A Survey of Enabling Technologies in Synthetic Biology Kahl and Endy

Total Page:16

File Type:pdf, Size:1020Kb

A Survey of Enabling Technologies in Synthetic Biology Kahl and Endy A survey of enabling technologies in synthetic biology Kahl and Endy Kahl and Endy Journal of Biological Engineering 2013, 7:13 http://www.jbioleng.org/content/7/1/13 Kahl and Endy Journal of Biological Engineering 2013, 7:13 http://www.jbioleng.org/content/7/1/13 RESEARCH Open Access A survey of enabling technologies in synthetic biology Linda J Kahl* and Drew Endy Abstract Background: Realizing constructive applications of synthetic biology requires continued development of enabling technologies as well as policies and practices to ensure these technologies remain accessible for research. Broadly defined, enabling technologies for synthetic biology include any reagent or method that, alone or in combination with associated technologies, provides the means to generate any new research tool or application. Because applications of synthetic biology likely will embody multiple patented inventions, it will be important to create structures for managing intellectual property rights that best promote continued innovation. Monitoring the enabling technologies of synthetic biology will facilitate the systematic investigation of property rights coupled to these technologies and help shape policies and practices that impact the use, regulation, patenting, and licensing of these technologies. Results: We conducted a survey among a self-identifying community of practitioners engaged in synthetic biology research to obtain their opinions and experiences with technologies that support the engineering of biological systems. Technologies widely used and considered enabling by survey participants included public and private registries of biological parts, standard methods for physical assembly of DNA constructs, genomic databases, software tools for search, alignment, analysis, and editing of DNA sequences, and commercial services for DNA synthesis and sequencing. Standards and methods supporting measurement, functional composition, and data exchange were less widely used though still considered enabling by a subset of survey participants. Conclusions: The set of enabling technologies compiled from this survey provide insight into the many and varied technologies that support innovation in synthetic biology. Many of these technologies are widely accessible for use, either by virtue of being in the public domain or through legal tools such as non-exclusive licensing. Access to some patent protected technologies is less clear and use of these technologies may be subject to restrictions imposed by material transfer agreements or other contract terms. We expect the technologies considered enabling for synthetic biology to change as the field advances. By monitoring the enabling technologies of synthetic biology and addressing the policies and practices that impact their development and use, our hope is that the field will be better able to realize its full potential. Keywords: Synthetic biology, Biological engineering, Enabling technologies, Survey, Intellectual property rights, Licensing, Regulation * Correspondence: [email protected] Bioengineering Department, Stanford University, Y2E2 Room 269C, 473 Via Ortega, Stanford, CA 94305-4201, USA © 2013 Kahl and Endy; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Kahl and Endy Journal of Biological Engineering 2013, 7:13 Page 2 of 18 http://www.jbioleng.org/content/7/1/13 Background coupled to those technologies. Investors and funders of Synthetic biology is an emerging, interdisciplinary field synthetic biology research also may find this information that aims to make the design, construction, and optimi- useful in guiding funding decisions and establishing pol- zation of biological systems easier and more reliable. icies for the patenting and licensing of enabling technolo- Advances in synthetic biology will deepen our under- gies. Information gained from monitoring the enabling standing of how biological systems work, and should technologies of synthetic biology also may be useful in enable faster and cheaper development of useful medi- identifying technology trends, and could help government cines, chemicals and materials, new means for informa- agencies and non-governmental organizations in crafting tion processing and data storage, and sources of food policy frameworks to address the safety and security con- and energy that could help promote human health and cerns raised by synthetic biology research. preserve the environment. Although the field of syn- thetic biology is relatively young, there have already been Results promising advances in engineering microorganisms to Demographic data produce important drugs [1,2], exploring strategies for During the period the survey was active, from August biofuel production [3,4], and designing and DNA-based 31, 2012 to January 30, 2013 a total of 160 responses information storage [5,6] and genetically-encoded com- were received. Six responses were excluded because they munications and processing systems [7,8]. did not contain answers to any of the substantive ques- As is true for many emerging fields of research, realiz- tions on technology use. Seventeen responses were from ing the full potential for constructive applications of participants who answered “no” to Survey Question 11 synthetic biology will require not only the continued that asked survey participants to indicate whether they development of enabling technologies but also the im- considered themselves to be a synthetic biologist or to plementation of policies and practices to ensure that be engaged in basic or applied synthetic biology research these technologies remain accessible to those working in or development. Responses from these 17 survey partici- basic and applied research. The enabling technologies pants were analyzed separately, and the remaining 137 for synthetic biology can be defined, broadly, as any re- responses were used for most analyses. agent or method that, alone or in combination with as- Responses originated from the United States (121 re- sociated technologies, provides the means to generate sponses, 88%) and ten other countries (16 responses, any new research tool or application in synthetic biology. 