A Mathematical Travelogue Session: S084

Total Page:16

File Type:pdf, Size:1020Kb

A Mathematical Travelogue Session: S084 David and Elise Price A Mathematical Travelogue Session: S084 Mathematics as a subject of systematic inquiry originated about 600 B.C. in Miletus, an ancient Greek city-state located in the southwestern part of modern Turkey. The Egyptian and Mesopotamian civilizations made some significant mathematical progress, but their haphazard approach led only to isolated results with little theoretical coherence. After studying in Egypt and Mesopotamia, Thales, a resident of Miletus, returned there and launched Greek geometry by establishing five results: 1. A circle is bisected by a diameter; 2. The base angles of an isosceles triangle are equal; 3. Vertical angles formed by intersecting lines are equal; 4. If two angles and a side of one triangle are equal respectively to two angles and a side of another triangle, then the triangles are congruent; 5. An angle inscribed in a semicircle is a right angle. In particular, this last assertion is known as the Theorem of Thales. Although at least some of these propositions were probably already known, Thales is credited with being the first person to provide some sort of justification for them. Because he introduced the concept of proof into mathematics, he is often hailed as the first mathematician. In addition to his work in mathematics, Thales is even more famous as the father of Greek philosophy. The nature of change and multiplicity was the fundamental question that concerned the thinkers of the time. Prior to Thales, attempts to explain these phenomena had always appealed to mythology; his revolutionary advance was to offer an explanation in natural terms. He held that the universe was composed of one basic stuff, namely water, and that change was the process by which it became the multitude of entities we experience. Thales had a student named Anaximander who raised an objection to his teacher’s theory. Although some things may be forms of water, he said, how can everything be? In particular, how can objects with properties opposite to those of water, such as hotness and dryness, be representations of water? Anaximenes, another Milesian, offered an answer to Anaximander’s question. He proposed that the fundamental stuff was air, not water, and that it generates the universe in all of its aspects by undergoing quantitative variation. In particular, this could explain the appearance of apparently contradictory characteristics, as when a sober person becomes inebriated by consuming a sufficient quantity of alcohol. Although Anaximenes’ explanation is inadequate to us, it was one of the first suggestions that nature could be explained in mathematical terms. Pythagoras was born on the island of Samos, which is located about fifty miles north of Miletus just off of the coast of Turkey. He also studied in Egypt and Mesopotamia and then established a school at Croton in southern Italy. Like Thales, he was a philosopher, and his fascination with mathematics stemmed from his philosophical beliefs. Whereas Thales sought to explain the universe in terms of water, Pythagoras’ fundamental principle was that everything is number, by which he meant natural number. By studying the properties of numbers, Pythagoras and his school thought that they were unlocking the secrets of the universe, and they inaugurated the branch of mathematics that we today call number theory. Of course, the Pythagoreans are best known for two developments: proving the Pythagorean Theorem and consequently discovering irrational numbers. Their failure to explain incommensurability undermined their belief in the fundamentality of numbers and led to a sharp division between arithmetic and geometry, a breach that did not begin to close until the development of analytic geometry in the seventeenth century. When dealing with quantities that could be irrational, the Pythagoreans represented them geometrically as lengths of line segments without assigning numerical values to the lengths. By using geometrical arguments, an approach known as geometrical algebra, they obtained a number of formulas, such as the result of squaring a binomial, which we today establish by purely algebraic means. Despite the Pythagoreans’ inability to provide a satisfactory explanation of irrational numbers, they had a fundamental impact on the future of mathematics. Many of their results appear in Euclid’s Elements, and their quantitative approach to the study of music, astronomy, and medicine promoted the belief that nature could be explained mathematically. When combined with the view that nature operates uniformly by mechanical law, the Pythagorean approach played a pivotal role in launching the Scientific Revolution during the Renaissance. Hippocrates (not to be confused with the father of medicine) was born on the island of Khios, also located in the eastern Mediterranean. He is considered to be the foremost Greek mathematician of the fifth century B.C., in large part because he was the first to calculate a curvilinear area in terms of a rectilinear one. He also introduced