Pre-Construction Benthic Survey Cromarty Firth

Total Page:16

File Type:pdf, Size:1020Kb

Pre-Construction Benthic Survey Cromarty Firth Appendix O: Ecology: Benthic Appendix O.1: Benthic Survey Fugro Invergordon Ground Investigation Benthic Report Pre-Construction Benthic Survey Cromarty Firth Fugro Document No.: 160868_01rev1 06 April 2017 Fugro Geoservices Fugro Document No. 160868_01rev1 Page 1 of 39 FUGRO GEOSERVICES INVERGORDON GROUND INVESTIGATION BENTHIC REPORT PRE-CONSTRUCTION BENTHIC SURVEY Invergordon Ground Investigation Benthic Report Pre-Construction Benthic Survey Cromarty Firth 24 to 25 February 2017 Fugro Document No.: 160868_01rev1 Volume 1 of 1 Prepared for: Fugro Geoservices Bickland Industrial Park Falmouth Cornwall TR11 4TA United Kingdom 01 Draft E. Capasso S. De Gregorio J. Greig 06 April 2017 Issue Report Status Prepared Checked Approved Date Fugro Document No. 160868_01rev1 FUGRO GEOSERVICES INVERGORDON GROUND INVESTIGATION BENTHIC REPORT PRE-CONSTRUCTION BENTHIC SURVEY EXECUTIVE SUMMARY The Port of Cromarty Firth required to undertake a pre-construction benthic survey of the Phase 4 area (Berth 6 and 7) of the Invergordon Service Base. The aim of the survey was to gain a better understanding of the benthic environment within the proposed development area. The survey comprised seabed video transects, covering the length and width of the development area, and grab sampling at seven stations within the area. All samples were collected successfully. Analysis of the video footage showed the presence of one habitat within the survey area, characterised by highly heterogeneous seabed sediment, comprising a mix of mud and sand with gravel and shells, including pebbles and cobbles. The epibenthic communities reflected this sediment complexity, with sessile epifauna ranging from abundant to common in areas with high percentage of hard substrate, and less so in sandier areas, which, consequently, showed less diverse communities. The epibenthic communities recorded by the seabed video footage included taxa from each major taxonomic group and were broadly comparable to those reported for the shallower sediment areas of the Cromarty Firth and similar coastal areas of the North Sea. Taxa encountered included Laminaria sp. (kelp), the common starfish Asterias rubens, the brittlestar Ophiura albida and the edible-sea-urchin Echinus esculentus. The polychaete Spirobranchus sp. was also common and the molluscs recorded included mainly unidentified gastropods and the blue mussel Mytilus edulis. Crustacea recorded included the hermit crab Pagurus bernhardus and the common shore crab Carcinus maenas. The plumose anemone Metridium dianthus and the anthozoan Alcyonium digitatum were recorded within the survey area as well as turf forming species which included Hydroid/Bryozoan taxa, which were not possible to identify at a lower taxonomic level. Fragments of Lithothamnion sp. (maerl) were also present along each transect, and the only two fish taxa encountered included the European plaice Pleuronectes platessa and the dragonet Callionymus sp. The sediment data included field description of the grab samples only, as no grab samples for sediment particle size analysis were collected during this survey. The results of the video analysis and photographic records were also used to support the assessment. All samples were described as gravelly muddy sand (gmS) with shells and shell fragments; the shells were mainly Mytilus edulis and at one grab site also oyster shells were identified. The video analysis showed that the surface of the seabed appeared as coarse mixed sediment gravelly, muddy sand, with varying amounts of shells, pebbles and cobbles. Results of the biological analyses indicated that, in terms of species diversity, most stations hosted a moderately rich community, whilst few stations were characterised by a less diverse community. In terms of abundances (i.e. total number of individuals per stations), these were generally high and related to infaunal taxa such as Nematoda, Pholoe inornata and Scoloplos (Scoloplos) armiger. To the higher species diversity and, particularly, abundances contributed the presence