The Growth and Development of a Viviparous Compound Ascidian, Hypsistozoa Fasmeriana

Total Page:16

File Type:pdf, Size:1020Kb

The Growth and Development of a Viviparous Compound Ascidian, Hypsistozoa Fasmeriana 435 The Growth and Development of a Viviparous Compound Ascidian, Hypsistozoa fasmeriana By BERYL I. BREWIN (From the Department of Zoology, University of Otago, New Zealand) With two plates (figs. 6 and 7) SUMMARY The viviparity recorded for this ascidian parallels that of placental mammals in reduction of the number and size of the eggs, the development of extra-embryonic membranes, and the prolongation of larval development with increase in the gesta- tion period. The ovum is alecithal, 25/J, in diameter; it develops within an oviducal brood pouch in which the lining cells become distinctly modified and which remains attached to the parent for 5^ months. Exposure of the embryo to the lumen of the pouch is brought about by rupture of the overlying follicle cells due to enzyme secretion by the dorsal-most cells of the blastula. Endodermal development is precocious. At the gastrula stage the future oesophageal region, the future stomach, and a pair of endodermal tubes are distinguishable. The paired endodermal tubes are unique in the ascidians. They are larval structures which disappear after metamorphosis and bear no relation to the functional stigmata of the oozooid. They resemble the branchial tubes of the Appendicularia, developing as blind outgrowths which later open through to the exterior; but in this species they open dorsally, not ventrally. They act as passive channels through which material from the pouch passes into the gut (a bolus being present from the gastrula stage onwards) and as anchoring strands for the ectotrophe. This extra-embryonic membrane formed by elevation of the dorsal ectoderm ulti- mately practically envelops the embryo and becomes apposed to the lining of the pouch. It is extremely simple, exhibits no vascularization, makes no actual liaison with the oviducal epithelium, and shows little cell differentiation. Extra-embryonic material reaches the embryo indirectly by diffusion across the ectotrophe (which unlike the remaining embryonic ectoderm secretes no test), and directly through the endodermal tubes. The latter method is the more important during early stages of development, the former during later stages. The production of an extremely large and complex tadpole with numerous buds at an advanced stage of organogenesis testifies to the success of this type of viviparity. INTRODUCTION TTYPSISTOZOA FASMERIANA (Michaelsen) is a compound as- _/ J_ cidian belonging to the sub-family Holozoinae (Berrill, 1950). Michael- sen in 1924, studying material collected during a month when gonads were not discernible, placed this species in the genus Distaplia Delia Valle. However, further investigations have shown that it does not belong to that genus and, in a survey of the Holozoinae (1953), the author erected the genus Hypsistozoa to house it. Four other members of the sub-family occur in New Zealand waters —Distaplia taylori Brewin (1950, 1951), D. marplesi Brewin (1952), and [Quarterly Journal of Microscopical Science, Vol. 97, part 3, pp. 435-454, September 1956.] 436 Brewin—The Development of a Viviparous Compound Ascidian D. knoxi Brewin (1954), all of which are endemic, and Sycozoa sigillinoides Lesson, which has a circum-south-polar distribution. As far as is known at present Hypsistozoa fasmeriana is endemic to New Zealand with a geographical range from Stewart Island in the south to Cape Kidnappers in the north (Michaelsen, 1924; Brewin, 1946, 1950, 1952a, 1953); it does not extend beyond the northern limits of sub-antarctic water (Deacon, 1937). It grows on coastal rocks about low-tide level in localities where water circulates freely and a good supply of both food and oxygen is available. Much of the material on which the present paper is based was collected in the vicinity of the Portobello Marine Biological Station, Otago Harbour, where observations have been made over the last 10 years, aquarium and laboratory facilities having made possible a survey of the complete life history. The greater part of the investigation, however, was carried out in the Depart- ment of Zoology, University of Otago. APPEARANCE OF COLONY AND STRUCTURE OF ZOOIDS The colonies are capitate (fig. 1, A), the plane of division between head and stalk being slightly off the horizontal. The test is a clear light brown and the FIG. 1. A, normal appearance of the colony. B, colony in late October with brood pouches projecting and some of the distal zooids in a state of regression, c, colony in November, after tadpole liberation, showing newly formed zooids and test near the stalk, regressing zooids, and test at the distal end. bodies of the purple zooids show through it by transparency. The zooids are arranged in branching systems which radiate around the common cloacal