12%). The distribution of responses from outside the Because the field of synthetic biology spans a wide range United States was Australia (1), Canada (1), Germany (2), of disciplines – from engineering and biology to math- Israel (1), Italy (1), Japan (3), Mexico (1), Sweden (1), and ematics and computer science – the technologies con- the United Kingdom (5). Responses were received from sidered “enabling” by synthetic biology researchers may researchers working exclusively in a non-commercial be expected to cover a broad range, depending on the organization (n = 91, 66%), exclusively in a commercial focus and nature of the research. Monitoring the enab- organization (n = 39, 28%) and in both commercial and ling technologies of synthetic biology is an important non-commercial organizations (n = 7, 5%). Among survey step towards understanding the needs, abilities and ac- respondents working exclusively in a non-commercial complishments of this diverse research community. organization, most indicated that they worked in a college Here, we conducted a survey among a self-identifying or university (n = 64), research institution (n = 9), govern- community of practitioners engaged in synthetic biology ment laboratory (n = 1), were affiliated with both a col- research to obtain their opinions and experiences with lege/university and research institution (n = 12) or were technologies that support the engineering of biological independent (n = 5). Among survey respondents working systems. The aim of this first study was to define a set of exclusively in a commercial organization, most were from enabling technologies for the field of synthetic biology, small companies of fewer than 50 employees (n = 21) and with a focus on technologies used in research laborator- the rest were from companies of more than 1000 em- ies in both academia and industry. Our goal was to ployees (n = 11), fewer than 1000 employees (n = 3), and gather information about the technologies considered fewer than 250 employees (n = 4). Of the 7 survey respon- enabling by practitioners in the field so that we and dents that worked in both commercial and non-commer- others might better evaluate the landscape of synthetic cial organizations, all worked in a small company of fewer biology and explore policies and practices that best pro- than 50 employees as well as a college/university or re- mote continued innovation. For example, it is likely that search institution. useful applications of synthetic biology will embody mul- tiple patented inventions and monitoring the enabling Experience with the iGEM competition technologies of synthetic biology will facilitate the sys- Survey Question 2 asked participants to provide infor- tematic investigation of the intellectual property rights mation about their experience as student or non-student Kahl and Endy Journal of Biological Engineering 2013, 7:13 Page 3 of 18 http://www.jbioleng.org/content/7/1/13 participants of the International Genetically Engineered The majority of synthetic biology researchers in academia Machines (iGEM) competition (http://igem.org), a syn- (n = 88) used biological parts from
Recommended publications
  • DNA Purification Process Optimization at Life Technologies Corporation
    DNA PLASMID PURIFICATION PROCESS OPTIMIZATION AT LIFE TECHNOLOGIES CORPORATION A Thesis presented to The Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Biomedical Engineering by Trevor Shepherd June 2013 © 2013 Trevor Shepherd ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: DNA PLASMID PURIFICATION PROCESS OPTIMIZATION AT LIFE TECHNOLOGIES CORPORATION AUTHOR: Trevor Shepherd DATE SUBMITTED: April, 2013 COMMITTEE CHAIR: Dr. Lanny Griffin, Biomedical Engineering Department Chair COMMITTEE MEMBER: Dr. Trevor Cardinal, Associate Professor of Biomedical Engineering COMMITTEE MEMBER: Dr. Mark Cochran, Manufacturing Scientist at Life Technologies iii ABSTRACT DNA PLASMID PURIFICATION PROCESS OPTIMIZATION AT LIFE TECHNOLOGIES CORPORATION Trevor Shepherd This project focused on optimizing the plasmid DNA purification process at Life Technologies. These plasmids are designed to code for specialized proteins used by research universities, national laboratories, or research companies. Once cultivated and harvested, the plasmids must be analyzed for quality and quantity. The project is divided into improving three aspects of the process: 1) plasmid identification, 2) plasmid purity evaluation, and 3) process yield. Plasmid identification is now simpler, more robust and has zero ambiguity. Plasmid purity evaluation is now measured with computer software, which reduces user error and eliminates subjectivity. Using the nascent metrics provided by the improved identification and purity evaluation techniques, process yield was analyzed and improved. The hypotheses on yield improvement and the information gleaned from their resulting experiments provide a foundation for further process improvement. iv ACKNOWLEDGEMENTS I would like to thank Mark Cochran for his deep knowledge of the science and steady patience throughout my time at Life Technologies and while I was writing my thesis.