of epibenthic species (e.g. the ascidian Dendrodoa grossularia and the polychaete Spirobranchus lamarki) that, with the presence of more heterogeneous sediment including large fraction of shells and shell fragments, finds hard substrate suitable for the settlement. This sediment type is also suitable for the attachment of kelp species (Laminaria sp.) which in turn provide suitable habitat for a number of epibenthic species. The observed biological diversity and distribution, together with granulometry, are typical of the shallow depth areas of the North Sea. This is in line with the literature which refers to bathymetry and sediment type as being the major physical variables affecting macrofaunal occurrence and distribution in the North Sea. Fugro Document No. 160868_01rev1 Page i of vi FUGRO GEOSERVICES INVERGORDON GROUND INVESTIGATION BENTHIC REPORT PRE-CONSTRUCTION BENTHIC SURVEY Sessile, non-enumerated taxa recorded from the grab samples were largely represented by organisms belonging to the phylum Bryozoa, which was the more diverse. These included Escharoides coccinea, Schizoporella sp., Fenestrulina malusii, Celleporella hyalina, Membranipora membranacea, Conopeum reticulum, Electra pilosa, and Amphiblestrum auritum. The multivariate analysis was run excluding the juvenile taxa. Results highlighted the presence of three major benthic groups, however these were not considered to represent ecologically different communities, but rather variation of the same community. The main differences observed were related to differences in the average abundance of the same species, with differences in community composition being small by comparison. The group which encompassed the higher number of samples (group B) was characterised by a heterogeneous sandy sediment, hosting overall higher faunal richness and diversity, with fauna typical of communities adapted to withstand physical disturbance, such as crustacean amphipods and polychaete worms including P. inornata and S. armiger, as well as Abra alba and Mediomastus fragilis, which are typical of habitats with a certain degree of compactness and hence stability. Group A included the two samples from the two shallowest stations, described as gravelly muddy sand and characterised by the presence of boulders and pebbles. The fauna characterising the group was similar to the fauna of the other groups, but with a higher mean abundance of sessile species such as D. grossularia and S. lamarki. Group C encompassed samples from the three least diverse stations, with the sediment described as coarse mixed sediment where pebbles and cobbles were also present. These stations were also located along the existing sea wall of the port. The top three, most abundant, taxa included Nematoda and the polychaetes S. lamarki and S. armiger. Phylum Nemertea and the ascidian D. grossularia were also common within this group, although the abundances of the individual taxa were lower compared to the abundances of the same taxa within other groups. Within this group, station ST01 was characterised by the presence of the polychaete Phyllodoce mucosa, which occurred at particularly high abundance. This species is known to occur mainly on intertidal sand and mud but also at depths of up to 20 m, on seabed sediments comprising of stones and shell gravel. Thirty-two newly settled juveniles were recorded, largely represented by species of Mytilidae which occurred at all stations. The phylum Mollusca was the most diverse and numerically dominant in terms of juveniles, with species such as Mya sp. juv., Lucinoma borealis juv., Nuculidae juv. and Trochidae juv. being mostly represented. Of the Echinodermata, the family Ophiuroidea was the most abundant, followed by Echinoidea juv. and Cucumariidae juv. The remaining taxa belonged to the phyla ‘Annelida’, with species such as Polynoidae juv., Nephtyidae juv. and Arenicolidae juv. Juvenile ‘Crustacea’, included Ampelisca sp. juv., Paguridae juv., Carcinus maenas juv. and Atelecyclus rotundatus juv., ‘Echinodermata’, including Echinoidea juv. Cucumariidae juv., ‘Mollusca’, including Mya sp. juv., Lucinoma borealis juv., Nuculidae juv. Trochidae juv. and ‘Others’, including Ascidiacea juv. and Sipuncula juv. Using video and grab data, the biotope complex SS.SMX.IMx (Infralittoral mixed sediment) was identified as the most widespread across the survey area, together with the biotope complex SS.SSA.IMuSa (Infralittoral muddy sand), the latter being more localised. No species or habitats of conservation importance, nor non-indigenous species, were found within the survey area. Fugro Document No. 160868_01rev1 Page ii of vi FUGRO GEOSERVICES INVERGORDON GROUND INVESTIGATION BENTHIC REPORT PRE-CONSTRUCTION BENTHIC SURVEY CONTENTS 1. INTRODUCTION 1 1.1 Study Background 1 1.2 Environmental Context 1 1.3 Benthic Habitats and Communities 2 2. METHODOLOGIES 4 2.1 Survey Design 4 2.2 Sampling Survey 4 2.2.1 Seabed Drop-down Video (DDV) Footage and Photographic Stills Sampling 4 2.2.2 Sediment Grab Sampling for Macrofauna 4 3. SAMPLE ANALYSIS 6 3.1 Seabed Video Footage and Photographic Stills Analysis 6 3.2 Laboratory Analysis 6 3.2.1 Grab Macrofauna Abundance 6 4. DATA ANALYSES 7 4.1 Sediment Data 7 4.2 Macrofauna Data Analysis 7 4.2.1 Univariate Analysis 7 4.2.2 Multivariate Analysis 8 4.3 Biotope Classification 9 4.4 Habitats and Species of Nature Conservation Interest 9 5. RESULTS 10 5.1 Seabed Video Footage and Photographic Stills Analysis 10 5.2 Sediment Data 11 5.3 Macrofauna Data Analysis
Recommended publications
  • Regional Studies in Marine Science Artificial Substrates As Sampling
    Regional Studies in Marine Science 37 (2020) 101331 Contents lists available at ScienceDirect Regional Studies in Marine Science journal homepage: www.elsevier.com/locate/rsma Artificial substrates as sampling devices for marine epibenthic fauna: A quest for standardization ∗ Diego Carreira-Flores a,b,c, , Regina Neto a, Hugo Ferreira a, Edna Cabecinha c, Guillermo Díaz-Agras b, Pedro T. Gomes a a Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Portugal b Marine Biology Station of A Graña, University of Santiago de Compostela, Spain c Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology and Environment, University of Trás-os montes and Alto Douro, Portugal article info a b s t r a c t Article history: In temperate regions, macroalgae are naturally abundant habitat builders for many organisms of Received 6 March 2020 ecological and economic importance. Hence, macroalgae are good targets for monitoring studies based Received in revised form 12 May 2020 on colonization processes as, through them, it is possible to sample the epifauna that uses them as Accepted 28 May 2020 habitat. Nevertheless, macroalgae collection may not be sustainable, can compromise the survival of Available online 30 May 2020 the target macroalgae populations and destroy fragile or threatened communities. Keywords: The search for an adequate procedure that can overcome the problems related to destructive Epifaunal assemblages quantitative sampling of the epifauna associated with macroalgae and the development of a method- Macroalgae ology that can be used for comparative macrofauna monitoring, regardless of the location, were the Artificial Seaweed Monitoring Structures motivations for this study.
    [Show full text]
  • Supplementary Tales
    Metabarcoding reveals different zooplankton communities in northern and southern areas of the North Sea Jan Niklas Macher, Berry B. van der Hoorn, Katja T. C. A. Peijnenburg, Lodewijk van Walraven, Willem Renema Supplementary tables 1-5 Table S1: Sampling stations and recorded abiotic variables recorded during the NICO 10 expedition from the Dutch Coast to the Shetland Islands Sampling site name Coordinates (°N, °E) Mean remperature (°C) Mean salinity (PSU) Depth (m) S74 59.416510, 0.499900 8.2 35.1 134 S37 58.1855556, 0.5016667 8.7 35.1 89 S93 57.36046, 0.57784 7.8 34.8 84 S22 56.5866667, 0.6905556 8.3 34.9 220 S109 56.06489, 1.59652 8.7 35 79 S130 55.62157, 2.38651 7.8 34.8 73 S156 54.88581, 3.69192 8.3 34.6 41 S176 54.41489, 4.04154 9.6 34.6 43 S203 53.76851, 4.76715 11.8 34.5 34 Table S2: Species list and read number per sampling site Class Order Family Genus Species S22 S37 S74 S93 S109 S130 S156 S176 S203 Copepoda Calanoida Acartiidae Acartia Acartia clausi 0 0 0 72 0 170 15 630 3995 Copepoda Calanoida Acartiidae Acartia Acartia tonsa 0 0 0 0 0 0 0 0 23 Hydrozoa Trachymedusae Rhopalonematidae Aglantha Aglantha digitale 0 0 0 0 1870 117 420 629 0 Actinopterygii Trachiniformes Ammodytidae Ammodytes Ammodytes marinus 0 0 0 0 0 263 0 35 0 Copepoda Harpacticoida Miraciidae Amphiascopsis Amphiascopsis cinctus 344 0 0 992 2477 2500 9574 8947 0 Ophiuroidea Amphilepidida Amphiuridae Amphiura Amphiura filiformis 0 0 0 0 219 0 0 1470 63233 Copepoda Calanoida Pontellidae Anomalocera Anomalocera patersoni 0 0 586 0 0 0 0 0 0 Bivalvia Venerida