the method of indirect proof and arranged theorems in order so that later ones could be proved on the basis of earlier ones, thereby foreshadowing the axiomatic method. Books III and IV of Euclid’s Elements are based on Hippocrates’ work. Delos, another island in the eastern Mediterranean, lies just south of Mykonos and according to Greek mythology, was the birthplace of Apollo. When the Peloponnesian War began in 431 B.C., the Athenian leader, Pericles, moved residents of the countryside into Athens to protect them from the Spartans. Shortly thereafter, however, the crowded conditions in the city led to a plague that claimed numerous lives, including Pericles himself. There was an oracle to Apollo at Delos, and a committee of Athenian citizens traveled there to seek its guidance on how to end the plague. From the cubical altar on which it sat, the oracle proclaimed that the Athenians should build an altar twice as large. When the citizens returned to Athens, they doubled the side of the Delian altar, and thus constructed one eight times the original size. When the plague did not abate, the problem of doubling the cube, one of the three famous construction problems of classical Greek mathematics, was born. Zeno lived at Elea in southern Italy, not far from Croton, where Pythagoras established his school. He was a student of the philosopher, Parmenides, who held that change is an illusion and only permanence exists. To support Parmenides’ thesis, Zeno constructed his famous paradoxes by exploiting the Pythagorean view that numbers are extended points. The inability of Zeno’s contemporaries to refute his reasoning, together with the discovery of incommensurable magnitudes, turned Greek mathematics away from arithmetic and toward geometry as its primary focus. In approximately 388 B.C., Plato founded the Academy in Athens as the first university in the Western world. His strong interest in mathematics was fueled by Pythagorean doctrines and attracted the leading mathematicians of the day to study and work there. Foremost among these was Eudoxus, whose achievements included his theory of proportion, which resolved the crisis precipitated by the Pythagorean discovery of incommensurable magnitudes, the method of exhaustion, which eventually became the basis for integral calculus, and his explanation of planetary motion, which attempted to rationalize the apparently random motions of the planets. Although Eudoxus’ approach to the solar system was geocentric in nature, it was the first major attempt to apply mathematics to astronomy. Plato himself was not a mathematician, but his philosophy of mathematics, that mathematicians study forms, not their concrete representations, has been profoundly influential. Another member of the Academy, Theaetetus, proved that there are exactly five regular polyhedra, and Plato took such a strong interest in these figures that they are frequently referred to as the Platonic solids. He associated four of them with air, earth, fire, and water, the four elements of Greek science, and he identified the fifth with the universe as a whole. To understand their properties, he advocated the study of solid geometry, which in his view had been neglected. The leading student at the Academy was Aristotle, who later established his own school, the Lyceum, also in Athens. Like Plato, he was not a mathematician, but he had a strong interest in the subject and made fundamental contributions to its foundations. He formulated the laws of logic and identified the axiomatic method as the proper means of organizing a body of knowledge. In addition, he was the first to define the concept of a specific science. Previously, all knowledge had been considered to be philosophy; subdivisions of learning had not been recognized. Aristotle was the first to realize that each subject has fundamental truths that lie at its foundation and that provide the context for its development. Because of his insight, it became possible for scholars, using the laws of logic as their common base, to specialize in various aspects of intellectual inquiry. In 336 B.C., Alexander the Great assumed control of the army of Macedonia and quickly conquered the known world. With his death in 323 B.C., the Hellenic period of Greek history ended, and the Hellenistic era began. The intellectual center of antiquity shifted from Athens to Alexandria when Alexander’s first two successors in Egypt, Ptolemy I and Ptolemy II, built a museum and a library respectively to attract scholars throughout his empire. One of these was Euclid, who wrote his Elements while in Alexandria and thereby demonstrated the epistemological efficacy of the axiomatic method. Euclid’s accomplishment paved the way for Archimedes, whose vast range of achievements included the systematic use of the method of exhaustion to calculate a wide variety of areas and volumes, the discovery of the law of levers, and the founding of mathematical physics by formulating his principle of buoyancy. Another major mathematical figure in Alexandria was Apollonius, whose work on conic sections provided the first unified treatment of the subject.
