IC-26 Geology and Ground Water Resources of Dade County, Georgia

Total Page:16

File Type:pdf, Size:1020Kb

IC-26 Geology and Ground Water Resources of Dade County, Georgia IC 26 GEORGIA STATE DIVISION OF CONSERVATION DEPARTMENT OF MINES, MINING AND GEOLOGY GARLAND PEYTON, Director THE GEOLOGICAL SURVEY Information Circular 26 GEOLOGY AND GROUND-WATER RESOURCES OF DADE COUNTY, GEORGIA By M. G. Croft U.S. Geological Survey Prepared in cooperation with the U.S. Geological Survey ATLANTA 1964 CONTENTS Page A bs tract ------------------------------------------- _____________________________________________________________________________________ ----------------------------------- 3 Introduction _____________ _____________________ ____________________ ___ ________________________________ __ _____ ___ ------------------------------------------------ 3 Location _________________________________________________________________________________________________________________________ -------------------------------- 3 CI i mate __ ___ ________ ___ ____ ______ ___ ______ _________ ____ _______ ___ __ ___ __ _______ __ _ ____ ________ __ __ __ __ _ __ __ ___ ___ __ _ __ _ _ __ _______ __ _ _ __ __ __ ___ __ ___ __ ____ __ __ _____ _ 3 To po gra p hy _____________________________________________________________________________________________________ -------------------------- _____________________ 5 G eo morpho Io gy ________________ . ____________________________________________________________________________ --------------------------- _________________ __ 5 Streams __ -------------------------------------------- ______________ ------------------------------------------------------------------------------------ _____________ 5 Purpose and scope of investigation _______________________________________________________ ---------------------------------------------- 5 AcknowIedgm en ts ------------------------------------------------------ ______________________________________________ -------------------------------- _ 6 Geo Io gy _____________________________ --------------------------------------- _--------- ___ -------------------- _________________ -------------------------------------------- 6 Introduction -------------------------------------------------------------------------------------------- ____ ------------------------------------------------- 6 Previous geologic work __________________________________________________________ --------------------------------------------------------------- 6 Cambrian s y stern ___________________________________________________ ----------------------------------------------------------------------- ________________ 6 Cambrian and Ordovician sys terns ______________________ _________________ __________ ____________ ___________________________ ___________________ 6 Knox dolomite ___ _ _____________________________________________________________ ------------------------------------------------------------ 6 Ordovician system _ ------------------------------------------------------------- -------------------------- ---------------------------------------------- 8 Chickamauga limestone _____________ ------------------------------------- -. ___________ - ________ --------------------------------------- 8 Sequatchie formation ________ --------------------------------------.-------------- _______ ------------------------------------------------- 8 Silurian system __ -... ------------------------------------------------- 9 Red Mountain formation _____________________________________________ _ ---- ---- ------------------------------------------------ 9 Devonian and Mississippian systems ----- -- --- ------------------------------------------- 9 Chattanooga shale ________ _ --------- ------ -- --- ---------------------------------------------- 9 Carboniferous rocks - Mississippian system __ ----------------- .- ------- - ----- ---------------------------- 9 Fort Payne chert _ _______ _ __ _ _______ _ - ----------------------------- 9 St. Louis limestone ____ _ _ ___ _ --------------------- - 10 Ste. Genevieve limestone --- ------ --------------------- 10 Gasper formation ____ _ ------------- ------------ --- 10 Golconda formation and Hartselle sandstone __ 10 Bangor limestone ___ _ 10 Pennington shale ____________________ _ -- -- -------- ------ ------ --------------------------------------- 11 Carboniferous rocks- Pennsylvanian system ______ ---- ------------------------------------ --------·------ 11 Gizzard member of Lookout sandstone ____________ _ ---- - ------ ------------------------------------------- 11 Sewanee member of Lookout sandstone _________ _ 11 Whitwell shale _ ____________________________________ _ -- 11 Bonair sandstone ____ ---------------------------------------------- -- 11 Vandever shale _____ ____ _ __ __________ _______ -- --- __ --- -- _ 12 Rock castle