    [Show full text]
  • SNH Commissioned Report 765: Seagrass (Zostera) Beds in Orkney
    Scottish Natural Heritage Commissioned Report No. 765 Seagrass (Zostera) beds in Orkney COMMISSIONED REPORT Commissioned Report No. 765 Seagrass (Zostera) beds in Orkney For further information on this report please contact: Kate Thompson Scottish Natural Heritage 54-56 Junction Road KIRKWALL Orkney KW15 1AW Telephone: 01856 875302 E-mail: [email protected] This report should be quoted as: Thomson, M. and Jackson, E, with Kakkonen, J. 2014. Seagrass (Zostera) beds in Orkney. Scottish Natural Heritage Commissioned Report No. 765. This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage. © Scottish Natural Heritage 2014. COMMISSIONED REPORT Summary Seagrass (Zostera) beds in Orkney Commissioned Report No. 765 Project No: 848 Contractors: Emma Jackson (The Marine Biological Association of the United Kingdom) and Malcolm Thomson (Sula Diving) Year of publication: 2014 Keywords Seagrass; Zostera marina; Orkney; predictive model; survey. Background Seagrasses (Zostera spp) are marine flowering plants that develop on sands and muds in sheltered intertidal and shallow subtidal areas. Seagrass beds are important marine habitats but are vulnerable to a range of human induced pressures. Their vulnerability and importance to habitat creation and ecological functioning is recognised in their inclusion on the recommended Priority Marine Features list for Scotland’s seas. Prior to this study, there were few confirmed records of Zostera in Orkney waters. This study combined a predictive modelling approach with boat-based surveys to enhance under- standing of seagrass distribution in Orkney and inform conservation management.
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Laboratory Reference Module Summary Report LR22
    Laboratory Reference Module Summary Report Benthic Invertebrate Component - 2017/18 LR22 26 March 2018 Author: Tim Worsfold Reviewer: David Hall, NMBAQCS Project Manager Approved by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] MODULE / EXERCISE DETAILS Module: Laboratory Reference (LR) Exercises: LR22 Data/Sample Request Circulated: 10th July 2017 Sample Submission Deadline: 31st August 2017 Number of Subscribing Laboratories: 7 Number of LR Received: 4 Contents Table 1. Summary of mis-identified taxa in the Laboratory Reference module (LR22) (erroneous identifications in brackets). Table 2. Summary of identification policy differences in the Laboratory Reference Module (LR22) (original identifications in brackets). Appendix. LR22 individual summary reports for participating laboratories. Table 1. Summary of mis-identified taxa in the Laboratory Reference Module (LR22) (erroneous identifications in brackets). Taxonomic Major Taxonomic Group LabCode Edits Polychaeta Oligochaeta Crustacea Mollusca Other Spio symphyta (Spio filicornis ) - Leucothoe procera (Leucothoe ?richardii ) - - Scolelepis bonnieri (Scolelepis squamata ) - - - - BI_2402 5 Laonice (Laonice sarsi ) - - - - Dipolydora (Dipolydora flava ) - - - - Goniada emerita (Goniadella bobrezkii ) - Nebalia reboredae (Nebalia bipes ) - - Polydora sp. A (Polydora cornuta ) - Diastylis rathkei (Diastylis cornuta ) - - BI_2403 7 Syllides? (Anoplosyllis edentula ) - Abludomelita obtusata (Tryphosa nana ) - in mixture - - Spirorbinae (Ditrupa arietina ) - - - -
    [Show full text]
  • JMS 70 1 031-041 Eyh003 FINAL
    PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north­ eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo­ logical events and the fossil record to determine a reference date.
    [Show full text]
  • Kingdom Class Family Scientific Name Common Name I Q a Records
    Kingdom Class Family Scientific Name Common Name I Q A Records plants monocots Poaceae Paspalidium rarum C 2/2 plants monocots Poaceae Aristida latifolia feathertop wiregrass C 3/3 plants monocots Poaceae Aristida lazaridis C 1/1 plants monocots Poaceae Astrebla pectinata barley mitchell grass C 1/1 plants monocots Poaceae Cenchrus setigerus Y 1/1 plants monocots Poaceae Echinochloa colona awnless barnyard grass Y 2/2 plants monocots Poaceae Aristida polyclados C 1/1 plants monocots Poaceae Cymbopogon ambiguus lemon grass C 1/1 plants monocots Poaceae Digitaria ctenantha C 1/1 plants monocots Poaceae Enteropogon ramosus C 1/1 plants monocots Poaceae Enneapogon avenaceus C 1/1 plants monocots Poaceae Eragrostis tenellula delicate lovegrass C 2/2 plants monocots Poaceae Urochloa praetervisa C 1/1 plants monocots Poaceae Heteropogon contortus black speargrass C 1/1 plants monocots Poaceae Iseilema membranaceum small flinders grass C 1/1 plants monocots Poaceae Bothriochloa ewartiana desert bluegrass C 2/2 plants monocots Poaceae Brachyachne convergens common native couch C 2/2 plants monocots Poaceae Enneapogon lindleyanus C 3/3 plants monocots Poaceae Enneapogon polyphyllus leafy nineawn C 1/1 plants monocots Poaceae Sporobolus actinocladus katoora grass C 1/1 plants monocots Poaceae Cenchrus pennisetiformis Y 1/1 plants monocots Poaceae Sporobolus australasicus C 1/1 plants monocots Poaceae Eriachne pulchella subsp. dominii C 1/1 plants monocots Poaceae Dichanthium sericeum subsp. humilius C 1/1 plants monocots Poaceae Digitaria divaricatissima var. divaricatissima C 1/1 plants monocots Poaceae Eriachne mucronata forma (Alpha C.E.Hubbard 7882) C 1/1 plants monocots Poaceae Sehima nervosum C 1/1 plants monocots Poaceae Eulalia aurea silky browntop C 2/2 plants monocots Poaceae Chloris virgata feathertop rhodes grass Y 1/1 CODES I - Y indicates that the taxon is introduced to Queensland and has naturalised.
    [Show full text]
  • A Bioturbation Classification of European Marine Infaunal
    A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K.
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Polychaetes of the Western Black Sea Meiobenthos
    J. Black Sea/Mediterranean Environment Vol. 15: 109- 121 (2009) Meiobenthic bristle worms (Polychaeta) of the western Black Sea shelf Ludmila V. Vorobyova* and Olena S. Bondarenko *Odessa Branch, A.O. Kovalevsky Institute of Biology of the Southern Seas (OB IBSS), National Academy of Sciences of Ukraine. 37 Pushkinskaya Street, 65125 Odessa. Abstract The species composition, frequency and quantitative distribution of polychaetes (larvae, adult forms) which in size belong to meiobenthos have been studied. Thirty four species of polychaetes, six of which belong to eumeiobenthos have been discovered. In species composition the Bulgarian shelf (33 species) differs significantly from the Romanian (22 species) and Ukrainian (21 species). The mean density of assemblages is higher on the Bulgarian shelf. Maximum indices of abundance occur at a 15 m depth. Keywords: Black Sea, western shelf, meiobenthos, polychaetes, eumeiobenthos, pseudomeiobenthos. Introduction The western Black Sea shelf (WBS) is of special interest for ecological research. Very diverse environmental conditions from the Dnieper-Bug area to Burgas Bay related to the level of impact of river runoff of the Dnieper, Dniester and Danube are observed. The dynamics of hydrological and hydrochemical parameters determine the marked variability of characteristics of sea bottom invertebrates. The present day state of meiobenthic polychaetes was analyzed. Small (up to 2-5 mm) meiobenthic invertebrates of different water bodies have been described by Mare 1942, Hulings and Gray 1971. The term meiobenthos in scientific literature has been introduced much later than the terms benthos and plankton. The former was proposed by Peterson in 1911 *Corresponding author: [email protected] 109 and the latter by Hensen in 1887.