Recommended publications
  • The Parallelogram Law Objective: to Take Students Through the Process
    The Parallelogram Law Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof. I. Introduction: Use one of the following… • Geometer’s Sketchpad demonstration • Geogebra demonstration • The introductory handout from this lesson Using one of the introductory activities, allow students to explore and make a conjecture about the relationship between the sum of the squares of the sides of a parallelogram and the sum of the squares of the diagonals. Conjecture: The sum of the squares of the sides of a parallelogram equals the sum of the squares of the diagonals. Ask the question: Can we prove this is always true? II. Activity: Have students look at one more example. Follow the instructions on the exploration handouts, “Demonstrating the Parallelogram Law.” • Give each student a copy of the student handouts, scissors, a glue stick, and two different colored highlighters. Have students follow the instructions. When they get toward the end, they will need to cut very small pieces to fit in the uncovered space. Most likely there will be a very small amount of space left uncovered, or a small amount will extend outside the figure. • After the activity, discuss the results. Did the squares along the two diagonals fit into the squares along all four sides? Since it is unlikely that it will fit exactly, students might question if the relationship is always true. At this point, talk about how we will need to find a convincing proof. III. Go through one or more of the proofs below: Page 1 of 10 MCC@WCCUSD 02/26/13 A.
    [Show full text]
  • CHAPTER 3. VECTOR ALGEBRA Part 1: Addition and Scalar
    CHAPTER 3. VECTOR ALGEBRA Part 1: Addition and Scalar Multiplication for Vectors. §1. Basics. Geometric or physical quantities such as length, area, volume, tempera- ture, pressure, speed, energy, capacity etc. are given by specifying a single numbers. Such quantities are called scalars, because many of them can be measured by tools with scales. Simply put, a scalar is just a number. Quantities such as force, velocity, acceleration, momentum, angular velocity, electric or magnetic field at a point etc are vector quantities, which are represented by an arrow. If the ‘base’ and the ‘head’ of this arrow are B and H repectively, then we denote this vector by −−→BH: Figure 1. Often we use a single block letter in lower case, such as u, v, w, p, q, r etc. to denote a vector. Thus, if we also use v to denote the above vector −−→BH, then v = −−→BH.A vector v has two ingradients: magnitude and direction. The magnitude is the length of the arrow representing v, and is denoted by v . In case v = −−→BH, certainly we | | have v = −−→BH for the magnitude of v. The meaning of the direction of a vector is | | | | self–evident. Two vectors are considered to be equal if they have the same magnitude and direction. You recognize two equal vectors in drawing, if their representing arrows are parallel to each other, pointing in the same way, and have the same length 1 Figure 2. For example, if A, B, C, D are vertices of a parallelogram, followed in that order, then −→AB = −−→DC and −−→AD = −−→BC: Figure 3.
    [Show full text]
  • 15 Famous Greek Mathematicians and Their Contributions 1. Euclid
    15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books.
