Lunar Remote Sensing and Measurements
Total Page:16
File Type:pdf, Size:1020Kb
Lunar Remote Sensing and Measurements GEOLOGICAL SURVEY PROFESSIONAL PAPER 1046-B Prepared on behalf of the National Aeronautics and Space Administration Lunar Remote Sensing and Measurements Bv H. J. MOORE, J. M. BOYGE, G. G. SCHABER, and D. H. SGOTT APOEEO 15-17 ORBITAE INVESTIGATIONS GEOEOGIGAE SURVEY PROFESSION AE PAPER 1046-B Prepared on behalf of the National Aeronautics and Space Administration UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data United States. Geological Survey. Lunar remote sensing and measurements. (Apollo 15-17 orbital investigations) (Geological Survey professional paper ; 1046-B) Bibliography: p. B70-B78. Supt.ofDocs.no.: 119.16:1046-6 1. Moon-Remote sensing. 2. Project Apollo. I. Moore, Henry J. II. Title. III. Series. IV. Series: United States. Geological Survey. Professional paper ; 1046-B. QB591.U54 1979 559.9*1 79-607805 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03265-1 CONTENTS Page Abstract _________________________________ Bl Apollo orbital results Continued Introduction______________________________ 2 Orbital geochemistry, by H. J. Moore Continued Acknowledgments _______________________ 2 Gamma-ray spectrometry Continued Apollo orbital results _______________________________ 3 Results_________________________B31 Ages of lunar plains, by J. M. Boyce and H. J. Moore____ 3 Discussion ____________________________ 33 Review of methods of estimating relative ages ______ 3 Bistatic radar, by H. J. Moore ___________________ 34 Fundamental concepts ___________________ 3 Comparison of radar roughness with lunar terrain _ _ _ 34 Rapid method for determining relative ages ____ 5 Correlation with geologic map units____________ 37 Pitfalls in determining relative ages ________ 6 Correlation with infrared eclipse temperatures._____ 37 Relative ages of lunar plains _______________ 8 Slope-probability distribution________________ 38 Correlation of relative ages with radiometrie ages _ _ 9 Discussion _______________________ 40 Time-scale ____________________ 9 Earth-based results _________________________ 41 Cratering rate with time ______________ 11 Reflection of solar radiation with wavelengths from Comparison of relative ages with other remotely 0.3 Aim to 2.2 Aim, by G. G. Schaber __________ 41 sensed data ______________________ 12 Photometry and polarization of sunlight____________ 41 Geologic map units _ __ __ _ _ _ _ _ _____ 12 Color ______________________________-_ 43 Regolith thickness _____________________ 13 Spectral reflectivity __________________________ 43 Bistatic-radar results __________________ 14 Spectral response and chemical composition _____ 47 Discussion __________________________ 14 Comments _____________________ 51 Early major events ____________________ 15 Reflection of radar waves from earth-based stations, by Cratering rate_________________________ 17 G. G. Schaber and H. J. Moore ____________________ 52 Maria_______.___________________ 18 Radar maps _________________________ 52 Western maria ____ ______________ 18 Echoes and lunar features __ ___________ 52 Lunar gravity and tectonics, by D. H. Scott ___________ 18 Laboratory studies.___________________ 58 Methods of analysis and application_ _ _ _ _ __ _ 19 Discussion _______________________ 58 Gravity and geologic structure ________________ 21 Infrared eclipse temperatures, by H. J. Moore _______ 61 Summary and conclusion_________________ 22 Eclipse temperatures and lunar features ____________ 61 Lunar magnetism, by G. G. Schaber ____________ 22 Causes of high infrared eclipse temperatures ______ 64 Orbital magnetic data _____________ _______ 23 Discussion ______________________ 65 Lunar surface and sample magnetic data __________ 23 A basis for extrapolation ____________________________ 65 Origin of lunar magnetism _________________ 23 Duration of volcanic activity ____________________ 66 Geologic analysis and significance of lunar NRM____ 27 Early cratering history before 3.84 b.y. ago __________ 66 Orbital geochemistry, by H. J. Moore ______________ 29 Lunar multiringed basins and the provenance of lunar X-ray fluorescence spectrometry _______________ 29 highland samples ___________________- 67 Description ____ ________________ 29 Regional and local chemical variations __________ 68 Results __________________________ 29 Variation of physical properties and roughness of Gamma-ray spectrometry __________________ 31 lunar surface __________________________ 69 Description _ _______________________ 31 References cited ___________________________ 70 ILLUSTRATIONS Page FIGURES 1-7. Graphs showing: 1. Cumulative frequency distributions of craters