apertures, which are situated on the head region and mainly distally. The stalk of the colony contains the long posterior projections of the zooids, the vascular processes, and the buds derived from them. Throughout the sub-family Holozoinae the zooid structure is fairly uni- Brewin—The Development of a Viviparous Compound Ascidian 437 form. That of H. fasmeriana conforms to the general pattern as seen in the genera Distaplia and Sycozoa in form of the gut, position and mode of origin of the brood pouch, and structure and position of the cardiopericardium, but differs from it in shape and extent of the epicardium (a full description of which will be given in another paper) and in position of the gonads. In the Holozoinae the gonads are found typically in the abdominal region lying to the right side of the gut loop. A variation of this arrangement is seen in a small number of Distaplia species, the 'D. stylifera group', in which the gonads are FIG. 2. A, zooid with gonads and brood pouch; egg not yet liberated from the ovary, B, zooid in which gonads have regressed, showing the attached brood pouch containing an embryo at the gastrula stage, c, two-celled embryo with polar bodies attached. D, four-celled embryo with second polar body attached. contained in a sac-like diverticulum projecting from the abdominal region—a diverticulum which is quite independent of the vascular process. In Hypsis- tozoa fasmeriana a much more atypical arrangement is seen, the gonads lying not in the abdominal region but in the anterior end of the right side of the vascular process (fig. 2, A), and not in a sac-like diverticulum projecting into it as previously described (Brewin, 1946). Each zooid is hermaphrodite. The testis consists of 8 to 16 pear-shaped lobes and from it the sperm-duct runs up the dorsal side of the zooid to open near the atrial siphon. The ovary produces only one egg. The oviduct runs parallel and dorsal to the sperm-duct (fig. 2, A) but is shorter than it and opens at the base of the atrial cavity. A week or more before the egg leaves the ovary, the oviduct grows in length with the result that a short hairpin bend develops near the distal end. This projects outwards and causes a sac-like outgrowth of 438 Brewin—The Development of a Viviparous Compound Ascidian the zooid which appears on the right side close to the mid-dorsal line (fig. 2, A) and which acts as a brood pouch. ANNUAL RHYTHM IN THE COLONY Reproductive organs are not discernible throughout the year. The testis which ripens in May continues to produce sperms throughout June and July and finally undergoes dedifferentiation. The single egg, which is very small, passes up the oviduct late in May, in June, or occasionally early in July, eggs maturing first in the large zooids near the distal end of the head of the colony and later in the somewhat smaller zooids near the proximal end. Both fertiliza- tion of the egg and embryological development take place in the brood pouch (fig. 2, B), which grows considerably and retains its connexion with the parent zooid for approximately 5 months—about 5 \ months being the time taken for the fertilized egg to develop into an active tadpole. Three weeks or less before the end of embryonic development, dedifferentiation of the parent zooid begins. The anterior ends of the zooids are affected first and, as they become reduced in size, the test overlying them sinks in. Thus a pitting of the surface of the colony occurs, leaving only the portions of test overlying the brood pouches in their original position, and the colony attains the appearance shown in fig. 1, B. As dedifferentiation proceeds mesenchyme cells migrate towards the posterior ends of the zooids and accumulate in the lower halves of the vascular processes. At this season the processes become more opaque and are very easily seen through the transparent test of the stalk of the colony. Late in October or early in November the tadpoles become active and by their tail movements rupture the walls of the brood pouches, break through the overlying test, and swim off. Within the colony three processes are occurring, dedifferentiation of the parent zooids, liberation of the tadpoles, and formation of new zooids. (A full description of the origin and development of colonial buds will be given in a further paper.) Each bud gives rise to one zooid, the branchial aperture of which opens at the junction of the head and the stalk of the colony, and the ectoderm of which secretes test. Zooids and newly formed test are thus added to the proximal end of the colony (fig. 1, c), whilst the old test, which is practically all that is left of the distal end, is resorbed; and by a combination of these phenomena a new head is established. This is accomplished often within 2 weeks of tadpole liberation. Considerable increase in the size of the colony takes place during the summer months, when the metabolic rate of the zooids is high and growth occurs rather rapidly.
