. nicotianae also regulates gene expression in the C. beticola CTB cluster. Expression analysis has shown that feedback inhibition occurs within some of the expanded CTB cluster genes.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Download Download
    OPEN ACCESS All articles published in the Journal of Threatened Taxa are registered under Creative Commons Attribution 4.0 Interna- tional License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication. Journal of Threatened Taxa The international journal of conservation and taxonomy www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Data Paper Flora of Fergusson College campus, Pune, India: monitoring changes over half a century Ashish N. Nerlekar, Sairandhri A. Lapalikar, Akshay A. Onkar, S.L. Laware & M.C. Mahajan 26 February 2016 | Vol. 8 | No. 2 | Pp. 8452–8487 10.11609/jott.1950.8.2.8452-8487 For Focus, Scope, Aims, Policies and Guidelines visit http://threatenedtaxa.org/About_JoTT.asp For Article Submission Guidelines visit http://threatenedtaxa.org/Submission_Guidelines.asp For Policies against Scientific Misconduct visit http://threatenedtaxa.org/JoTT_Policy_against_Scientific_Misconduct.asp For reprints contact <[email protected]> Publisher/Host Partner Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 February 2016 | 8(2): 8452–8487 Data Paper Data Flora of Fergusson College campus, Pune, India: monitoring changes over half a century ISSN 0974-7907 (Online) Ashish N. Nerlekar 1, Sairandhri A. Lapalikar 2, Akshay A. Onkar 3, S.L. Laware 4 & ISSN 0974-7893 (Print) M.C. Mahajan 5 OPEN ACCESS 1,2,3,4,5 Department of Botany, Fergusson College, Pune, Maharashtra 411004, India 1,2 Current address: Department of Biodiversity, M.E.S. Abasaheb Garware College, Pune, Maharashtra 411004, India 1 [email protected] (corresponding author), 2 [email protected], 3 [email protected], 4 [email protected], 5 [email protected] Abstract: The present study was aimed at determining the vascular plant species richness of an urban green-space- the Fergusson College campus, Pune and comparing it with the results of the past flora which was documented in 1958 by Dr.
    [Show full text]
  • PERSOONIAL R Eflections
    Persoonia 23, 2009: 177–208 www.persoonia.org doi:10.3767/003158509X482951 PERSOONIAL R eflections Editorial: Celebrating 50 years of Fungal Biodiversity Research The year 2009 represents the 50th anniversary of Persoonia as the message that without fungi as basal link in the food chain, an international journal of mycology. Since 2008, Persoonia is there will be no biodiversity at all. a full-colour, Open Access journal, and from 2009 onwards, will May the Fungi be with you! also appear in PubMed, which we believe will give our authors even more exposure than that presently achieved via the two Editors-in-Chief: independent online websites, www.IngentaConnect.com, and Prof. dr PW Crous www.persoonia.org. The enclosed free poster depicts the 50 CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT most beautiful fungi published throughout the year. We hope Utrecht, The Netherlands. that the poster acts as further encouragement for students and mycologists to describe and help protect our planet’s fungal Dr ME Noordeloos biodiversity. As 2010 is the international year of biodiversity, we National Herbarium of the Netherlands, Leiden University urge you to prominently display this poster, and help distribute branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands. Book Reviews Mu«enko W, Majewski T, Ruszkiewicz- The Cryphonectriaceae include some Michalska M (eds). 2008. A preliminary of the most important tree pathogens checklist of micromycetes in Poland. in the world. Over the years I have Biodiversity of Poland, Vol. 9. Pp. personally helped collect populations 752; soft cover. Price 74 €. W. Szafer of some species in Africa and South Institute of Botany, Polish Academy America, and have witnessed the of Sciences, Lubicz, Kraków, Poland.
    [Show full text]
  • Title of Manuscript
    Mycosphere Doi 10.5943/mycosphere/4/2/3 New species and new records of cercosporoid hyphomycetes from Cuba and Venezuela (Part 2) Braun U1* and Urtiaga R2 1Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany 2Apartado 546, Barquisimeto, Lara, Venezuela. Braun U, Urtiaga R 2013 – New species and new records of cercosporoid hyphomycetes from Cuba and Venezuela (Part 2). Mycosphere 4(2), 174–214, Doi 10.5943/mycosphere/4/2/3 Examination of specimens of cercosporoid leaf-spotting hyphomycetes made between 1966 and 1970 in Cuba and Venezuela, now housed at K (previously deposited at IMI as “Cercospora sp.”), have been continued. Additionally examined Venezuelan collections, made between 2006 and 2010, are now deposited at HAL. Several species are new to Cuba and Venezuela, some new host plants are included, and the following new species and a new variety are introduced: Cercosporella ambrosiae-artemisiifoliae, Passalora crotonis-gossypiifolii, P. solaniphila, P. stigmaphyllicola, Pseudocercospora calycophylli, P. coremioides, P. lonchocarpicola, P. lonchocarpigena, P. paulliniae, P. picramniae, P. psidii var. varians, P. solanacea, P. teramnicola, P. trichiliae-hirtae, P. zuelaniae, Pseudocercosporella leonotidis, Zasmidium cubense, Z. genipae-americanae. The new name Pseudocercospora toonae-ciliatae and the new combination Zasmidium hyptiantherae are proposed. Key words – Ascomycota – Cercospora – Cercosporella – Mycosphaerellaceae – Passalora – Pseudocercospora – South America – West Indies – Zasmidium Article Information Received 6 November 2012 Accepted 8 February 2013 Published online 16 March 2013 *Corresponding author: U. Braun – e-mail – [email protected] Introduction specimens have recently been sent on loan to Cercosporoid fungi are anamorphic the first author to be determined and for further ascomycetes [Ascomycota, Pezizomycotina, treatment.