    [Show full text]
  • ANCIENT PROBLEMS VS. MODERN TECHNOLOGY 1. Geometric Constructions Some Problems, Such As the Search for a Construction That Woul
    ANCIENT PROBLEMS VS. MODERN TECHNOLOGY SˇARKA´ GERGELITSOVA´ AND TOMA´ Sˇ HOLAN Abstract. Geometric constructions using a ruler and a compass have been known for more than two thousand years. It has also been known for a long time that some problems cannot be solved using the ruler-and-compass method (squaring the circle, angle trisection); on the other hand, there are other prob- lems that are yet to be solved. Nowadays, the focus of researchers’ interest is different: the search for new geometric constructions has shifted to the field of recreational mathematics. In this article, we present the solutions of several construction problems which were discovered with the help of a computer. The aim of this article is to point out that computer availability and perfor- mance have increased to such an extent that, today, anyone can solve problems that have remained unsolved for centuries. 1. Geometric constructions Some problems, such as the search for a construction that would divide a given angle into three equal parts, the construction of a square having an area equal to the area of the given circle or doubling the cube, troubled mathematicians already hundreds and thousands of years ago. Today, we not only know that these problems have never been solved, but we are even able to prove that such constructions cannot exist at all [8], [10]. On the other hand, there is, for example, the problem of finding the center of a given circle with a compass alone. This is a problem that was admired by Napoleon Bonaparte [11] and one of the problems that we are able to solve today (Mascheroni found the answer long ago [9]).
    [Show full text]
  • Ill.'Dept. of Mathemat Available in Hard Copy Due To:Copyright,Restrictions
    Docusty4 REWIRE . ED184843 E 030 460 AUTHOR Kogan, B. Yu TITLE The Application àf Me anics to Ge setry. Popullr Lectures in Mathematice. 'INSTITUTION Cbicag Univ. Ill.'Dept. of Mathemat s. SPONS AGENCY National Science Foundation, Nashington;.D.C. PUB DATE 74 GRANT NSLY-3-13847(MA) NOTE 65p.; ?or related documents, see SE 030 4-61-465. Not available in hard copy due to:copyright,restrictions. Translated and adapted from the Russian edition. 'AVAILABLE FROM The University of Chicago Press, Chicaip, IL 60637. (Order No. 450163; $4.50). EDRS PRICE MP01 Plus Postage.. PC Not Available from ED4S. DESZRIPTORS *College Mathematics; Force; Geometric Concepti; *Geometry; Higher Education; Lecture Method; *Mathematical Applications; *Mathemaiics; *Mechanics (Physics) ABBTRAiT Presented in thir traInslktion are three chapters. Chapter I discusses the compbsitivn of forces and several theoreas of geometry are proved using the'fundamental conceptsand certain laws of statics. Chapter II discusses the perpetual motion postRlate; several geometri:l.theorems are proved, uting the postulate t4t p9rp ual motion is iipossib?e. In Chapter ILI,' the Center of Gray Potential Energy, and Vork are discussed. (MK) a N'4 , * Reproductions supplied by EDRS are the best that can be madel * * from the original document. * U.S. DIEPARTMINT OP WEALTH. g.tpUCATION WILPARI - aATIONAL INSTITTLISM Oa IDUCATION THIS DOCUMENT HAS BEEN REPRO. atiCED EXACTLMAIS RECEIVED Flicw THE PERSON OR ORGANIZATION DRPOIN- ATINO IT POINTS'OF VIEW OR OPINIONS STATED DO NOT NECESSARILY WEPRE.' se NT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY 0 * "PERMISSION TO REPRODUC THIS MATERIAL IN MICROFICHE dIlLY HAS SEEN GRANTED BY TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)." -Mlk -1 Popular Lectures In nithematics.