Recommended publications
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • Ascidians from the Tropical Western Pacific
    Ascidians from the tropical western Pacific Françoise MONNIOT Claude MONNIOT CNRS UPESA 8044, Laboratoire de Biologie des Invertébrés marins et Malacologie, Muséum national d’Histoire naturelle, 55 rue Buffon, F-75005 Paris (France) [email protected] Monniot F. & Monniot C. 2001. — Ascidians from the tropical western Pacific. Zoosystema 23 (2) : 201-383. ABSTRACT A large collection of 187 identified ascidian species is added to the records published in 1996 from the same tropical western Pacific islands. Most of the specimens were collected by the US Coral Reef Research Foundation (CRRF). They come from depths accessible by SCUBA diving. Most of the collection’s species are described and figured, their color in life is illustrated by 112 underwater photographs; among them 48 are new species represent- ing a fourth of the material collected. This demonstrates how incomplete the knowledge of the ascidian diversity in this part of the world remains. Moreover, very small or inconspicuous species were seldom collected, as com- pared to the highly coloured and large forms. Many other immature speci- mens were also collected but their precise identification was not possible. Almost all littoral families are represented with the exception of the Molgulidae which are more characteristic of soft sediments, a biotope which was not investigated. Among the very diversified genera, the colonial forms largely dominate, including not only all the Aplousobranchia genera but also some Phlebobranchia and Stolidobranchia. Very often only one specimen was KEY WORDS Tunicata, available, so a detailed biogeographical distribution cannot be given, and no western Pacific Ocean. island endemism can be defined. ZOOSYSTEMA • 2001 • 23 (2) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris.
    [Show full text]
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Ascidian News #87 June 2021
    ASCIDIAN NEWS* Gretchen Lambert 12001 11th Ave. NW, Seattle, WA 98177 206-365-3734 [email protected] home page: http://depts.washington.edu/ascidian/ Number 87 June 2021 Well, here we are still in this pandemic! I asked how you all are and again received many responses. A number are included in the next two sections. Nearly everyone still expresses confidence at having met the challenges and a great feeling of accomplishment even though tired of the whole thing; congratulations to you all! There are 117 new publications since December! Thanks to so many for the contributions and for letting me know how important AN continues to be. Please keep in touch and continue to send me contributions for the next issue. Keep safe, keep working, and good luck to everyone. *Ascidian News is not part of the scientific literature and should not be cited as such. NEWS AND VIEWS 1. From Hiroki Nishida ([email protected]) : In Japan, we are very slow to be vaccinated, but the labs are ordinarily opened and we can continue working. Number of patients are gradually increasing though and we are waiting for vaccines. I have to stay in my home and the lab. Postponement of 11th ITM (International Tunicate Meeting) This is an announcement about 11th ITM that had been planned to be held in July 2021 in Kobe, Japan. It is postponed by a year because of the global spread of COVID-19. We had an 11th ITM board meeting, and came to the conclusion that we had to reschedule it for July 2022 at the same venue (Konan University, Kobe, Japan) and similar dates (July 11 to 16).
    [Show full text]
  • Redalyc.Keys for the Identification of Families and Genera of Atlantic
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Moreira da Rocha, Rosana; Bastos Zanata, Thais; Moreno, Tatiane Regina Keys for the identification of families and genera of Atlantic shallow water ascidians Biota Neotropica, vol. 12, núm. 1, enero-marzo, 2012, pp. 1-35 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199123750022 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Keys for the identification of families and genera of Atlantic shallow water ascidians Rocha, R.M. et al. Biota Neotrop. 2012, 12(1): 000-000. On line version of this paper is available from: http://www.biotaneotropica.org.br/v12n1/en/abstract?identification-key+bn01712012012 A versão on-line completa deste artigo está disponível em: http://www.biotaneotropica.org.br/v12n1/pt/abstract?identification-key+bn01712012012 Received/ Recebido em 16/07/2011 - Revised/ Versão reformulada recebida em 13/03/2012 - Accepted/ Publicado em 14/03/2012 ISSN 1676-0603 (on-line) Biota Neotropica is an electronic, peer-reviewed journal edited by the Program BIOTA/FAPESP: The Virtual Institute of Biodiversity. This journal’s aim is to disseminate the results of original research work, associated or not to the program, concerned with characterization, conservation and sustainable use of biodiversity within the Neotropical region. Biota Neotropica é uma revista do Programa BIOTA/FAPESP - O Instituto Virtual da Biodiversidade, que publica resultados de pesquisa original, vinculada ou não ao programa, que abordem a temática caracterização, conservação e uso sustentável da biodiversidade na região Neotropical.