sandstone __ __ ______ ___ __________________________ __ __ ________ ________ _____ __ _ _______ 12 Lower sandstone member ---------------------------------------- ____________ ______________ _ _________ ________ __ ______ 12 Middle shale member -------------------------------------------------------- _____________________________ ------------------------------ 12 Upper sandstone member _____ ____________ ·------------------------------------------------------------ ---------------------------- 12 1 CONTENTS-Continued Geology - continued Page Quaternary s ystern .. ____ ---------------------------------------------------- ------------------------------------------------------------------- 12 All u vi urn _____ ____ ------------------------------------------- __________ ------------------------------------ __________________ __________________ __________ 12 Structure ______________________ . ______________________________ -------------------------------- _______ __ ____________ ___ ___ __ _______ ____ _________________________ __ 12 F o Ids __ ___ ___ __ __ _____ ___ ________ ----------------------------------------------------------------------------- -----·· ___________ ------------------------ __ __ 12 Faults ____ _____ ------------------------------------------------------- ______________ ---------------·-------------------------------------- 13 Ground water ____ ______________________________________________________________________ ---------------------------------------------- 13 Use of ground water in Dade County ______________ __ __________________ ________________ ------------------------------------- 13 HydroI o gy __ __ _ _______ ________ _____________________ -------------------------------------- ___________ ----------------------------------------- _________ 13 General statement _______________________________________________________________ ----------------------------------------------- __________ 13 Limestone and dolomite aquifers _________ __ __________ ______ _________ -------------------------------------------------------- 14 Sandstone and shale aquifers __ ------------------------------------------ -------------------- ---------------------------------------------- 15 Springs _______________________________________ ----------------------------------------------------------------------------------------------------------- 15 Chemical quality of water _ __ _ ------------------------------------------------------- _________ ---------------------------------------------- 15 Future development of ground water ___ _ _________________________________________ ----------------------------------------------------- 17 Selected references --------------------------------------------------------------------------------------------------------------------------------------------- 17 ILLUSTRATIONS- LONG LIST Page Figure 1. Map of Georgia showing Dade County and areas described in previous reports . 4 2. Monthly mean temperature at Chattanooga, Tenn. 5 3. Average monthly precipitation at Rising Fawn, Ga. -- .. - -- --------------------- ------------ 5 4. Topographic features of Dade County, Ga. 5 5. Map showing geology, and well and spring locations, Dade County, Ga.____ __ _ _______ Pocket 6. Diagram showing the occurrence of ground water in solution channels in a limestone area 14 TABLES Page Table 1. Geologic formations in Dade County, Ga. 7 2. Correlation of equivalent Pennsylvanian formations of the Cumberland Plateau of Georgia and Tennessee _ ___ _ ____________________ ______ ____________________ ______________ 11 S. Chemical analyses of ground water, Dade County, Ga._ ·- -- ------------------------------------------- 16 2 GEOLOGY AND GROUND-WATER RESOURCES OF DADE COUNTY, GEORGIA By Mack G. Croft ABSTRACT Ga. borders it on the south and east (fig. 1). Dade County, which is triangular-shaped, is about 25 Dade County is in an area of Paleozoic rocks in miles long, and about 13¥2 miles wide at the the mountainous northwest corner of Georgia. Georgia-Tennessee line. It includes 165 square The county, which is at the edge of the Cumber­ miles which lie within the Cedar Grove, Durham, land Plateau, includes 165 square miles. Land­ Fort Oglethorpe, Hooker, Shellmound, Sulphur surface altitude ranges from 700 to 2,000 feet Springs and Trenton topographic quadrangles of above sea level. The area receives about 53 inches the Geological Survey. Trenton, the county seat of precipitation annually, the greater part of and largest town, is in the central part of the which occurs during the winter and spring months. county. Agriculture is the principal industry. The Knox dolomite of Cambrian and Ordovician Dade County is traversed from north to south age is the oldest formation that crops out in the by U.S. Highway 11, a connecting route between county. Rocks older than the Knox have not been