for three ages of surfaces _________ _ _ _____ B4 2. Relationships between DL, K, and Cs _____________ _ ___ _____________________ 5 3. Comparison of the observed and predicted ratio of unshadowed to shadowed craters as a function of crater diameter _________________________________________________ 6 4. Ratio of unshadowed to shadowed craters as a function of diameter for floors of Albategnius and Meton__ 7 5. Effects of photograph resolution on the determination of relative ages ______________________ 7 6. Errors in measurement of crater diameter as a function of sun elevation angle _____________ 8 7. Sample area necessary to establish Ds _________________________________________ 8 8. Histograms of relative ages of lunar plains ____________________________ _____________________ 9 in IV CONTENTS Page FIGURE 9. Map showing distribution of relative ages of lunar plains in the "Apollo zone" ____________________BIO 10-14. Graphs showing: 10. Comparison of relative ages and radiometric ages and incremental flux of objects producing small craters 11 11. Size frequency distribution of craters on flanks of North Ray crater (Apollo 16) ___ _ __ _ _ _ _ _ 12 12. Correlation between median regolith thickness and relative age of surface ___________- ____ 13 13. Bistatic-radar roughness and relative ages _-_________________________ ___-____ 15 14. Size frequency distributions of craters for selected lunar areas _______ _ ______ __ - _ - _____ 16 15. Topographic profile of Theophilus ____________ _______________________ ______ 20 16. Topographic and gravity profiles through Montes Secchi __________________________________ 21 17. Maps showing magnetic anomalies _______________________________________ -- __ 24 18. Diagram showing Apollo 15 laser altimeter data_______________________________________ 25 19. Map showing Apollo 15 and 16 gamma-ray results __________ _________________________ 25 20. Graph showing reflection coefficient for single orbit of 0.5-keV electron data obtained at high rate from the Apollo 16 subsatellite ______________________________________________________ 26 21-24. Maps showing: 21. Aluminum-silicon intensity ratios for the lunar near side from the Apollo 15 and 16 X-ray fluorescence experiments ____________________________ _____________ 30 22. Concentrations of five elements from the Apollo 15 and 16 gamma-ray spectrometer experiments-___ 32 23. Hand-calculated root-mean-square slopes along the Apollo 14 bistatic-radar experiment subspecular track 35 24. Machine-calculated root-mean-square slopes along the Apollo 15 and 16 bistatic radar experiment subspecular tracks ___ __________ _____________________________ 36 25-32. Graphs showing: 25. Comparison of average S-band and VHF root-mean-square slopes for selected geologic map units along the Apollo 14 and 15 bistatic-radar tracks _____ _____________________________________ 37 26. Comparison of average S-band root-mean-square slopes and albedos for selected geologic units along the Apollo 14, 15, and 16 bistatic-radar tracks _________________________________ _____ 38 27. Comparison of S-band root-mean-square slopes and average infrared eclipse temperatures for selected geologic units along the Apollo 14, 15, and 16 bistatic-radar tracks __________________ 38 28. Bistatic-radar and photogrammetry slope-probability distributions of the normal type for highlands near Vitruvius ______________________________________________ 39 29. Bistatic-radar and photogrammetry slope-probability distributions of the tailed type for mare material _ 39 30. Bistatic-radar and photogrammetry slope-probability distribution of the complex type for highlands near Glaisher _____________________________________________ 40 31. Comparison of algebraic standard deviations estimated from slope-probability distributions measured by radar- and machine-calculated root-mean-square slopes ______________ _______ 40 32. Polarization of light of the Moon __________ _______________________________________ 41 33. Composite color-difference photograph of the Moon^ _________ ___________________________________ 44 34-40. Graphs showing: 34. Normalized spectral reflectivity for selected lunar surfaces________________________ __ 44 35. Relative spectral reflectivity for a series of background mare and highland areas ____ __ ______ 46 36. Relative spectral reflectivity for selected craters in lunar maria and highlands _________ ____ 47 37. Spectral reflectance for several common minerals ___ _________________________ 48 38. Position of short-wave length absorption band plotted against long-wavelength band for Apollo samples __ 48 39. Spectral reflectivity of glass made from 12063 whole-rock powder ________________ _________