    [Show full text]
  • Palatability and Chemical Anti-Predatory Defenses in Common Ascidians from the Antarctic Peninsula
    Vol. 7: 81–92, 2009 AQUATIC BIOLOGY Printed November 2009 doi: 10.3354/ab00188 Aquat Biol Published online October 22, 2009 OPEN ACCESS Palatability and chemical anti-predatory defenses in common ascidians from the Antarctic Peninsula Gil Koplovitz1,*, James B. McClintock1, Charles D. Amsler1, Bill J. Baker2 1Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA 2Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA ABSTRACT: Palatability of outer tissues of a suite (12 species) of Antarctic ascidians was evaluated using omnivorous fish and sea star predators. Tissues of 100% of those tested were unpalatable to fish, while 58% were unpalatable to sea stars. Lipophilic and hydrophilic extracts of 11 species were incorporated into pellets and tested in fish and sea star bioassays. Only the lipophilic extract from Distaplia colligans caused fish feeding deterrence. Organic extracts from 10 ascidian species were also examined in food pellet assays using an omnivorous amphipod. Only the lipophilic extract of D. cylindrica was a deterrent. Five of the ascidians possessed acidified outer tunics (pH < 3). We tested the ability of acidified krill pellets (pH 2 to 7) to deter fish and sea star predators and found that, while fish readily ingested acidified food pellets (pH 2), sea stars were deterred at pH 5 or less. Thus either organic or inorganic chemical defenses explain defense in 5 of the 7 ascidian species found unpalatable to sea stars. In contrast, chemical defenses only explain 1 of 12 species found unpalatable to fish, and only 1 of 10 ascidians tested against an amphipod predator.
    [Show full text]
  • Ascidiacea: Pyuridae), a Deep‐Water Ascidian from the Fjords and Sounds of British Columbia
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1995 John Wiley & Sons, Inc. This manuscript is an author version and may be cited as: Young, C. M., & Vazquez, E. (1995). Morphology, larval development and distribution of Bathypera feminalba n. sp. (Ascidiacea: Pyuridae), a deep‐water ascidian from the fjords and sounds of British Columbia. Invertebrate Biology, 114(1), 89‐106. Invertebrate Biology 114(1): 89-106. ? 1995 American Microscopical Society, Inc. Morphology, larval development, and distribution of Bathypera feminalba n. sp. (Ascidiacea: Pyuridae), a deep-water ascidian from the fjords and sounds of British Columbia Craig M. Young and Elsa Vazquez HarborBranch Oceanographic Institution, Ft. Pierce, Florida 34946, USA Abstract. A new species of the ascidian genus Bathypera (Ascidiacea: Pyuridae), B. feminalba, is described from deep-water habitats of Saanich Inlet and Barkley Sound, British Columbia, Canada, with data on the depth distribution, substratum use, reproduction, embryology, and larval development. The species is characterized by hourglass-shaped spicules topped with a single large spine and several smaller spines, a branchial sac with 7 folds per side, and irregular and curved stigmata. B. feminalba spawned in response to light following dark adaptation during the month of June. Development was similar to that of other pyurids. The tadpole larva, the first to be described in this genus, has the same sensory organs found in shallow-water relatives: an ocellus, a statocyst, and 3 large conical adhesive papillae. The ocellus is sensitive to monochromatic light between 475 and 600 nm with peak sensitivity in the blue region of the spectrum.