    [Show full text]
  • An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles
    An Elementary System of Axioms for Euclidean Geometry based on Symmetry Principles Boris Čulina Department of Mathematics, University of Applied Sciences Velika Gorica, Zagrebačka cesta 5, Velika Gorica, CROATIA email: [email protected] arXiv:2105.14072v1 [math.HO] 28 May 2021 1 Abstract. In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us (the homogeneity of space), all directions are the same to us (the isotropy of space) and all units of length we use to create geometric figures are the same to us (the scale invariance of space). On the other hand, through the process of algebraic simplification, this system of axioms directly provides the Weyl’s system of axioms for Euclidean geometry. The system of axioms, together with its a priori interpretation, offers new views to philosophy and pedagogy of mathematics: (i) it supports the thesis that Euclidean geometry is a priori, (ii) it supports the thesis that in modern mathematics the Weyl’s system of axioms is dominant to the Euclid’s system because it reflects the a priori underlying symmetries, (iii) it gives a new and promising approach to learn geometry which, through the Weyl’s system of axioms, leads from the essential geometric symmetry principles of the mathematical nature directly to modern mathematics. keywords: symmetry, Euclidean geometry, axioms, Weyl’s axioms, phi- losophy of geometry, pedagogy of geometry 1 Introduction The connection of Euclidean geometry with symmetries has a long history.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Pappus of Alexandria: Book 4 of the Collection
    Pappus of Alexandria: Book 4 of the Collection For other titles published in this series, go to http://www.springer.com/series/4142 Sources and Studies in the History of Mathematics and Physical Sciences Managing Editor J.Z. Buchwald Associate Editors J.L. Berggren and J. Lützen Advisory Board C. Fraser, T. Sauer, A. Shapiro Pappus of Alexandria: Book 4 of the Collection Edited With Translation and Commentary by Heike Sefrin-Weis Heike Sefrin-Weis Department of Philosophy University of South Carolina Columbia SC USA [email protected] Sources Managing Editor: Jed Z. Buchwald California Institute of Technology Division of the Humanities and Social Sciences MC 101–40 Pasadena, CA 91125 USA Associate Editors: J.L. Berggren Jesper Lützen Simon Fraser University University of Copenhagen Department of Mathematics Institute of Mathematics University Drive 8888 Universitetsparken 5 V5A 1S6 Burnaby, BC 2100 Koebenhaven Canada Denmark ISBN 978-1-84996-004-5 e-ISBN 978-1-84996-005-2 DOI 10.1007/978-1-84996-005-2 Springer London Dordrecht Heidelberg New York British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2009942260 Mathematics Classification Number (2010) 00A05, 00A30, 03A05, 01A05, 01A20, 01A85, 03-03, 51-03 and 97-03 © Springer-Verlag London Limited 2010 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency.
    [Show full text]
  • Ruler and Compass Constructions and Abstract Algebra
    Ruler and Compass Constructions and Abstract Algebra Introduction Around 300 BC, Euclid wrote a series of 13 books on geometry and number theory. These books are collectively called the Elements and are some of the most famous books ever written about any subject. In the Elements, Euclid described several “ruler and compass” constructions. By ruler, we mean a straightedge with no marks at all (so it does not look like the rulers with centimeters or inches that you get at the store). The ruler allows you to draw the (unique) line between two (distinct) given points. The compass allows you to draw a circle with a given point as its center and with radius equal to the distance between two given points. But there are three famous constructions that the Greeks could not perform using ruler and compass: • Doubling the cube: constructing a cube having twice the volume of a given cube. • Trisecting the angle: constructing an angle 1/3 the measure of a given angle. • Squaring the circle: constructing a square with area equal to that of a given circle. The Greeks were able to construct several regular polygons, but another famous problem was also beyond their reach: • Determine which regular polygons are constructible with ruler and compass. These famous problems were open (unsolved) for 2000 years! Thanks to the modern tools of abstract algebra, we now know the solutions: • It is impossible to double the cube, trisect the angle, or square the circle using only ruler (straightedge) and compass. • We also know precisely which regular polygons can be constructed and which ones cannot.