Recommended publications
  • Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama
    Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama GEOLOGICAL SURVEY PROFESSIONAL PAPER 524-C Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama By JOHN T. HACK SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 524-C Theories of landscape origin are compared using as an example an area of gently dipping rocks that differ in their resistance to erosion UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract___________________________________________ C1 Cumberland Plateau and Highland Rim as a system in Introduction_______________________________________ 1 equilibrium______________________________________ C7 General description of area___________________________ 1 Valleys and coves of the Cumberland Escarpment___ 7 Cumberland Plateau and Highland Rim as dissected and Surficial deposits of the Highland Rim____________ 10 deformed peneplains _____________________ ,... _ _ _ _ _ _ _ _ 4 Elk River profile_______________________________ 12 Objections to the peneplain theory____________________ 5 Paint Rock Creek profile________________________ 14 Eastern Highland Rim Plateau as a modern peneplain__ 6 Conclusions________________________________________ 14 Equilibrium concept
    [Show full text]
  • Saltpeterminingand the Civil War Injackson County, Alabama by Marion O
    SaltpeterMiningand the Civil War inJackson County, Alabama by Marion O. Smith Saltpeter Mining and the Civil War in Jackson County, Alabama Marion O. Smith Printed by Byron's Graphic Arts, Maryville, Tennessee June, 1990 FRONT COVER Saltpeter vat cast inTumbling Rock Cave VOLUME 24, NUMBER 2, JOURNAL OF SPELEAN HISTORY, APRIL-JUNE, 1990 THE NEED FOR SALTPETER The formation of the Confederate States of America in early 1861 soon led to a bloody Civil War which created an urgency for all types of munitions. One of the South's most crucial necessities was to find an adequate supply for the ingredients of gunpowder: sulphur, charcoal, and saltpeter. The first two were not much of a challenge. Large amounts of sulphur were stored in Louisiana, originally for use in refining sugar, and pyrites could be roasted. Trees for charcoal, "the willow, dogwood, and alder," were plenti­ ful. Saltpeter (calcium nitrate converted to potassium nitrate) was the major concern. Although some state governments had various amounts of powder on hand, and more was acquired when Federal forts and arsenals were seized, the total was far from adequate. 1 Consequent ly, there were efforts by local, state, and the Confederate governments to insure that there was a sufficient supply of powder and its components. One decision was to buy saltpeter and powder in Europe and ship it through the recently declared Federal naval blockade. Another was to re­ vive saltpeter m~n~ng in the Appalachian caves of Virginia, Tennessee, Georgia, and Alabama, which had been largely neglected since the War of 1812, and to encourage mining in the Ozarks of Arkansas.
    [Show full text]
  • Chapter 40. Appalachian Planation Surfaces
    Chapter 40 Appalachian Planation Surfaces The Appalachian region not only includes the mountains, but also the surrounding provinces. During the erosion episode (see Chapter 8 and Appendix 4), rocks of the Appalachians were sometimes planed into a flat or nearly flat planation surface, especially on the provinces east and west of the Blue Ridge Mountains (Figure 40.1). But planation surfaces are also found in the Appalachian Mountains, mainly on the mountaintops. Figure 40.1. Map of the Appalachian provinces and the two provinces to the west (from Aadland et al., 1992). Due to their rolling and dissected morphology, the Appalachian provinces are rarely called planation surfaces, but they would mostly be erosion surfaces. I will continue to use the more descriptive term, planation surface, with the understanding that many of these are erosion surfaces. The Appalachian provinces exhibit three possible planation surfaces, from east to west, they include: (1) the Piedmont Province, (2) the accordant mountaintops of the Valley and Ridge Province (part of the Appalachian Mountains), and (3) the Appalachian Plateau which is divided into the Allegheny Plateau in the north and the Cumberland Plateau in the south. I also will include the Interior Low Plateaus Province to the west of the Appalachian Plateau. Many articles have been published about the Appalachian planation surface. Their origin is controversial among secular geologists, but they can readily be explained by the runoff of the global Genesis Flood. Figure 40.2. Lake on the Piedmont near Parkersville, South Carolina, showing general flatness of the terrain. The Piedmont Planation Surface The Piedmont Province begins just east of the Blue Ridge Mountains from the Hudson River in the north to Alabama in the south.