    [Show full text]
  • Styela Clava
    NOBANIS - Marine invasive species in Nordic waters - Fact Sheet Styela clava Author of this species fact sheet: Kathe R. Jensen, Zoological Museum, Natural History Museum of Denmark, Universitetsparken 15, 2100 København Ø, Denmark. Phone: +45 353-21083, E-mail: [email protected] Bibliographical reference – how to cite this fact sheet: Jensen, Kathe R. (2010): NOBANIS – Invasive Alien Species Fact Sheet – Styela clava – From: Identification key to marine invasive species in Nordic waters – NOBANIS www.nobanis.org, Date of access x/x/201x. Species description Species name Styela clava (Herdman, 1881) Synonyms Styela mammiculata Carlisle, 1954; Bostryorchis clava Redikorzev, 1916; Styela barnharti Ritter & Forsyth, 1917. Common names Clubbed tunicate, Leathery sea squirt, Asian tunicate, Rough sea squirt (USA, CAN, UK); Østasiatisk søpung (DK); Østasiatisk sekkedyr (NO); Östasiatisk sjöpung (SE); Ostasiatische Seeschiede, Falten Ascidie (GE); Japanse zakpijp (NL); Ascidie plissée (FR); Ascidia plisada (SP). Taxonomic problem The authority is sometimes gives as Herdman, 1882, sometimes as Herdman, 1881 or (Herdman, 1881). The WoRMS database (http://www.marinespecies.org/) gives (Herdman, 1881) as the correct authority and Fleming, 1822 as the author for the genus Styela. However, all three versions are still used in the scientific literature. Identification This is a relatively large (often >10 cm long), stalked, solitary sea aquirt, which is often found associated with man-made structures, seaweeds or shellfish. It has a warty exterior and a long stalk. There are several native species of Styela, none of which have the long stalk, e.g. S. rustica (Linnaeus, 1767), S. coriacea (Alder & Hancock, 1848), S. gelatinosa (Traustedt, 1886), and S.
    [Show full text]
  • Awesome Ascidians a Guide to the Sea Squirts of New Zealand Version 2, 2016
    about this guide | about sea squirts | colour index | species index | species pages | icons | glossary inspirational invertebratesawesome ascidians a guide to the sea squirts of New Zealand Version 2, 2016 Mike Page Michelle Kelly with Blayne Herr 1 about this guide | about sea squirts | colour index | species index | species pages | icons | glossary about this guide Sea squirts are amongst the more common marine invertebrates that inhabit our coasts, our harbours, and the depths of our oceans. AWESOME ASCIDIANS is a fully illustrated e-guide to the sea squirts of New Zealand. It is designed for New Zealanders like you who live near the sea, dive and snorkel, explore our coasts, make a living from it, and for those who educate and are charged with kaitiakitanga, conservation and management of our marine realm. It is one in a series of electronic guides on New Zealand marine invertebrates that NIWA’s Coasts and Oceans centre is presently developing. The e-guide starts with a simple introduction to living sea squirts, followed by a colour index, species index, detailed individual species pages, and finally, icon explanations and a glossary of terms. As new species are discovered and described, new species pages will be added and an updated version of this e-guide will be made available online. Each sea squirt species page illustrates and describes features that enable you to differentiate the species from each other. Species are illustrated with high quality images of the animals in life. As far as possible, we have used characters that can be seen by eye or magnifying glass, and language that is non technical.