    [Show full text]
  • Informa Tics for Genome Analysis, Biomarkers,And Ta Rget Disco Very
    Register by March 14 and Save up to $200! Final Agenda Cambridge Healthtech Institute’s Sixth Annual April 28 – 30, 2008 • World Trade Center • Boston, MA Keynote Presentations by: Concurrent Tracks: • Informatics and IT Infrastructure & Operations • Informatics for Genome Analysis, Biomarkers, and Target Discovery Linda Avey co-Founder • Predictive and in silico Science 23andMe, Inc. • eChemistry Solutions • Clinical and Medical Informatics Joshua Boger, Ph.D. President & Chief Executive Offi cer Keynote Panel: A Must-Attend Event for the Life Vertex Pharmaceuticals, Inc. The Future of Personal Genomics: A special plenary panel discussion featuring George Church,Science Ph.D., Harvard IT Medical& Informatics School Community Dietrich Stephan, Ph.D., Navigenics John Reynders, Ph.D. Jeffrey M. Drazen, M.D., New England Journal of Medicine/Harvard Vice President & Chief Information Offi cer Medical School Johnson & Johnson, Pharma R&D Fred D. Ledley, M.D., Bentley College ...and more 2008 Benjamin Franklin Award EEventvent FFeatures:eatures: presented by Bioinformatics.org • Access All Five Tracks for One Price • Network with 1,500+ Delegates Platinum Sponsors: • Hear 85+ Technology and Scientifi c Presentations • Choose from Four Pre-conference Workshops, the Oracle Life Sciences and Healthcare User Group Meeting, and Symyx Software Symposium 2008 Gold Sponsors: • Attend Bio-IT World’s Best Practices Awards NEW Bronze Sponsor: • Connect with Attendees Using CHI’s Intro-Net Corporate Support: • Participate in the Poster Competition • See the Winners of the following 2008 Awards: Offi cial Publication: Benjamin Franklin Best of Show Lead Sponsoring Publications: Best Practices • View Who’s Who & What’s New in the Exhibit Hall • And Much More! www.Bio-ITWorldExpo.com Organized & Managed by: Cambridge Healthtech Institute 250 First Avenue, Suite 300, Needham, MA 02494 • Phone: 781-972-5400 • Fax: 781-972-5425 • Toll-free in the U.S.
    [Show full text]
  • Research Laboratory of Electronics
    Research Laboratory of Electronics The Research Laboratory of Electronics (RLE) at MIT is a vibrant intellectual community and was one of the Institute’s earliest modern interdepartmental academic research centers. RLE research encompasses both basic and applied science and engineering in an extensive range of natural and man-made phenomena. Integral to RLE’s efforts is the furthering of scientific understanding and leading innovation to provide great service to society. The lab’s research spans the fundamentals of quantum physics and information theory to synthetic biology and power electronics and extends to novel engineering applications, including those that produce significant advances in communication systems or enable remote sensing from aircraft and spacecraft, and the development of new biomaterials and innovations in diagnostics and treatment of human diseases. RLE was founded in 1946 following the groundbreaking research that led to the development of ultra-high-frequency radar, a technology that changed the course of World War II. It was home to some of the great discoveries made in the 20th century at MIT. Cognizant of its rich history and focus on maintaining its position as MIT’s leading interdisciplinary research organization, RLE fosters a stimulating and supportive environment for innovative research and impact. What distinguishes RLE today from all other entities at MIT is its breadth of intellectual pursuit and diversity of research themes. The lab supports its researchers by providing a wide array of services spanning financial and human resources (HR), information technology, and renovations. It is fiscally independent and maintains a high level of loyalty from its principal investigators (PIs) and staff.