    [Show full text]
  • Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2018 Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval, Kinderhookian-Osagean Series, Lower Mississippian System, Tri-State Region, Southern Midcontinent Forrest Dalton McFarlin University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Geology Commons, and the Stratigraphy Commons Recommended Citation McFarlin, Forrest Dalton, "Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval, Kinderhookian-Osagean Series, Lower Mississippian System, Tri-State Region, Southern Midcontinent" (2018). Theses and Dissertations. 2952. https://scholarworks.uark.edu/etd/2952 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval, Kinderhookian-Osagean Series, Lower Mississippian System, Tri-State Region, Southern Midcontinent A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Forrest Dalton McFarlin Texas Christian University Bachelor of Science in Geology, 2015 August 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council. _____________________________________ Walter Manger, PhD Thesis Director _____________________________________ Adriana Potra, PhD Committee Member _____________________________________ Thomas McGilvery, PhD Committee Member ©2018 by Forrest Dalton McFarlin All Rights Reserved Abstract The Lower Mississippian interval comprises a single, third-order, eustatic cycle subdivided lithostratigraphically into the St. Joe Limestone (Hopkins 1893) and overlying Boone Formation (Branner 1891, Simonds 1891) with type areas in northern Arkansas.
    [Show full text]
  • Bedrock Geology of Altenburg Quadrangle, Jackson County
    BEDROCK GEOLOGY OF ALTENBURG QUADRANGLE Institute of Natural Resource Sustainability William W. Shilts, Executive Director JACKSON COUNTY, ILLINOIS AND PERRY COUNTY, MISSOURI STATEMAP Altenburg-BG ILLINOIS STATE GEOLOGICAL SURVEY E. Donald McKay III, Interim Director Mary J. Seid, Joseph A. Devera, Allen L. Weedman, and Dewey H. Amos 2009 360 GEOLOGIC UNITS ) ) ) 14 Qal Alluvial deposits ) 13 18 Quaternary Pleistocene and Holocene 17 360 ) 15 360 16 14 0 36 ) 13 Qf Fan deposits ) Unconformity Qal ) & 350 tl Lower Tradewater Formation Atokan ) ) Pennsylvanian 360 ) &cv Caseyville Formation Morrowan 24 360 ) Unconformity ) 17 Upper Elviran undivided, Meu ) Waltersburg to top of Degonia 19 20 Qal 21 22 23 ) 24 ) Mv Vienna Limestone 360 o ) 3 Mts ) 350 Mts Tar Springs Sandstone ) 20 360 ) Mgd 360 30 ) Mgd Glen Dean Limestone ) 21 350 360 Mts 29 ) Qal Hardinsburg Sandstone and J N Mhg Chesterian ) Golconda Formations h Æ Qal Mav anc 28 27 Br ) N oJ 26 25 JN 85 N ) Cypress Sandstone through J Mcpc Dsl 500 Paint Creek Formation JN N ) J o Mts N 5 J s ) Dgt 600 J N 70 J N Mgd Yankeetown Formation s ) Myr Db 80 28 Æ and Renault Sandstone N J 29 N J N ) Sb J Mgd Mississippian o Dgt Ssc 25 Clines o N 25 Msg 27 ) Qal J 80 s 3 Mav Aux Vases Sandstone N J N Mts o MILL J MISSISSIPPI 34 ) Qal J N ) N J Dsl 35 N 26 J o N 25 J Mgd Mgd ) Msg Ste. Genevieve Limestone 500 o Db DITCH J 20 Mgd N N N ) J J o RIVER o N 600 J 80 N ) 10 o J Mav Æ Msl St.
    [Show full text]
  • The Logan Plateau, a Young Physiographic Region in West Virginia, Kentucky, Virginia, and Tennessee
    The Logan Plateau, a Young Physiographic Region in West Virginia, Kentucky, Virginia, and Tennessee U.S. GEOLOGICAL SURVEY BULLETIN 1620 . II • r ,j • • ~1 =1 i1 .. ·~ II .I '1 .ill ~ I ... ... II 'II .fi :. I !~ ...1 . ~ !,~ .,~ 'I ~ J ·-=· ..I ·~ tJ 1;1 .. II "'"l ,,'\. d • .... ·~ I 3: ... • J ·~ •• I -' -\1 - I =,. The Logan Plateau, a Young Physiographic Region in West Virginia, Kentucky, Virginia, and Tennessee By WILLIAM F. OUTERBRIDGE A highly dissected plateau with narrow valleys, steep slopes, narrow crested ridges, and landslides developed on flat-lying Pennsylvanian shales and subgraywacke sandstone during the past 1.5 million years U.S. GEOLOGICAL SURVEY BULLETIN 1620 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE: 1987 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Outerbridge, William F. The Logan Plateau, a young physiographic region in West Virginia, Kentucky, Virginia, and Tennessee. (U.S. Geological Survey bulletin ; 1620) Bibliography: p. 18. Supt. of Docs. no.: I 19.3:1620 1. Geomorphology-Logan Plateau. I. Title. II. Series. QE75.B9 no. 1620 557.3 s [551.4'34'0975] 84-600132 [GB566.L6] CONTENTS Abstract 1 Introduction 1 Methods of study 3 Geomorphology 4 Stratigraphy 9 Structure 11 Surficial deposits 11 Distribution of residuum 11 Depth of weathering 11 Soils 11 Landslides 11 Derivative maps of the Logan Plateau and surrounding area 12 History of drainage development since late Tertiary time 13 Summary and conclusions 17 References cited 18 PLATES [Plates are in pocket] 1.