    [Show full text]
  • Phylum: Chordata
    PHYLUM: CHORDATA Authors Shirley Parker-Nance1 and Lara Atkinson2 Citation Parker-Nance S. and Atkinson LJ. 2018. Phylum Chordata In: Atkinson LJ and Sink KJ (eds) Field Guide to the Ofshore Marine Invertebrates of South Africa, Malachite Marketing and Media, Pretoria, pp. 477-490. 1 South African Environmental Observation Network, Elwandle Node, Port Elizabeth 2 South African Environmental Observation Network, Egagasini Node, Cape Town 477 Phylum: CHORDATA Subphylum: Tunicata Sea squirts and salps Urochordates, commonly known as tunicates Class Thaliacea (Salps) or sea squirts, are a subphylum of the Chordata, In contrast with ascidians, salps are free-swimming which includes all animals with dorsal, hollow in the water column. These organisms also ilter nerve cords and notochords (including humans). microscopic particles using a pharyngeal mucous At some stage in their life, all chordates have slits net. They move using jet propulsion and often at the beginning of the digestive tract (pharyngeal form long chains by budding of new individuals or slits), a dorsal nerve cord, a notochord and a post- blastozooids (asexual reproduction). These colonies, anal tail. The adult form of Urochordates does not or an aggregation of zooids, will remain together have a notochord, nerve cord or tail and are sessile, while continuing feeding, swimming, reproducing ilter-feeding marine animals. They occur as either and growing. Salps can range in size from 15-190 mm solitary or colonial organisms that ilter plankton. in length and are often colourless. These organisms Seawater is drawn into the body through a branchial can be found in both warm and cold oceans, with a siphon, into a branchial sac where food particles total of 52 known species that include South Africa are removed and collected by a thin layer of mucus within their broad distribution.
    [Show full text]
  • BLY 202 (Basic Chordates Zoology) Sub-Phylum Urochordata (Tunicata)
    BLY 202 (Basic Chordates Zoology) Sub-Phylum Urochordata (Tunicata) Objectives are to; a) understand the characteristics of Urochordata b) have knowledge on Urochordata evolution c) understand the different classes and their physiology The urochordates (“tail-chordates”), more commonly called tunicates, include about 3000 species. Tunicates are also called sea squirts. They are found in all seas from near shoreline to great depths. Most are sessile as adults, although some are free living. The name “tunicate” is suggested by the usually tough, non-living tunic, or test that surrounds the animal and contains cellulose. As adults, tunicates are highly specialized chordates, for in most species only the larval form, which resembles a microscopic tadpole, bears all the chordate hallmarks. During adult metamorphosis, the notochord (which, in the larva, is restricted to the tail, hence the group name Urochordata) and the tail disappear altogether, while the dorsal nerve cord becomes reduced to a single ganglion. The body of the adult urochordates is unsegmented and lacks a tail. Nephrocytes are responsible for the excretion of urochordates. The asexual reproduction of urochordates occurs by budding. Urochordates are bisexual and the external fertilization is the mode of sexual reproduction. Urochordates have an unsegmented body. Urochordates are exclusively marine animal. The earliest probable species of tunicate appears in the fossil record in the early Cambrian period. Despite their simple appearance and very different adult form, their close relationship to the vertebrates is evidenced by the fact that during their mobile larval stage, they possess a notochord or stiffening rod and resemble a tadpole. Their name derives from their unique outer covering or "tunic", which is formed from proteins and carbohydrates, and acts as an exoskeleton.
    [Show full text]
  • Of Moreton Bay, Queensland Patricia KOTT Honorary Associate, Queensland Museum, PO Box 3300, South Brisbane, Qld 4101
    VOLUME 54 Part 3 MEMOIRS OF THE QUEENSLAND MUSEUM BRISBANE 30 DECEMBER 2010 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au/organisation/publications/memoirs/guidetoauthors.pdf A Queensland Government Project Typeset at the Queensland Museum A review of the Ascidiacea (Tunicata) of Moreton Bay, Queensland Patricia KOTT Honorary Associate, Queensland Museum, PO Box 3300, South Brisbane, Qld 4101. Email: [email protected] Citation: Kott, P. 2010 12 30. A review of the Ascidiacea (Tunicata) of Moreton Bay, Queensland. In, Davie, P.J.F. & Phillips, J.A. (Eds), Proceedings of the Thirteenth International Marine Biological Workshop, The Marine Fauna and Flora of Moreton Bay, Queensland. Memoirs of the Queensland Museum – Nature 54(3): 287-297. Brisbane. ISSN 0079-8835. ABSTRACT A review of the 95 species of the Ascidiacea recorded from Moreton Bay, Queensland shows that solitary species of Phlebobranchia and Stolidobranchia (53 species) dominate the fauna, there being few colonial species of either suborder and only 30 species of the almost exclusively colonial Aplousobranchia, eight being species of the Didemnidae recorded only from locations immediately to the north of the Bay rather than in its semi-enclosed waters.
    [Show full text]