    [Show full text]
  • Sweet Taste Receptor Expression in Ruminant Intestine and Its Activation by Artificial Sweeteners to Regulate Glucose Absorption
    J. Dairy Sci. 97 :4955–4972 http://dx.doi.org/ 10.3168/jds.2014-8004 © American Dairy Science Association®, 2014 . Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption 1 2 3 A. W. Moran ,* M. Al-Rammahi ,* C. Zhang,* D. Bravo ,† S. Calsamiglia ,‡ and S. P. Shirazi-Beechey * * Epithelial Function and Development Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom † Pancosma SA, 1218 Geneva, Switzerland ‡ Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain ABSTRACT than a 7-fold increase in SGLT1 protein abundance was noted. Collectively, the data indicate that inclusion of Absorption of glucose from the lumen of the intestine this artificial sweetener enhances SGLT1 expression into enterocytes is accomplished by sodium-glucose and mucosal growth in ruminant animals. Exposure of co-transporter 1 (SGLT1). In the majority of mam- ruminant sheep intestinal segments to saccharin or neo- malian species, expression (this includes activity) of hesperidin dihydrochalcone evokes secretion of GLP-2, SGLT1 is upregulated in response to increased dietary the gut hormone known to enhance intestinal glucose monosaccharides. This regulatory pathway is initiated absorption and mucosal growth. Artificial sweeteners, by sensing of luminal sugar by the gut-expressed sweet such as Sucram, at small concentrations are potent taste receptor. The objectives of our studies were to activators
    [Show full text]
  • PA00XCSB.Pdf
    Leidos Proprietary 1. EXECUTIVE SUMMARY A summary of efforts for the planned, ongoing, and completed projects for the Malaria Vaccine Development Program (MVDP) contract for this reporting period are herein detailed. A compiled Gantt chart including activities associated with each of the projects has been created and included as an attachment to this report. Ongoing projects that will continue through FY2019 include two vaccine development projects, the CSP vaccine development project (CSP Vaccine) and liver stage vaccine development project (Liver Stage Vaccine), as well as the clinical study with RH5 (RH5.1 Clinical Study), the latter to assess long-term immunogenicity in RH5.1/AS01 vaccinees. Of note is that while both the CSP and the liver stage vaccine development projects were initiated as epitope-based projects, these have since been realigned to target whole proteins; therefore, the project names have also been realigned to remove “epitope-based.” Expansion of work on the RCR complex into a vaccine development project (RCR Complex) occurred in early FY2019 and this project will continue until the end date of the contract. Lastly, a new project, the RH5.1 human monoclonal antibody identification and development project (RH5.1 Human mAb), was initiated in early FY2019 and will continue until the end date of the contract. Two projects were completed in FY2019, the blood stage epitope-based vaccine development project and the PD1 blockade inhibitor project (PD1 Block Inh). Leidos continues to seek collaborators for information exchange under NDA, reagent exchange under MTA, and collaboration under CRADA, to expand our body of knowledge and access to reagents with minimal cost to the program.
    [Show full text]
  • Understanding the Origins, Dispersal, and Evolution of Bonamia Species (Phylum Haplosporidia) Based on Genetic Analyses of Ribosomal RNA Gene Regions
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2011 Understanding the Origins, Dispersal, and Evolution of Bonamia Species (Phylum Haplosporidia) Based on Genetic Analyses of Ribosomal RNA Gene Regions Kristina M. Hill College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Developmental Biology Commons, Evolution Commons, and the Molecular Biology Commons Recommended Citation Hill, Kristina M., "Understanding the Origins, Dispersal, and Evolution of Bonamia Species (Phylum Haplosporidia) Based on Genetic Analyses of Ribosomal RNA Gene Regions" (2011). Dissertations, Theses, and Masters Projects. Paper 1539617909. https://dx.doi.org/doi:10.25773/v5-a0te-9079 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Understanding the Origins, Dispersal, and Evolution of Bonamia Species (Phylum Haplosporidia) Based on Genetic Analyses of Ribosomal RNA Gene Regions A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Science by Kristina M. Hill 2011 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science CH-s 7n - "UuUL ' Kristina Marie Hill Approved, May 2011 w. n Eugene M. Burreson, Ph.D Advisor Kimberly S. Reece, Ph.D.