    [Show full text]
  • Geologic Resources Inventory Ancillary Map Information Document for Little River Canyon National Preserve
    U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Directorate Geologic Resources Division Little River Canyon National Preserve GRI Ancillary Map Information Document Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic Data for Little River Canyon National Preserve liri_geology.pdf Version: 6/30/2020 I Little River Canyon National Preserve Geologic Resources Inventory Ancillary Map Information Document for Little River Canyon National Preserve Table of Contents Geologic Reso..u..r..c..e..s.. .I.n..v..e..n..t.o...r.y.. .M...a..p.. .D...o..c..u..m...e...n..t............................................................................ 1 About the NPS.. .G...e..o..l.o..g..i.c... .R..e..s..o..u...r.c..e..s.. .I.n..v..e..n...t.o..r.y.. .P...r.o..g...r.a..m............................................................... 3 GRI Digital Ma.p..s.. .a..n...d.. .S..o..u...r.c..e.. .M...a..p.. .C...i.t.a..t..i.o..n..s.................................................................................. 5 Index Ma..p........................................................................................................................................................................ 6 Map Unit List ................................................................................................................................... 7 Map Unit Desc..r.i.p..t.i.o...n..s...................................................................................................................... 9 Qal - Allu..v..iu..m... .a..n..d.. .l.o..w... .t.e..r.r.a..c..e.. .d..e..p..o..s..i.t.s. .(..Q..u..a..t.e..r..n..a..r.y.)..................................................................................................... 9 Tal - Fluv..i.a..l. .d..e..p..o..s.i.t.s.. .(.T..e..r..t.ia..r..y.)........................................................................................................................................ 9 PNpv - P.o..t.t.s..v..i.l.le.. .F...o..r.m...a..t.i.o..n.
    [Show full text]
  • IC-29 Geology and Ground Water Resources of Walker County, Georgia
    IC 29 GEORGIA STATE DIVISION OF CONSERVATION DEPARTMENT OF MINES, MINING AND GEOLOGY GARLAND PEYTON, Director THE GEOLOGICAL SURVEY Information Circular 29 GEOLOGY AND GROUND-WATER RESOURCES OF WALKER COUNTY, GEORGIA By Charles W. Cressler U.S. Geological Survey Prepared in cooperation with the U.S. Geological Survey ATLANTA 1964 CONTENTS Page Abstract _______________________________________________ -··---------------------------- _____________________ ----------------·----- _____________ __________________________ __ 3 In trodu ction ------------------------------------------ ________________________________ --------------------------------------------------------------------------------- 3 Purpose and scope ------------------------------"--------------------------------------------------------------------------------------------------------- 3 Previous inv es tigati o ns ____ _____ ________ _______ __________ ------------------------------------------------------------------------------------------ 5 Geo Io gy _________________________________________________________________ --- ___________________ -- ___________ ------------- __________________ ---- _________________ ---- _______ 5 Ph ys i ogr a p hy ______________________________________________________ ---------------------------------------- __________________ -------------------------------- 5 Geo Io gi c his tory __________________________ _ __ ___ ___ _______ _____________________________________________ ------------------------------------------------- 5 Stratigraphy -·· __________________
    [Show full text]
  • Geologic Cross Section C–C' Through the Appalachian Basin from Erie
    Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p.