    [Show full text]
  • Supplementary Table S1 18Jan 2021
    Supplementary Table S1. Accurate scientific names of plant pathogenic fungi and secondary barcodes. Below is a list of the most important plant pathogenic fungi including Oomycetes with their accurate scientific names and synonyms. These scientific names include the results of the change to one scientific name for fungi. For additional information including plant hosts and localities worldwide as well as references consult the USDA-ARS U.S. National Fungus Collections (http://nt.ars- grin.gov/fungaldatabases/). Secondary barcodes, where available, are listed in superscript between round parentheses after generic names. The secondary barcodes listed here do not represent all known available loci for a given genus. Always consult recent literature for which primers and loci are required to resolve your species of interest. Also keep in mind that not all barcodes are available for all species of a genus and that not all species/genera listed below are known from sequence data. GENERA AND SPECIES NAME AND SYNONYMYS DISEASE SECONDARY BARCODES1 Kingdom Fungi Ascomycota Dothideomycetes Asterinales Asterinaceae Thyrinula(CHS-1, TEF1, TUB2) Thyrinula eucalypti (Cooke & Massee) H.J. Swart 1988 Target spot or corky spot of Eucalyptus Leptostromella eucalypti Cooke & Massee 1891 Thyrinula eucalyptina Petr. & Syd. 1924 Target spot or corky spot of Eucalyptus Lembosiopsis eucalyptina Petr. & Syd. 1924 Aulographum eucalypti Cooke & Massee 1889 Aulographina eucalypti (Cooke & Massee) Arx & E. Müll. 1960 Lembosiopsis australiensis Hansf. 1954 Botryosphaeriales Botryosphaeriaceae Botryosphaeria(TEF1, TUB2) Botryosphaeria dothidea (Moug.) Ces. & De Not. 1863 Canker, stem blight, dieback, fruit rot on Fusicoccum Sphaeria dothidea Moug. 1823 diverse hosts Fusicoccum aesculi Corda 1829 Phyllosticta divergens Sacc. 1891 Sphaeria coronillae Desm.
    [Show full text]
  • Riches of the Forest: Fruits, Remedies and Handicrafts in Latin America
    remedies , Citlalli López Patricia Shanley Alfredo Celso Fantini Riches of the forest: Fruits and handicrafts in Latin America Editors Editors: Citlalli López, Patricia Shanley Riches of the Forest: fruits, oils, remedies and handicrafts in Latin America and Alfredo Celso Fantini . K . it is , U , as well , Alexiades . Readers of . Canterbury being warnings - , University of Kent Miguel N Department of Anthropology and the resourceful people portrayed aesthetic and spiritual well , as inspiration from the myriad of plant products this volume can draw important lessons As the links between people and plants become more complex . well as for our physical increasingly important to recall our dependence on plants for survival as peoples fortunes of different forest plants are linked to changing fortunes of different The chapters in this volume tell one and many stories about how the changing Cover.qxd 10/9/04 4:22 AM Page 1 Riches of the forest: Fruits, remedies and handicrafts in Latin America Riches of the forest: Fruits, remedies and handicrafts in Latin America Editors Citlalli López Patricia Shanley Alfredo Celso Fantini Scientific reviewer: Miguel N. Alexiades Reviewer and copy editor: Tess Holderness, Claire Miller (assistant) Copy editor of introduction and conclusions: Henning Pape-Santos Case study and cover illustrations: April Mansyah Botanical illustrations: Silvia Cordeiro (except Sabal yapa and Pouteria sapota by Ishak Syamsudin) Lay-out: Eko Prianto and Yani Saloh ©2004 by Center for International Forestry Research All rights reserved. Published in 2004 Printed in Desa Putra, Indonesia ISBN 979-3361-46-8 Office address: Jalan CIFOR, Situ Gede Sindang Barang, Bogor Barat 16680, Indonesia Mailing address: P.O.
    [Show full text]