    [Show full text]
  • Need and Role of Scala Implementations in Bioinformatics
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 2, 2017 Need and Role of Scala Implementations in Bioinformatics Abbas Rehman Muhammad Atif Sarwar Department of Computer Science Department of Computer Science COMSATS Institute of Information Technology COMSATS Institute of Information Technology Sahiwal, Pakistan Sahiwal, Pakistan Ali Abbas Javed Ferzund Department of Computer Science Department of Computer Science COMSATS Institute of Information Technology COMSATS Institute of Information Technology Sahiwal, Pakistan Sahiwal, Pakistan Abstract—Next Generation Sequencing has resulted in the evolutionary change in data generation of different sequences. generation of large number of omics data at a faster speed that NGS machines are generating a huge amount of sequence data was not possible before. This data is only useful if it can be stored per day that needs to be stored, analyzed and managed well to and analyzed at the same speed. Big Data platforms and tools like seek the maximum advantages from this. Existing Apache Hadoop and Spark has solved this problem. However, bioinformatics techniques, tools or software are not keeping most of the algorithms used in bioinformatics for Pairwise pace with the speed of data generation. Old Bioinformatics alignment, Multiple Alignment and Motif finding are not tools have very less performance, accuracy and scalability implemented for Hadoop or Spark. Scala is a powerful language while analyzing large amount of data. When storing, managing supported by Spark. It provides, constructs like traits, closures, and analyzing large amount of data which is being generated functions, pattern matching and extractors that make it suitable now a days, these tools require more time and cost with less for Bioinformatics applications.
    [Show full text]
  • View Publication
    Downloaded from rsif.royalsocietypublishing.org on 20 April 2009 Towards programming languages for genetic engineering of living cells Michael Pedersen and Andrew Phillips J. R. Soc. Interface published online 15 April 2009 doi: 10.1098/rsif.2008.0516.focus Supplementary data "Data Supplement" http://rsif.royalsocietypublishing.org/content/suppl/2009/04/15/rsif.2008.0516.focus.D C1.html References This article cites 19 articles, 7 of which can be accessed free http://rsif.royalsocietypublishing.org/content/early/2009/04/14/rsif.2008.0516.focus.full. html#ref-list-1 P<P Published online 15 April 2009 in advance of the print journal. Subject collections Articles on similar topics can be found in the following collections synthetic biology (9 articles) Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication. To subscribe to J. R. Soc. Interface go to: http://rsif.royalsocietypublishing.org/subscriptions This journal is © 2009 The Royal Society Downloaded from rsif.royalsocietypublishing.org on 20 April 2009 J. R. Soc. Interface doi:10.1098/rsif.2008.0516.focus Published online Towards programming languages for genetic engineering of living cells Michael Pedersen1,2 and Andrew Phillips1,* 1Microsoft Research Cambridge, Cambridge CB3 0FB, UK 2LFCS, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK Synthetic biology aims at producing novel biological systems to carry out some desired and well-defined functions.
    [Show full text]
  • SYNTHETIC BIOLOGY and ITS POTENTIAL IMPLICATIONS for BIOTRADE and ACCESS and BENEFIT-SHARING ©2019, United Nations Conference on Trade and Development
    UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT SYNTHETIC BIOLOGY AND ITS POTENTIAL IMPLICATIONS FOR BIOTRADE AND ACCESS AND BENEFIT-SHARING ©2019, United Nations Conference on Trade and Development. All rights reserved. The trends, figures and views expressed in this publication are those of UNCTAD and do not necessarily represent the views of its member States. The designations employed and the presentation of material on any map in this work do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This study can be freely cited provided appropriate acknowledgment is given to UNCTAD. For further information on UNCTAD’s BioTrade Initiative please consult the following website: http://www.unctad. org/biotrade or contact us at: [email protected] This publication has not been formally edited. UNCTAD/DITC/TED/INF/2019/12 AND ITS POTENTIAL IMPLICATIONS FOR BIOTRADE AND ACCESS AND BENEFIT-SHARING iii Contents Acknowledgements ................................................................................................................................iv Abbreviations ...........................................................................................................................................v EXECUTIVE SUMMARY ............................................................................................. vi SECTION 1: INTRODUCTION TO BIOTRADE,
    [Show full text]
  • Realizing the Potential of Synthetic Biology