    [Show full text]
  • Stratigraphic Framework of Cambrian and Ordovician Rocks in The
    Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Medina County, Ohio, through Southwestern and South-Central Pennsylvania to Hampshire County, West Virginia U.S. GEOLOGICAL SURVEY BULLETIN 1839-K Chapter K Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Medina County, Ohio, through Southwestern and South-Central Pennsylvania to Hampshire County, West Virginia By ROBERT T. RYDER, ANITA G. HARRIS, and JOHN E. REPETSKI Stratigraphic framework of the Cambrian and Ordovician sequence in part of the central Appalachian basin and the structure of underlying block-faulted basement rocks U.S. GEOLOGICAL SURVEY BULLETIN 1839 EVOLUTION OF SEDIMENTARY BASINS-APPALACHIAN BASIN U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 Library of Congress Cataloging in Publication Data Ryder, Robert T. Stratigraphic framework of Cambrian and Ordovician rocks in the central Appalachian Basin from Medina County, Ohio, through southwestern and south-central Pennsylvania to Hampshire County, West Virginia / by Robert T. Ryder, Anita C. Harris, and John E. Repetski. p. cm. (Evolution of sedimentary basins Appalachian Basin ; ch. K) (U.S. Geological Survey bulletin ; 1839-K) Includes bibliographical references. Supt. of Docs, no.: I 19.3:1839-K 1. Geology, Stratigraphic Cambrian.
    [Show full text]
  • Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee
    Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee GEOLOGICAL SURVEY PROFESSIONAL PAPER 996 Prepared in cooperation with the Tennessee Division of Geology Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee By ROBERT C. MILICI and HELMUTH WEDOW, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 996 Prepared in cooperation with the Tennessee Division of Geology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1977 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Milici, Robert C 1931- Upper Ordovician and Silurian stratigraphy in Sequatchie Valley and parts of the adjacent valley and ridge, Tennessee. (Geological Survey professional paper; 996) Bibliography: p. Supt. of Docs. no.: I 19.16:996 1. Geology, Stratigraphic--Ordovician. 2. Geology, Stratigraphic--Silurian. 3. Geology--Tennessee--Sequatchie Valley. 4. Geology--Tennessee--Chattanooga region. I. Wedow, Helmuth, 1917- joint author. II: Title. Upper Ordovician and Silurian stratigraphy in Sequatchie Valley .... III. Series: United States. Geological Survey. Professional paper; 996. QE660.M54 551.7'310976877 76-608170 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03002·1 CONTENTS Page Abstract 1 Introduction -----------------------------------------------------------------------------
    [Show full text]
  • A Background Investigation of Tornado Activity Across the Southern Cumberland Plateau Terrain System of Northeastern Alabama
    DECEMBER 2018 L Y Z A A N D K N U P P 4261 A Background Investigation of Tornado Activity across the Southern Cumberland Plateau Terrain System of Northeastern Alabama ANTHONY W. LYZA AND KEVIN R. KNUPP Department of Atmospheric Science, Severe Weather Institute–Radar and Lightning Laboratories, Downloaded from http://journals.ametsoc.org/mwr/article-pdf/146/12/4261/4367919/mwr-d-18-0300_1.pdf by NOAA Central Library user on 29 July 2020 University of Alabama in Huntsville, Huntsville, Alabama (Manuscript received 23 August 2018, in final form 5 October 2018) ABSTRACT The effects of terrain on tornadoes are poorly understood. Efforts to understand terrain effects on tornadoes have been limited in scope, typically examining a small number of cases with limited observa- tions or idealized numerical simulations. This study evaluates an apparent tornado activity maximum across the Sand Mountain and Lookout Mountain plateaus of northeastern Alabama. These plateaus, separated by the narrow Wills Valley, span ;5000 km2 and were impacted by 79 tornadoes from 1992 to 2016. This area represents a relative regional statistical maximum in tornadogenesis, with a particular tendency for tornadogenesis on the northwestern side of Sand Mountain. This exploratory paper investigates storm behavior and possible physical explanations for this density of tornadogenesis events and tornadoes. Long-term surface observation datasets indicate that surface winds tend to be stronger and more backed atop Sand Mountain than over the adjacent Tennessee Valley, potentially indicative of changes in the low-level wind profile supportive to storm rotation. The surface data additionally indicate potentially lower lifting condensation levels over the plateaus versus the adjacent valleys, an attribute previously shown to be favorable for tornadogenesis.
    [Show full text]