    [Show full text]
  • How to Cite Complete Issue More Information About This
    Revista de Biología Tropical ISSN: 0034-7744 ISSN: 0034-7744 Universidad de Costa Rica Elías, Rodolfo; Saracho-Bottero, María-Andrea; Simon, Carol-Anne Protocirrineris (Polychaeta:Cirratulidae) in South Africa and description of two new species Revista de Biología Tropical, vol. 67, no. 5, 2019, pp. 70-80 Universidad de Costa Rica DOI: DOI 10.15517/RBT.V67IS5.38931 Available in: http://www.redalyc.org/articulo.oa?id=44965909006 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative DOI 10.15517/RBT.V67IS5.38931 Artículo Protocirrineris (Polychaeta:Cirratulidae) in South Africa and description of two new species Protocirrineris (Cirratulidae: Polychaeta) en Sudáfrica y la descripción de dos nuevas especies Rodolfo Elías1 María Andrea Saracho-Bottero1 Carol Anne Simon2 1 Universidad Nacional de Mar del Plata - Instituto de Investigaciones Marinas y Costeras, CONICET-UNMdP, Argentina, [email protected], [email protected] 2 Department of Botany and Zoology. Stellenbosch University, South Africa, [email protected] Received 22-X-2018 Corrected 22-II-2019 Accepted 30-VI-2019 Abstract Introduction: The knowledge of polychaetes in the subtropical region of Africa benefited from the activity of J. Day. However, 50 years after the publication of his Monograph of the Polychaeta of southern Africa, it is necessary to reconsider the identity of the Cirratulidae due to changes in the diagnostic characters and new approaches to the taxonomy of the group to corroborate the status of cosmopolitan species in this region.
    [Show full text]
  • Identification Guide to the Planktonic Polychaete Larvae Around the Island of Helgoland (German Bight)
    HELGOL.~NDER MEERESUNTERSUCHUNGEN Helgol/inder Meeresunters. 48, 1-58 (1994) Identification guide to the planktonic polychaete larvae around the island of Helgoland (German Bight) S. Plate* & E. Husemann* * Biologische Anstalt Helgoland (Meeresstation); D-27483 Helgoland, Federal Republic of Germany ABSTRACT: The purpose of this work is to provide the means of identifying the planktonic larvae of the polychaete species appearing in the plankton around the island of Helgoland (North Sea). During a three-year survey in this area, the larvae of 54 species out of 24 families belonging to the orders Orbiniida, Spionida, Capitelhda, Phyllodocida, Oweniida, Terebelhda, Sabelhda and the former Archiannelida have been recorded. Illustrated keys to the families, genera and species are presented. To facilitate the identification, additional descriptions and information about the seasonal appearance of the species are given. INTRODUCTION More than 13 000 species of polychaetous annelids take part in the marine benthos communities worldwide. Their distribution, species composition and population density are monitored within various benthos surveys. For the North Sea, especially the German Bight and the Wadden Sea, much information about the benthic polychaete fauna is available (Caspers, 1950; Stripp, 1969; DSrjes, 1977; Rachor & Gerlach, 1978; Gillandt, 1979; Salzwedel et al., 1985; Rachor, 1990; Bosselmann, 1991; Kr6ncke, 1991). In contrast, the holoplanktonic polychaete species and the meroplanktonic polychaete larvae, which are only part of the plankton during a more or less expanded phase of their ontogenesis, have never received much attention. Meroplanktonic polychaete larvae are seldomly recorded during studies monitoring the North Sea plankton (Smidt, 1951; Giere, 1968; Fransz, 1981; Bosselmann, 1989; Belgrano et al., 1990).
    [Show full text]