    Nature Reviews Molecular Cell Biology | AOP, published online 12 March 2014; doi:10.1038/nrm3767 PERSPECTIVES computer-aided-design (CAD), safety sys- VIEWPOINT tems, integrating models, genome editing and accelerated evolution. Synthetic biology Realizing the potential of synthetic is less like highly modular (or ‘switch-like’) electrical engineering and computer science biology and more like civil and mechanical engineer- ing in its use of optimization of modelling of whole system-level stresses and traffic flow. George M. Church, Michael B. Elowitz, Christina D. Smolke, Christopher A. Voigt and Ron Weiss Michael B. Elowitz. At the most general level, synthetic biology expands the subject Abstract | Synthetic biology, despite still being in its infancy, is increasingly matter of biology from the (already enor- providing valuable information for applications in the clinic, the biotechnology mous) space of existing species and cellular industry and in basic molecular research. Both its unique potential and the systems that have evolved to the even larger challenges it presents have brought together the expertise of an eclectic group of space of non-natural, but feasible, species scientists, from cell biologists to engineers. In this Viewpoint article, five experts and systems. Although we started with circuits to carry out the simplest kinds of discuss their views on the future of synthetic biology, on its main achievements in dynamic behaviours, synthetic approaches basic and applied science, and on the bioethical issues that are associated with the can be applied broadly to all types of bio­ design of new biological systems. logical functions from metabolism to multi­ cellular development. Synthetic biology allows us to figure out what types of genetic An increasing number of publications For instance, insight gained from systems circuit designs are capable of implement- and institutions are dedicated to biology investigations of natural processes ing different cellular behaviours, and what synthetic biology.
    [Show full text]
  • Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns
    Send Orders of Reprints at [email protected] Current Genomics, 2013, 14, 11-24 11 Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns 1,2, 1 1 1 Harald König *, Daniel Frank , Reinhard Heil and Christopher Coenen 1Institute for Technology Assessment and Systems Analysis (ITAS); 2Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology, PO box 3640, 76021 Karlsruhe, Germany Abstract: New organisms and biological systems designed to satisfy human needs are among the aims of synthetic ge- nomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and or- ganisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genom- ics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engi- neering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and con- verging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by mak- ing possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, en- vironmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications. Received on: May 22, 2012- Revised on: October 11, 2012- Accepted on: October 12, 2012 Keywords: Applications, Benefits, Biofuels, Biomedicine, Environment, Risks, Synthetic genomics, Synthetic biology.
    [Show full text]
  • Commissioned Papers Synthetic Genomics: Risks and Benefits For
    Commissioned Papers Synthetic Genomics: Risks and Benefits for Science and Society This volume of papers accompanies the report Synthetic Genomics: Options for Governance Synthetic Genomics: Risks and Benefits for Science and Society (this page blank) Synthetic Genomics: Risks and Benefits for Science and Society COMMISSIONED PAPERS TABLE OF CONTENTS Robert Jones Sequence Screening……………………………………………………………...……1-16 Yogesh Sanghvi A Roadmap to the Assembly of Synthetic DNA from Raw Materials……..………….17-33 Ralph S. Baric Synthetic Viral Genomics…………………………………………………………….35-81 Marc S. Collett Impact of Synthetic Genomics on the Threat of Bioterrorism with Viral Agents..………………………………………………………………………..83-103 Diane O. Fleming Risk Assessment of Synthetic Genomics: A Biosafety and Biosecurity Perspective………………………...………………………………….105-164 Franco Furger From Genetically Modified Organisms to Synthetic Biology: Legislation in the European Union, in Six Member Countries, and in Switzerland…………………………………………………………..……..165-184 Synthetic Genomics: Risks and Benefits for Science and Society (this page blank) Synthetic Genomics: Risks and Benefits for Science and Society The following papers were commissioned for the project Synthetic Genomics: Risks and Benefits for Science and Society. These papers formed the basis of many discussions at project workshops and at a large invitational meeting. The information elicited from these meetings, and from the commissioned papers themselves, formed the basis of our report Synthetic Genomics: Options for Governance (http://dspace.mit.edu/handle/1721.1/39141). The views and opinions expressed in these commissioned papers are those of the authors of the papers and not necessarily those of the authors of the report, or of the institutions at which the authors work. Citation: Working Papers for Synthetic Genomics: Risks and Benefits for Science and Society.
    [Show full text]