    [Show full text]
  • Newton's Laws , and to Understand the Significance of These Laws
    2 INTRODUCTION Learning Objectives 1). To introduce and define the subject of mechanics . 2). To introduce Newton's Laws , and to understand the significance of these laws. 3). The review modeling, dimensional consistency , unit conversions and numerical accuracy issues. 4). To review basic vector algebra (i.e., vector addition and subtraction and scalar multiplication). 3 Definitions Mechanics : Study of forces acting on a rigid body a) Statics - body remains at rest b) Dynamics - body moves Newton's Laws First Law : Given no net force , a body at rest will remain at rest and a body moving at a constant velocity will continue to do so along a straight path F0,0, M 0 . Second Law : Given a net force is applied, a body will experience an acceleration in the direction of the force which is proportional to the net applied force F ma . Third Law : For each action there is an equal and opposite reaction FAB F BA . 4 Models of Physical Systems Develop a model that is representative of a physical system Particle : a body of infinitely small dimensions (conceptually, a point). Rigid Body : a body occupying more than one point in space in which all the points remain a fixed distance apart. Deformable Body : a body occupying more that one point in space in which the points do not remain a fixed distance apart. Dimensional Consistency If you add together two quantities, x CvC1 v CaC 2 a these quantities need to have the same dimensions (units); e.g., 2 if x, v and a have units of (L), (L/T) and (L/T ), then C 1 and C 2 must have units of (T) and T 2 to maintain dimensional consistency.
    [Show full text]
  • Trisecting an Angle and Doubling the Cube Using Origami Method
    広 島 経 済 大 学 研 究 論 集 第38巻第 4 号 2016年 3 月 Note Trisecting an Angle and Doubling the Cube Using Origami Method Kenji Hiraoka* and Laura Kokot** meaning to fold, and kami meaning paper, refers 1. Introduction to the traditional art of making various attractive Laura Kokot, one of the authors, Mathematics and decorative figures using only one piece of and Computer Science teacher in the High school square sheet of paper. This art is very popular, of Mate Blažine Labin, Croatia came to Nagasaki, not only in Japan, but also in other countries all Japan in October 2014, for the teacher training over the world and everyone knows about the program at the Nagasaki University as a MEXT paper crane which became the international (Ministry of education, culture, sports, science symbol of peace. Origami as a form is continu- and technology) scholar. Her training program ously evolving and nowadays a lot of other was conducted at the Faculty of Education, possibilities and benefits of origami are being Nagasaki University in the field of Mathematics recognized. For example in education and other. Education under Professor Hiraoka Kenji. The goal of this paper is to research and For every teacher it is important that pupils learn more about geometric constructions by in his class understand and learn the material as using origami method and its properties as an easily as possible and he will try to find the best alternative approach to learning and teaching pedagogical approaches in his teaching. It is not high school geometry.
    [Show full text]
  • 3 Analytic Geometry
    3 Analytic Geometry 3.1 The Cartesian Co-ordinate System Pure Euclidean geometry in the style of Euclid and Hilbert is what we call synthetic: axiomatic, with- out co-ordinates or explicit formulæ for length, area, volume, etc. Nowadays, the practice of ele- mentary geometry is almost entirely analytic: reliant on algebra, co-ordinates, vectors, etc. The major breakthrough came courtesy of Rene´ Descartes (1596–1650) and Pierre de Fermat (1601/16071–1655), whose introduction of an axis, a fixed reference ruler against which objects could be measured using co-ordinates, allowed them to apply the Islamic invention of algebra to geometry, resulting in more efficient computations. The new geometry was revolutionary, so much so that Descartes felt the need to justify his argu- ments using synthetic geometry, lest no-one believe his work! This attitude persisted for some time: when Issac Newton published his groundbreaking Principia in 1687, his presentation was largely syn- thetic, even though he had used co-ordinates in his derivations. Synthetic geometry is not without its benefits—many results are much cleaner, and analytic geometry presents its own logical difficulties— but, as time has passed, its study has become something of a fringe activity: co-ordinates are simply too useful to ignore! Given that Cartesian geometry is the primary form we learn in grade-school, we merely sketch the familiar ideas of co-ordinates and vectors. • Assume everything necessary about on the real line. continuity y 3 • Perpendicular axes meet at the origin. P 2 • The Cartesian co-ordinates of a point P are measured by project- ing onto the axes: in the picture, P has co-ordinates (1, 2), often 1 written simply as P = (1, 2).
    [Show full text]