General Relativity As a Biconformal Gauge Theory

Total Page:16

File Type:pdf, Size:1020Kb

General Relativity As a Biconformal Gauge Theory Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 943 (2019) 114624 www.elsevier.com/locate/nuclphysb General relativity as a biconformal gauge theory James T. Wheeler Utah State University, Department of Physics, 4415 Old Main Hill, Logan, UT 84322-4415, United States of America Received 25 August 2018; received in revised form 16 April 2019; accepted 21 April 2019 Available online 26 April 2019 Editor: Clay Córdova Abstract We consider the conformal group of a space of dim n = p + q, with SO(p, q) metric. The quotient of this group by its homogeneous Weyl subgroup gives a principal fiber bundle with 2n-dim base manifold and Weyl fibers. The Cartan generalization to a curved 2n-dim geometry admits an action functional lin- ear in the curvatures. Because symmetry is maintained between the translations and the special conformal transformations in the construction, these spaces are called biconformal; this same symmetry gives bicon- formal spaces overlapping structures with double field theories, including manifest T-duality. We establish that biconformal geometry is a form of double field theory, showing how general relativity with integrable local scale invariance arises from its field equations. While we discuss the relationship between biconfor- mal geometries and the double field theories of T-dual string theories, our principal interest is the study of the gravity theory. We show that vanishing torsion and vanishing co-torsion solutions to the field equations overconstrain the system, implying a trivial biconformal space. With co-torsion unconstrained, we show that (1) the torsion-free solutions are foliated by copies of an n-dim Lie group, (2) torsion-free solutions generically describe locally scale-covariant general relativity with symmetric, divergence-free sources on either the co-tangent bundle of n-dim (p, q)-spacetime or the torus of double field theory, and (3) torsion- free solutions admit a subclass of spacetimes with n-dim non-abelian Lie symmetry. These latter cases include the possibility of a gravity-electroweak unification. It is notable that the field equations reduce all curvature components to dependence only on the solder form of an n-dim Lagrangian submanifold, despite the increased number of curvature components and doubled number of initial independent variables. © 2019 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. E-mail address: [email protected]. https://doi.org/10.1016/j.nuclphysb.2019.114624 0550-3213/© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 2 J.T. Wheeler / Nuclear Physics B 943 (2019) 114624 1. Introduction 1.1. Biconformal spaces and the biconformal action It was shown in the 1950s and 1960s that general relativity may be cast as a Lorentz [1]or Poincaré [2] gauge theory. Subsequent approaches [3–9] refined the methods and extended the initial symmetry to Weyl, deSitter and conformal. A systematic approach to the resulting gauge theories of gravity shows that it is possible to formulate general relativity in several ways [10]. 1.1.1. Conformally based theories of gravity Generally, the use of conformal symmetries for gravity theories (and in the MacDowell- Mansouri case, de Sitter) leads to action functionals which are quadratic in the curvature and apply only to 4-dimensional spacetimes. This is because conformal scaling by eφ changes the volume form by enφ in n-dimensions. In four dimensions this factor may be offset by two factors of the curvature, but in even dimension n = 2k, we require k factors of the curvature to make the action dimensionless. Various techniques allow these quadratic theories to nonetheless re- duce to general relativity [4,8,9,11]. The most studied case is that of Weyl (conformal) gravity, in which the difficulty of higher order field equations has been alternatively exploited and over- come. When only the metric is varied, the field equations are fourth order, and include solutions not found in general relativity [12–14]. Mannheim [15] attempts to use the additional scaling properties to explain galactic rotation curves (but also see [16]). Alternatively, it has been shown in [17] that by reformulating Weyl gravity as a gauge theory and varying all of the gauge fields, the additional field equations give the integrability conditions needed to reduce the order and exactly reproduce locally scale covariant general relativity. Thereo are tw exceptions to these higher-order curvature requirements, which have actions lin- ear in the curvature and can be formulated in any dimension. In the first of the two approaches, Dirac [3] builds on previous work with scalar-tensor theories [18–21], achieving a curvature- linear action by including a scalar field to help offset the scaling of the volume form. Dirac considers a Weyl geometry in which the curvature is coupled to the Weyl vector and a scalar field. Generalizing his action functional to n-dimensions, it takes the form − αβ β 2( n 4 ) αμ βν S = κ2g R − κ n−2 g g αβ 2 αβ μν − √ 4(n 1) αβ 2n n − g D κD κ − λκ n−2 −gd x n − 2 α β =−n−2 = − where κ is a scalar field of conformal weight wκ 2 and αβ Wα,β Wβ,α is the di- latational curvature. The only occurrence of the Weyl vector is in the dilatational curvature, αβ , which must vanish or be unmeasurably small to avoid unphysical size changes. Dirac in- terpreted αβ as the electromagnetic field and the time dependence of the scalar field κ as a time-dependent gravitational constant. The electromagnetic interpretation is untenable, but solu- tions with αβ = 0or with other interpretations remain to be explored. The second curvature-linear action arises when the volume element is like that of a phase space, since the “momentum” directions have opposite conformal weight from the “space” di- mensions. Such a space arises naturally from the quotient of the conformal group by its Weyl subgroup (SO(p, q) and dilatations), with the most general curvature-linear action built from the SO(p, q) and dilatational curvatures [11] being J.T. Wheeler / Nuclear Physics B 943 (2019) 114624 3 = be···f a + a + a ∧ ∧ c ∧···∧ d ∧ ∧···∧ S eac···d α b βδ b γ e fb e e fe ff (1) a Here, b is the curvature of the SO(p, q) gauge field, is the dilatational curvature, and a α, β and γ are dimensionless constants. The differential forms e and fa are the gauge fields of translations and special conformal transformations, respectively. Together the latter give an orthonormal frame field on a 2n-dimensional manifold. Because of the symmetry maintained between the translations of the conformal group and the special conformal transformations, these spaces are called biconformal. Here we explore the large class of torsion-free biconformal spaces, showing that they reduce to general relativity on Lagrangian submanifolds. It is the consequences of the action, Eq. (1) that will occupy our present inquiry. 1.1.2. The biconformal gauging The construction of a biconformal space begins with a flat, n-dimensional space with SO(p, q) invariant metric, p + q = n. Compactifying this space by adding an appropriate point or null cones at infinity (See Appendix A) allows us to define its conformal group, SO(p + 1, q + 1). The biconformal quotient [8,9]is then SO(p+ 1, q + 1)/SO(p, q) × SO(1, 1), where SO(1, 1) transformations represent dilatations and the full subgroup W ≡ SO(p, q) × SO(1, 1) is the homogeneous Weyl group. The quotient gives rise to a principal fiber bundle with 2n di- mensional base manifold and homogeneous Weyl fibers. The connection of this flat biconformal space is then generalized, giving rise to conformal Lie algebra-valued 2-form curvatures. These are required to be horizontal and the resulting Cartan equations integrable. The 2n-dimensional curved base manifolds are biconformal spaces while local SO(p, q) and dilatational invariance remain, together comprising the biconformal bundle. Biconformal gravity is the gravity theory following from variation of the action, Eq. (1), with respect to each of the conformal gauge fields, together with the Cartan structure equations to define the curvatures in terms of the connection, and the generalized Bianchi identities arising as integrability conditions. The construction of these models is described in full detail in [22]. See also [8,9,11,23]. 1.2. Relationship to double field theory Biconformal spaces share many features in common with double field theories. Double field theory is a means of making the O(d, d) symmetry of T -duality manifest. By introducing scalars to produce an additional d dimension, Duff [27] doubled the X(σ, τ) string variables to make this O(d, d) symmetry manifest. Siegel brought the idea to full fruition by deriving results from superstring theory [24–26]. Allowing fields to depend on all 2d coordinates, Siegel introduced generalized Lie brackets, gauge transformations, covariant derivatives, and a section condition on the full doubled space, thereby introducing torsions and curvatures in addition to the manifest T-duality. There has been substantial subsequent development. Much of this development is reviewed in [28]; the introduction to [29]gives a concise summary. Briefly, double field theory arises by making T -duality manifest in string theory. When we compactify n dimensions on a torus, the windings of string about the torus can be interpreted as momenta. T -duality is a mapping between the original spatial directions and these momenta. Double field theory arises when these two n-spaces are kept present simultaneously, making T -duality manifest and leading to an overall O(n, n) symmetry.
Recommended publications
  • Jhep01(2020)007
    Published for SISSA by Springer Received: March 27, 2019 Revised: November 15, 2019 Accepted: December 9, 2019 Published: January 2, 2020 Deformed graded Poisson structures, generalized geometry and supergravity JHEP01(2020)007 Eugenia Boffo and Peter Schupp Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany E-mail: [email protected], [email protected] Abstract: In recent years, a close connection between supergravity, string effective ac- tions and generalized geometry has been discovered that typically involves a doubling of geometric structures. We investigate this relation from the point of view of graded ge- ometry, introducing an approach based on deformations of graded Poisson structures and derive the corresponding gravity actions. We consider in particular natural deformations of the 2-graded symplectic manifold T ∗[2]T [1]M that are based on a metric g, a closed Neveu-Schwarz 3-form H (locally expressed in terms of a Kalb-Ramond 2-form B) and a scalar dilaton φ. The derived bracket formalism relates this structure to the generalized differential geometry of a Courant algebroid, which has the appropriate stringy symme- tries, and yields a connection with non-trivial curvature and torsion on the generalized “doubled” tangent bundle E =∼ TM ⊕ T ∗M. Projecting onto TM with the help of a natural non-isotropic splitting of E, we obtain a connection and curvature invariants that reproduce the NS-NS sector of supergravity in 10 dimensions. Further results include a fully generalized Dorfman bracket, a generalized Lie bracket and new formulas for torsion and curvature tensors associated to generalized tangent bundles.
    [Show full text]
  • Natural Operators in the View of Cartan Geometries
    NATURAL OPERATORS IN THE VIEW OF CARTAN GEOMETRIES Martin Panak´ Abstract. We prove, that r-th order gauge natural operators on the bundle of Cartan connections with a target in the gauge natural bundles of the order (1, 0) (”tensor bundles”) factorize through the curvature and its invariant derivatives up to order r−1. On the course to this result we also prove that the invariant derivations (a generalization of the covariant derivation for Cartan geometries) of the curvature function of a Cartan connection have the tensor character. A modification of the theorem is given for the reductive and torsion free geometries. In [P] we have shown that Cartan connections on principal fibered bundles with a given structure group, say H, with values in g (H ⊂ G Lie groups, h, g their Lie alge- bras) are (all) sections of a gauge natural bundle which we call the bundle of Cartan connections and we will write C for it. In fact it is a bundle of elements of Car- tan connections. It is a functor on the category PBm(H) of principal bundles with a structure group H and principal bundle morphisms with local diffeomorphisms as base maps. For each principal bundle P the bundle CP can be viewed as a subbundle of the bundle of principal connections on the associated bundle P ×H G. We use the terms gauge natural bundle and gauge natural operator in the sense of [KMS]. We will study r-th order gauge natural operators on the bundle of Cartan connec- tions with gauge natural bundles of the order (1, 0) as target spaces.
    [Show full text]
  • (TEGR) As a Gauge Theory: Translation Or Cartan Connection? M Fontanini, E
    Teleparallel gravity (TEGR) as a gauge theory: Translation or Cartan connection? M Fontanini, E. Huguet, M. Le Delliou To cite this version: M Fontanini, E. Huguet, M. Le Delliou. Teleparallel gravity (TEGR) as a gauge theory: Transla- tion or Cartan connection?. Physical Review D, American Physical Society, 2019, 99, pp.064006. 10.1103/PhysRevD.99.064006. hal-01915045 HAL Id: hal-01915045 https://hal.archives-ouvertes.fr/hal-01915045 Submitted on 7 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Teleparallel gravity (TEGR) as a gauge theory: Translation or Cartan connection? M. Fontanini1, E. Huguet1, and M. Le Delliou2 1 - Universit´eParis Diderot-Paris 7, APC-Astroparticule et Cosmologie (UMR-CNRS 7164), Batiment Condorcet, 10 rue Alice Domon et L´eonieDuquet, F-75205 Paris Cedex 13, France.∗ and 2 - Institute of Theoretical Physics, Physics Department, Lanzhou University, No.222, South Tianshui Road, Lanzhou, Gansu 730000, P R China y (Dated: November 7, 2018) In this paper we question the status of TEGR, the Teleparallel Equivalent of General Relativity, as a gauge theory of translations. We observe that TEGR (in its usual translation-gauge view) does not seem to realize the generally admitted requirements for a gauge theory for some symmetry group G: namely it does not present a mathematical structure underlying the theory which relates to a principal G-bundle and the choice of a connection on it (the gauge field).
    [Show full text]
  • G -Metrics Arising from Non-Integrable Special Lagrangian Brations
    Complex Manifolds 2019; 6:348–365 Research Article Open Access Ryohei Chihara* G2-metrics arising from non-integrable special Lagrangian brations https://doi.org/10.1515/coma-2019-0019 Received March 29, 2019; accepted July 18, 2019 Abstract: We study special Lagrangian brations of SU(3)-manifolds, not necessarily torsion-free. In the case where the ber is a unimodular Lie group G, we decompose such SU(3)-structures into triples of sol- der 1-forms, connection 1-forms and equivariant 3 × 3 positive-denite symmetric matrix-valued functions on principal G-bundles over 3-manifolds. As applications, we describe regular parts of G2-manifolds that admit Lagrangian-type 3-dimensional group actions by constrained dynamical systems on the spaces of the triples in the cases of G = T3 and SO(3). Keywords: G-structures, SU(3)-structures, G2-structures, Lagrangian brations, Einstein metrics MSC: 53C10, 53C25, 53C38 1 Introduction The geometry of G2-structures on 7-manifolds is closely related to that of SU(3)-structures on 6-manifolds. For a one-parameter family (ω(t), ψ(t)) of SU(3)-structures on a 6-manifold X, the 3-form ω(t) ^ dt + ψ(t) is a G2-structure on X × (t1, t2). Here ω(t) and ψ(t) denote the 2- and 3-form on X dening an SU(3)-structure for each t 2 (t1, t2). Conversely, any G2-structure on Y is locally described by one-parameter families of SU(3)- structures on 6-dimensional hypersurfaces in Y as above. This viewpoints has been studied by many authors [2, 4, 9, 15].
    [Show full text]
  • Why Is Quantum Gravity So Difficult (Compared to QCD)?
    OU-HET-990 Why is quantum gravity so difficult (compared to QCD)? Hidenori Fukaya∗ Department of Physics, Osaka University, Toyonaka 560-0043, Japan Abstract Gravity is difficult to quantize. This is a well-known fact but its reason is given simply by non-renormalizability of the Newton constant and little is discussed why among many quantum gauge theories, gravity is special. In this essay1, we try to treat the gravity as one of many gauge theories, and discuss how it is special and why it is difficult to quantize. 1 Introduction The author of this article is mainly working on numerical simulations of lattice QCD. His ordinary target is a many-body system of quarks and gluons at energy of a few GeV, and there is no chance for gravity to appear. But he was asked to teach general relativity to senior students in a seminar class in 2014 and he needed a lot of study to recover what he all forgot. In fact, it turned out that no student entered the high-energy theory lab, which had never happened in his lab for more than 80 years, and the class was not opened. Since the class was not opened, the author could have stopped his study on gravity and forget all of them again. But he took this one hour and half in a week as a good chance to compare it to QCD and understand how gravity is different and why it is difficult to quantize. The difficulty of quantization of gravity is a well-known fact and it is well arXiv:1811.11577v3 [hep-th] 17 Mar 2020 explained by the negative mass dimension of the Newton constant.
    [Show full text]
  • Synthetic Geometry of Manifolds Beta Version August 7, 2009 Alpha Version to Appear As Cambridge Tracts in Mathematics, Vol
    Synthetic Geometry of Manifolds beta version August 7, 2009 alpha version to appear as Cambridge Tracts in Mathematics, Vol. 180 Anders Kock University of Aarhus Contents Preface page 6 1 Calculus and linear algebra 11 1.1 The number line R 11 1.2 The basic infinitesimal spaces 13 1.3 The KL axiom scheme 21 1.4 Calculus 26 1.5 Affine combinations of mutual neighbour points 34 2 Geometry of the neighbour relation 37 2.1 Manifolds 37 2.2 Framings and 1-forms 47 2.3 Affine connections 52 2.4 Affine connections from framings 61 2.5 Bundle connections 66 2.6 Geometric distributions 70 2.7 Jets and jet bundles 81 2.8 Infinitesimal simplicial and cubical complex of a manifold 89 3 Combinatorial differential forms 92 3.1 Simplicial, whisker, and cubical forms 92 3.2 Coboundary/exterior derivative 101 3.3 Integration of forms 106 3.4 Uniqueness of observables 115 3.5 Wedge/cup product 119 3.6 Involutive distributions and differential forms 123 3.7 Non-abelian theory of 1-forms 125 3.8 Differential forms with values in a vector bundle 130 3.9 Crossed modules and non-abelian 2-forms 132 3 4 Contents 4 The tangent bundle 135 4.1 Tangent vectors and vector fields 135 4.2 Addition of tangent vectors 137 4.3 The log-exp bijection 139 4.4 Tangent vectors as differential operators 144 4.5 Cotangents, and the cotangent bundle 146 4.6 The differential operator of a linear connection 148 4.7 Classical differential forms 150 4.8 Differential forms with values in TM ! M 154 4.9 Lie bracket of vector fields 157 4.10 Further aspects of the tangent bundle 161 5 Groupoids
    [Show full text]
  • Connections and Frame Bundle Reductions
    Connections and Frame Bundle Reductions M. Lachi`eze-Rey APC-Astroparticule et Cosmologie (UMR-CNRS 7164), Universit´eParis Diderot-Paris 7, 10, rue Alice Domon et L´eonie Duquet F-75205 Paris Cedex 13, France [email protected] February 5, 2020 Abstract In general relativity, the gravitational potential is represented by the Levi-Civita connection, the only symmetric connection preserving the metric. On a differentiable manifold, a metric identifies with an orthog- onal structure, defined as a Lorentz reduction of the frame bundle. The Levi-Civita connection appears as the only symmetric connection preserv- ing the reduction. This paper presents generalization of this process to other aproaches of gravitation: Weyl structure with Weyl connections, teleparallel structures with Weitzenb¨ock connections, unimodular struc- ture, similarly appear as frame bundle reductions, with preserving con- nections. To each subgroup H of the linear group GL correspond reduced struc- tures, or H-structures. They are subbundles of the frame bundle (with GL as principal group), with H as principal group. A linear connection in a manifold M is a principal connection on the frame bundle. Given a reduction, the corresponding preserving connections on M are the linear connections which preserve it. I also show that the time gauge used in the 3+1 formalism for general relativity similarly appears as the result of a bundle reduction. PACS numbers: 11.15.-q, 04.50.-h, 02.40.-k, 11.30.-j, arXiv:2002.01410v1 [math-ph] 4 Feb 2020 1 Introduction Principal bundle reductions are the mathematical expression of a physi- cal process of symmetry reduction, from a principal group to one of its subgroups.
    [Show full text]
  • Fiber Bundles, Yang and the Geometry of Spacetime
    Fiber bundles, Yang and the geometry of spacetime. A bachelor research in theoretical physics Federico Pasinato Univeristy of Groningen E-mail: [email protected] First supervisor: P rof: Dr: Elisabetta P allante Second supervisor: P rof: Dr: Holger W aalkens Last updated on July 24, 2018 Acknowledgments To my family, nothing would have been possible without their sacrifices and love. A special thanks to C.N.Yang public lectures, Kenneth Young’s lectures on thematic melodies of 20th century and a particular thanks to Simon Rea’s lecture notes of Frederic Schuller’s course on the “Geometric anatomy of theoretical physics”, taught in the academic year 2013/14 at the Friedrich-Alexander-Universität Erlangen-Nürnberg. The entire course is hosted on YouTube at the following address: www.youtube.com/playlist?list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic We will be mainly interested in the fiber bundle formalism introduced. Federico Pasinato Contents Acknowledgements1 Introduction1 1 The first field theory2 1.1 James Clerk Maxwell2 1.2 Herman Weyl4 1.3 Yang and Mills, the gauge symmetry5 1.4 The emergence of a central mathematical construct7 2 Abelian case 11 2.1 Magnetostatics 11 2.2 Adding Quantum Mechanics 12 2.3 Differential geometry for physicists 14 2.4 Back to EM 18 3 Non-Abelian case 20 3.1 Differential geometry for physicists - continued 21 3.2 General Relativity 23 3.3 Concluding remarks, a path to unification 24 4 Fiber bundle 25 4.1 Topological manifolds and bundles 25 4.1.1 Bundles 25 4.1.2 Product bundles 26 4.1.3 Fiber Bundles 26 4.1.4 Application
    [Show full text]
  • Arxiv:0904.4616V1 [Math-Ph] 29 Apr 2009 Manifolds Obtained by Soldering Together Points, Lines, Etc
    Manifolds obtained by soldering together points, lines, etc. Fr´ed´eric Helein´ ∗ 1 The solder form 1.1 A physical motivation : ideas from the general relativity One fundamental concept in the theory of general relativity is that the gravitation should not be considered as a force which takes place in some a priori given space-time but that, instead, the space-time is built out of the gravitational field. A mathematical achievement of this idea is the Einstein equation for a (pseudo-)metric tensor gij on a manifold M (the space-time): 1 R − Rg = T , (1) ij 2 ij ij where Rij is the Ricci curvature tensor of the metric and R is its scalar curvature. This equation tells us how the metric tensor gij (i.e. the field mediating the gravitation) is obeying to constraints imposed by the energy-momentum tensor Tij, which encodes informations about the distribution of energy and momentum in spacetime. For simplicity we will assume in the following that Tij = 0, i.e. we consider the Einstein equation in the arXiv:0904.4616v1 [math-ph] 29 Apr 2009 vacuum. Note that if we work with equation (1) in the same way as for any other partial differential equation, then it is very easy to forget about the original intuition of Einstein (which is that the space-time is built out of the gravitational field gij) and erroneously to implicitely assume that we are given some manifold M, and we are looking for an unknown field gij satisfying (1). We want to take this physical intuition seriously into account and to look for some mathematical framework which would help us to keep in mind that the manifold M and the metric should be built simultaneously when solving equation (1).
    [Show full text]
  • Natural Operators on the Bundle of Cartan Connections
    NATURAL OPERATORS ON THE BUNDLE OF CARTAN CONNECTIONS Ph.D. dissertation Martin Pan´ak Brno 2001 Thesis advisor: prof. RNDr. Jan Slov´ak,DrSc. Department of Algebra and Geometry Faculty of Science, Masaryk University Brno Jan´aˇckovo n´am.2a 662 95 Brno Czech Republic Ackowledgement. I would like to thank my thesis advisor prof. Jan Slov´akfor numerous productive discussions on my thesis. I also thank him for his moral support, which has helped me a lot. Contents Introduction ............................................................... 2 Episode I: Cartan Geometries .............................................. 5 Curvature ............................................................... 7 The Invariant Differentiation.............................................8 Reductive geometries ................................................... 10 Episode IV: Natural Operations ........................................... 15 Gauge Natural Bundle of Cartan Connections ........................... 19 Natural Sheafs..........................................................21 Curvature spaces ....................................................... 23 Reductive geometries ................................................... 25 Episode V: The Algebra Strikes Back ...................................... 28 Reductive geometries ................................................... 32 List of Symbols ........................................................... 40 2 Introduction There are several purposes of this PhD thesis. At first I want my PhD degree. At second
    [Show full text]
  • The Versatile Preform
    As originally published in the SMTA Proceedings THE VERSATILE PREFORM Ed Briggs Indium Corporation Clinton, NY, USA [email protected] ABSTRACT powder, which creates a significant amount of flux Solder preforms are composed of solder alloys and are outgassing. The shapes and thicknesses of solder preforms designed and manufactured into various shapes and can be adapted to a wide variety of processes, working well configurations. The solder preform concept is quite simple; with component placement equipment such as vibratory however, the applications are very diverse. Solder preforms feeders, vacuum pick-up manifolds, and tube-type are used in numerous ways, e.g., from simple PCB rework dispensers. In addition, preforms work well with a variety of to high-reliability applications, and from package level to reflow processes from simple hot plates to convection board level assembly. They are used in low-volume ovens. applications, as in military electronics as well as in high throughput, high-volume applications, such as smartphones. PREFORM APPLICATIONS Preforms are also used in robotics and automated processes Low-Temperature Soldering and to optimize labor-intensive steps in manufacturing One advantage of solder preforms formed from a low- processes such as hand soldering. Solder preforms and melting temperature alloy is the ability to allow for a true solder-cored wire offer an opportunity to increase low-temperature reflow process. In applications that require consistency and decrease cycle times in many reflow soldering below 170°C, solder pastes generally are manufacturing environments. not a viable option. Regardless of how low the liquidus temperature of the alloy is within the solder paste, a peak This paper will discuss attributes associated within the temperature of 180°C is most often required to provide solder families that the preforms are composed of, offer adequate wetting (see Figure 1).
    [Show full text]
  • Gauge Theories and Fiber Bundles: Definitions, Pictures, and Results
    Gauge Theories and Fiber Bundles: Definitions, Pictures, and Results Adam Marsh February 27, 2019 Abstract A pedagogical but concise overview of fiber bundles and their connections is provided, in the context of gauge theories in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints, some of which would seem to be novel to the literature. Topics are avoided which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations. The present paper is best read in conjunction with the similar paper on Riemannian geometry cited herein. Contents 1 Introduction 2 2 Gauge theory 2 2.1 Matter fields and gauges . 2 2.2 The gauge potential and field strength . 3 2.3 Spinor fields . 4 3 Defining bundles 7 3.1 Fiber bundles . 7 3.2 G-bundles . 9 3.3 Principal bundles . 10 arXiv:1607.03089v2 [math.DG] 27 Feb 2019 4 Generalizing tangent spaces 13 4.1 Associated bundles . 13 4.2 Vector bundles . 15 4.3 Frame bundles . 17 4.4 Gauge transformations on frame bundles . 20 4.5 Smooth bundles and jets . 23 4.6 Vertical tangents and horizontal equivariant forms . 24 1 5 Generalizing connections 28 5.1 Connections on bundles . 28 5.2 Parallel transport on the frame bundle . 28 5.3 The exterior covariant derivative on bundles . 31 5.4 Curvature on principal bundles . 32 5.5 The tangent bundle and solder form .
    [Show full text]