Brain Sci. 2014, 4, 428-452; doi:10.3390/brainsci4020428 OPEN ACCESS brain sciences ISSN 2076-3425 www.mdpi.com/journal/brainsci/ Article Human Brain Basis of Musical Rhythm Perception: Common and Distinct Neural Substrates for Meter, Tempo, and Pattern Michael H. Thaut 1,*, Pietro Davide Trimarchi 2,3,† and Lawrence M. Parsons 2 1 Center for Biomedical Research in Music, Colorado State University, Ft. Collins, CO 80523, USA 2 Department of Psychology, University of Sheffield, Sheffield S102TP, UK 3 Department of Psychology, University of Milano-Bicocca, Milan 20126, Italy † Present address: Don Carlo Gnocchi Foundation, Milan 20121, Italy * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel: +1-970-491-5533. Received: 14 January 2014; in revised form: 26 May 2014 / Accepted: 30 May 2014 / Published: 17 June 2014 Abstract: Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET) as they made covert same-different discriminations of (a) pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b) pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices.