<<

#A23 16 (2016)

TWO EXPLICIT FORMULAS OF THE SCHRODER¨ NUMBERS

Feng Qi1 Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, China; College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, China; Department of Mathematics, Tianjin Polytechnic University, Tianjin City, China [email protected], [email protected]

Xiao-Ting Shi Department of Mathematics, Tianjin Polytechnic University, Tianjin City, China [email protected], [email protected]

Bai-Ni Guo School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, China [email protected], [email protected]

Received: 1/13/16, Accepted: 4/13/16, Published: 4/22/16

Abstract In the paper, by several methods and approaches, the authors establish two explicit formulas for the large and little Schr¨oder numbers.

1. Introduction

In and number theory, there are two kinds of Schr¨oder numbers, the large Schr¨oder numbers Sn and the little Schr¨oder numbers sn. They are named after the German mathematician Ernst Schr¨oder.

A large Schr¨oder number Sn describes the number of paths from the southwest corner (0, 0) of an n n grid to the northeast corner (n, n), using only single steps ⇥ north, northeast, or east, that do not rise above the southwest-northeast diagonal. The first eleven large Schr¨oder numbers S for 0 n 10 are n   1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718.

In [3, Theorem 8.5.7], it was proved that the large Schr¨oder numbers Sn have the

1Corresponding author INTEGERS: 16 (2016) 2

1 x px2 6x + 1 1 G(x) = = S xn, (1.1) 2x n n=0 X which can also be rearranged as

px2 + 6x + 1 1 x 1 (x) = G( x) = = ( 1)nS xn. (1.2) G 2x n n=0 X The little Schr¨oder numbers sn form an that can be used to count the number of plane trees with a given set of leaves, the number of ways of inserting parentheses into a sequence, and the number of ways of dissecting a convex polygon into smaller polygons by inserting diagonals. The first eleven little Schr¨oder numbers s for 1 n 11 are n   1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859. They are also called the small Schr¨oder numbers, the Schr¨oder-Hipparchus numbers, or the Schr¨oder numbers, after Ernst Schr¨oder and the ancient Greek mathemati- cian Hipparchus who appears from evidence in Plutarch to have known of these numbers. They are also called the super-Catalan numbers, after Eug´ene Charles Catalan, but are di↵erent from a generalization of the Catalan numbers [8, 18]. In [3, Theorem 8.5.6], it was proved that the little Schr¨oder numbers sn have the generating function

1 + x px2 6x + 1 1 g(x) = = s xn. (1.3) 4 n n=1 X For more information on the large Schr¨oder numbers Sn and the little Schr¨oder numbers sn, please refer to [3, 13, 14, 15, 19, 20] and plenty of references therein. Comparing (1.1) with (1.3), we can reveal

1 1 x2 6x + 1 = 1 + x 4 s xn = 1 x 2 S xn+1, n n n=1 n=0 p X X that is,

1 n 1 1 n 1 n 1 2 s x = 1 2 s x = S x . n n+1 n n=1 n=0 n=0 X X X Accordingly, we acquire Sn = 2sn+1, n N. 2 See also [3, Corollary 8.5.8]. This relation tells us that it is sucient to analytically study the large Schr¨oder numbers Sn. The main aim of this paper is, by several methods and approaches, to establish two explicit formulas for the large and little Schr¨oder numbers Sn and sn. INTEGERS: 16 (2016) 3

Theorem 1. For n N, the large and little Schr¨oder numbers Sn and sn+1 can be 2 computed by

( 1)n 1 n+1 62k 1 k S = 2s = (1.4) n n+1 12 6n k! 2 n k + 1 k= (n+1)/2 ⌧ k✓ ◆ d X e and

n s n r 1 1 n! s q 2(r+j) 1 1 S = 2s = ( 1) 6 k n n+1 12 6n 2 2 q=0 j=0 k j kX=0 r+Xs=k `+Xm=n X X ⌧ ⌧ ` 1 s j m + 2q 1 1 , ⇥ r 1 q n r j + 1 2q 1 r!s!j! ✓ ◆✓ ◆✓ ◆✓ ◆ (1.5) where x stands for the ceiling function which gives the smallest integer not less d e than x and x is the falling factorial defined by h in n 1 x(x 1) (x n + 1), n 1, x n = (x k) = · · · h i (1, n = 0. kY=0

2. Lemmas

In order to prove our main results, we need the following notions and lemmas.

In combinatorial mathematics, the Bell polynomials of the second kind Bn,k are defined by

n k+1 ` n! xi i Bn,k(x1, x2, . . . , xn k+1) = n k+1 `i! i! `i 0 N i=1 i=1 n2X{ }[ Y ⇣ ⌘ i=1 i`i=n n `i=k Q P i=1 P for n k 0. See [4, p. 134, Theorem A]. In combinatorial analysis, the Fa`a di Bruno formula plays an important role and can be described by

n n d (k) (n k+1) [f h(t)] = f (h(t))B h0(t), h00(t), . . . , h (t) (2.1) d tn n,k k=0 X in terms of the Bell polynomials of the second kind Bn,k. See [4, p. 139, Theorem C]. Lemma 1 ([4, p. 135]). For n k 0, we have 2 n k+1 k n Bn,k abx1, ab x2, . . . , ab xn k+1 = a b Bn,k(x1, x2, . . . , xn k+1), (2.2) where a and b are any complex numbers. INTEGERS: 16 (2016) 4

Lemma 2 ([5, Theoem 4.1], [12, Theorem 3.1], and [17, Lemma 2.5]). For n k 0, the Bell polynomials of the second kind Bn,k satisfy

(n k)! n k 2k n B (x, 1, 0, . . . , 0) = x . (2.3) n,k 2n k k n k ✓ ◆✓ ◆ Lemma 3 ([2, p. 40, Exercise 5)], [6, Section 2.2, p. 849], [9, p. 94], and [17, Lemma 2.1]). Let u(x) and v(x) = 0 be two di↵erentiable functions. Let U(n+1) 1(x) 6 (k 1) ⇥ be an (n + 1) 1 matrix whose elements u (x) = u (x) for 1 k n + 1, let ⇥ k,1   V(n+1) n(x) be an (n + 1) n matrix whose elements ⇥ ⇥

i 1 (i j) v (x), i j 0 v (x) = j 1 i,j 8✓ ◆ 0, i j < 0 < for 1 i n + 1 and 1 j :n, and let W(n+1) (n+1)(x) denote the     | ⇥ | of the (n + 1) (n + 1) matrix ⇥ W(n+1) (n+1)(x) = U(n+1) 1(x) V(n+1) n(x) . ⇥ ⇥ ⇥ u(x) Then the nth derivative of the ratio v(x) can be computed by

n d u(x) W(n+1) (n+1)(x) n ⇥ n = ( 1) n+1 . d x v(x) v (x)  Lemma 4 ([16, Theorem 2.1] and [21]). Let M be a square matrix of order n n ⇥ and partitioned as A B M = . C D ✓ ◆ 1 Let K denote the inverse of an invertible matrix K. 1. If B is a k k matrix and C nonsingular, then the determinant of M can be ⇥ computed by (n+1)k 1 M = ( 1) C B AC D . (2.4) | | | | 2. If A, B, C, D are respectively p p, p q, q p, and q q matrices and if ⇥ ⇥ ⇥ ⇥ D is invertible, then the determinant of M can be computed by

1 M = D A BD C . (2.5) | | | | Lemma 5 ([1, Example 2.6] and [4, p. 136, Eq. [3n]]). The Bell polynomials of the second kind Bn,k satisfy

Bn,k(x1 + y1, x2 + y2, . . . , xn k+1 + yn k+1) n = B`,r(x1, x2, . . . , x` r+1)Bm,s(y1, y2, . . . , ym s+1). (2.6) ` r+Xs=k `+Xm=n ✓ ◆ INTEGERS: 16 (2016) 5

Lemma 6. For n k 0, we have n n 1 B (1!, 2!, . . . , (n k + 1)!) = (n k)! (2.7) n,k k k 1 ✓ ◆✓ ◆ and k 1 k ` k (n + 2` 1)! B (2!, 3!, . . . , (n k + 2)!) = ( 1) . (2.8) n,k k! ` (2` 1)! X`=0 ✓ ◆ Proof. The formula (2.7) can be found in [4, p. 135] or [7, Theorem 1]. In [4, p. 133], it was stated that k 1 1 tm 1 tn xm = Bn,k(x1, x2, . . . , xn k+1) (2.9) k! m! n! m=1 ! X nX=k for k 0. Hence, it follows from (2.9) that k 1 tn 1 1 tm B (2!, 3!, . . . , (n k + 2)!) = (m + 1)! n,k n! k! m! m=1 ! nX=k X k k 1 1 1 k ` k 1 = 1 = ( 1) k! (t 1)2 k! ` (t 1)2`  X`=0 ✓ ◆ and, by di↵erentiating with respect to t,

1 tn m B (2!, 3!, . . . , (n k + 2)!) n,k (n m)! n=m X k 1 k ` k m (2` + m 1)! 1 = ( 1) ( 1) , m k 0. k! ` (2` 1)! (t 1)2`+m X`=0 ✓ ◆ Further letting t 0 in the above equation yields the formula (2.8). !

3. Proofs of Theorem 1

We are now in a position to prove our main results.

First proof of the formula (1.4). It is clear that the generating function G(x) is naturally defined on ( , 0) 0, 3 2p2 3 + 2p2 , . It is easy to calculate 1 [ [ 1 that limx 0 (x) = limx 0 G(x) = 2. Therefore, at the point x = 0, both of the ! G ! ⇤ ⇥ functions G(x) and (x) are removably discontinuous. Hence, the function (x) G G can be regarded to be defined on , 3 2p2 2p2 3, ). Since 1 [ 1 1 1/2 ⇤ ⇥ x2 + 6x + 1 = h ik [x(x + 6)]k, x(x + 6) < 1, (3.1) k! | | p kX=0 INTEGERS: 16 (2016) 6 we obtain

1 1 1 1/2 k k 1 k (x) = + h i x (x + 6) , x(x + 6) < 1. (3.2) G 2 2 k! | | kX=1 This implies that the function (x) = G( x) is infinitely di↵erentiable at x = 0. G Utilizing the expansion (3.2) and di↵erentiating give

(m) 1 1/2 k k 1 k (m) 2 (0) = h i lim x (x + 6) G k! x 0 k=1 ! X ⇥ m ⇤ 1 1/2 k m k 1 (`) k (m `) = h i lim x (x + 6) k! x 0 ` k=1 ! `=0 ✓ ◆ X m X ⇥ ⇤ 1 1/2 k m k 1 (`) k (m `) = h i lim x lim (x + 6) x 0 x 0 k! ` ! ! kX=1 X`=0 ✓ ◆ m+1 ⇥ ⇤ 1/2 k m (m k+1) = h i (k 1)! lim (x + 6)k x 0 k! k 1 ! kX=1 ✓ ◆ m+1 ⇥ ⇤ 1/2 k m (m k+1) = h i lim (x + 6)k k k 1 x 0 k= (m+1)/2 ✓ ◆ ! d X e ⇥ ⇤ m+1 1/2 k m 2k m 1 = h i k m k+1 lim(x + 6) k k 1 h i x 0 k= (m+1)/2 ✓ ◆ ! d X e m+1 1/2 k m 2k m 1 = h i k m k+16 k k 1 h i k= (m+1)/2 ✓ ◆ d X e for m 1. From (1.2), it follows that (m)(0) = ( 1)mm!S , m 1. (3.3) G m Consequently,

(m) m m+1 m (0) 1 ( 1) 1/2 k m 2k m 1 Sm = ( 1) G = h i k m k+16 m! 2 m! k k 1 h i k= (m+1)/2 ✓ ◆ d X e for m 1, which can be rewritten as the formula (1.4). The first proof of the formula (1.4) is complete.

Second proof of the formula (1.4). By Fa`a di Bruno’s formula (2.1), the mth deriva- INTEGERS: 16 (2016) 7 tive of the function px2 + 6x + 1 can be computed by

m 2 (m) (k) x + 6x + 1 = pu Bm,k(2x + 6, 2, 0, . . . , 0) k=0 p Xm 1 1/2 k = u B (2x + 6, 2, 0, . . . , 0) 2 m,k k=0⌧ k Xm 1 1/2 k = x2 + 6x + 1 B (2x + 6, 2, 0, . . . , 0) 2 m,k k=0⌧ k X m 1 Bm,k(6, 2, 0, . . . , 0) ! 2 k kX=0⌧ as x 0, where u = u(x) = x2 + 6x + 1 and m 0. By (2.2) and (2.3), we obtain ! m (m) 1 1/2 k x2 + 6x + 1 = x2 + 6x + 1 (m k)! 2 k=0⌧ k p X m k 2k m [2(x + 3)] (3.4) ⇥ k m k ✓ ◆✓ ◆ m 1 m k 2k m (m k)! 6 ! 2 k k m k kX=0⌧ ✓ ◆✓ ◆ as x 0 for m 0. The equation (1.2) can be rewritten as ! 1 x2 + 6x + 1 1 x = 2 ( 1)nS xn+1 n n=0 p X which implies that

n 2 (n+1) 2( 1) (n + 1)!Sn = lim x + 6x + 1 1 x , n 0. x 0 ! p Consequently, we obtain

n 1 ( 1) 2 (n+1) Sn = lim x + 6x + 1 x 0 2 (n + 1)! ! n n+1 p (3.5) 1 ( 1) 1 n + 1 k 2k n 1 = (n k + 1)! 6 2 (n + 1)! 2 k k n k + 1 kX=0⌧ ✓ ◆✓ ◆ for n 1. The formula (1.4) is thus proved again. Third proof of the formula (1.4). Applying Lemma 3 to the functions

u(x) = x2 + 6x + 1 1 x p INTEGERS: 16 (2016) 8 and v(x) = x yields

u(x) x 0 0 0 0 0 0 · · · u0(x) 1 x 0 0 0 0 0 · · · u00(x) 0 2 x 0 0 0 0 · · · u(3)(x) 0 0 3 0 0 0 0 ( 1)n (n) ...... ·.·.·...... (x) = n+1 . (3.6) G 2x (n 3) u (x) 0 0 0 n 3 x 0 0 (n 2) · · · u (x) 0 0 0 0 n 2 x 0 (n 1) · · · u (x) 0 0 0 0 0 n 1 x · · · u(n)(x) 0 0 0 0 0 0 n · · · By the formulas (2.4) and (2.5) and by induction, we have

x 0 0 0 0 0 0 1 x 0 · · · 0 0 0 0 0 · · · 1 0 2 x 0 0 0 0 n+(n+2)n · · · ( 1) B0 0 3 0 0 0 0C (n)(x) = u(n)(x) B · · · C G 2xn+1 B...... C B C B0 0 0 n 3 x 0 0C B · · · C B0 0 0 0 n 2 x 0C B · · · C B0 0 0 0 0 n 1 xC B · · · C @ A u(x) u0(x) 0 1 u00(x) 1 B u(3)(x) C B C 0 0 0 0 0 0 n u(n)(x) B...... C · · · B (n 3) C Bu (x)C B C Bu(n 2)(x)C B C Bu(n 1)(x)C B C @ A x 0 0 0 0 0 nu(x) · · · 1 x 0 0 0 0 nu0(x) · · · 0 2 x 0 0 0 nu00(x) · · · 1 0 0 3 0 0 0 nu(3)(x) = · · · 2xn+1 ...... (n 3) 0 0 0 n 3 x 0 nu (x) · · · (n 2) 0 0 0 0 n 2 x nu (x) · · · (n) (n 1) 0 0 0 0 0 n 1 xu (x) nu (x) · · · 1 = 2xn+1 INTEGERS: 16 (2016) 9

m x 0 0 0 ( 1) n mu(x) · · · m h i 1 x 0 0 ( 1) n mu0(x) · · · m h i 0 2 x 0 ( 1) n mu00(x) · · · m h i (3) 0 0 3 0 ( 1) n mu (x) · · · h i ...... m (n m 1) 0 0 0 x ( 1) n mu (x) · · · m h i 0 0 0 n m ( 1)k n xm ku(n k)(x) k=0 k · · · h i P n 1 1 x ( 1) n n 1u(x) = n+1 n 1 k h in k 1 (n k) 2x 1 ( 1) n x u (x) k=0 h ik n 1 1 P k n k (n k) n 1 = n+1 ( 1) n kx u (x) ( 1) n n 1u(x) 2x " h i h i # kX=0 n (n+1) 1 k n k (n k) lim ( 1) n kx u (x) ! 2(n + 1)! x 0 h i ! "k=0 # nX 1 n k k (k) (n+1) = lim ( 1) n n k x u (x) x 0 2(n + 1)! ! h i kX=0 n n+1 ⇥ ⇤ 1 n k n + 1 k (`) (n+k `+1) = ( 1) n n k lim x u (x) 2(n + 1)! h i ` x 0 k=0 `=0 ✓ ◆ ! h i Xn X 1 n k n + 1 (n+1) = ( 1) n n k k!u (0) 2(n + 1)! h i k k=0 ✓ ◆ X n 1 (n+1) n k n + 1 = u (0) ( 1) n n k k! 2(n + 1)! h i k kX=0 ✓ ◆ 1 = u(n+1)(0) 2(n + 1) as x 0, where 3 m n 2. This means, by considering (3.3), that !   1 ( 1)n S = u(n+1)(0), n 2 (n + 1)! which is same as the first line in (3.5). Combining this with (3.4) recovers the formula (1.4). INTEGERS: 16 (2016) 10

Fourth proof of the formula (1.4). Employing (2.5) to compute (3.6) gives

1 x 0 0 0 0 0 · · · 0 2 x 0 0 0 0 · · · n 0 0 3 0 0 0 0 (n) ( 1) · · · (x) = ...... G 2xn+1 0 0 0 0 n 2 x 0 · · · 0 0 0 0 0 n 1 x · · · 0 0 0 0 0 0 n · · · T 1 x 1 x 0 0 0 0 u0(x) · · · 0 0 2 x 0 0 0 u00(x) · · · (3) 0 0 0 1 00 0 3 0 0 01 0 u (x) 11 · · · B B C B...... C B...... CC Bu(x) B· · ·C B C B (n 3) CC ⇥ B B 0 C B0 0 0 x 0 0C Bu (x)CC B B C B · · · C B (n 2) CC B B 0 C B0 0 0 n 2 x 0C Bu (x)CC B B C B · · · C B (n 1) CC B B 0 C B0 0 0 0 n 1 xC Bu (x)CC B B C B · · · C B CC B B 0 C B0 0 0 0 0 nC B u(n)(x) CC B B C B · · · C B CC @ @ A @ A @ AA u0(x) u00(x) 0 0 u(3)(x) 11 ( 1)nn! B B...... CC = Bu(x) x 0 0 0 0 0 0 P B (n 3) CC 2xn+1 B · · · Bu (x)CC B B (n 2) CC B Bu (x)CC B B (n 1) CC B Bu (x)CC B B CC B B (n) CC B B u (x) CC @ @ AA u0(x) u00(x) n 0 0 (3) 11 ( 1) n! x x2 x3 ( 1)n 1xn u (x) = n+1 u(x) 1 2 3 n 2x B h i1 h i2 h i3 · · · h in B...... CC B B (n 1) CC B ⇣ ⌘ Bu (x)CC B B CC B B u(n)(x) CC B B CC n @ n k @ AA ( 1) n! k+1 x (k) = n+1 u(x) ( 1) u (x) 2x k k " k=1 # X h i n+1 n k+1 ( 1) ( 1) (n+1) lim xku(k)(x) ! 2(n + 1) k! x 0 k=0 ! X ⇥ ⇤ n+1 n k+1 n+1 ( 1) ( 1) n + 1 k (`) (n `+k+1) = lim x u (x) 2(n + 1) k! x 0 ` k=0 ! `=0 ! X X n ( 1)n+1 ( 1)k+1 n + 1 = k!u(n+1)(0) 2(n + 1) k! k k=0 ! X n ( 1)n+1 n + 1 = u(n+1)(0) ( 1)k+1 2(n + 1) k k=0 ! X 1 = u(n+1)(0) 2(n + 1) INTEGERS: 16 (2016) 11 as x 0, where KT stands for the transpose of a matrix K and ! 2 n 3 n 3 n 2 n 2 n 1 n 1 1 x x ( 1) x ( 1) x ( 1) x 1 1 2 2 3 3 n 2 n 2 n 1 n 1 n n h i h i h i · · · h n i4 n 4 h n i3 n 3 hn i2 n 2 1 x ( 1) x ( 1) x ( 1) x 0 0 1 2 1 3 2 n 2 n 3 n 1 n 2 n n 1 h i h i · · · h n i5 n 5 h n i4 n 4 h ni 3 n 3 1 ( 1) x ( 1) x ( 1) x 0 0 B 3 1 n 2 n 4 n 1 n 3 n n 2 C B · · · C B...... h. .i...... h. .. .i...... h. .. .i...... h. i...... C P = B 2 3 C . B 0 0 0 x x x C B n 2 2 n 1 3 n 4 C B · · · h i h i h 2 i C B 0 0 0 1 x x C B · · · n 2 1 n 1 2 n 3 C B 0 0 0 h 0 i h 1 i h ix C B n 1 1 n 2 C B · · · h i h1 i C B 0 0 0 0 0 n C B · · · h i1 C @ A Similar to the above argument, we verify the formula (1.4) once again.

Fifth proof of the formula (1.4). Combining the equation (1.2) with (3.1) leads to

1 1/2 1 h ik [x(x + 6)]k 1 x = 2 ( 1)kS xk+1. k! k kX=0 kX=0 This equality can be reformulated as

k 1 1/2 k k k ` k ` 1 k 1 k h i x 6 x x = 2 ( 1) Sk 1x , k! ` kX=1 X`=0 ✓ ◆ kX=1 k 1 1/2 k k ` k k+` 1 k 1 k h i 6 x x = 2 ( 1) Sk 1x , k! ` kX=1 X`=0 ✓ ◆ kX=1 2k 1 1/2 k 2k m k m 1 k 1 k h i 6 x x = 2 ( 1) Sk 1x , k! m k k=1 m=k ✓ ◆ k=1 X mX X 1 1/2 k 2k m k m 1 m 1 m h i 6 x x = 2 ( 1) Sm 1x , k! m k m=1 k= m/2 ✓ ◆ m=1 X Xd e X m 1/2 k 2k m k m 1 h i 6 = 2( 1) Sm 1, k! m k k= m/2 ✓ ◆ Xd e m 1 m ( 1) 1/2 k 2k m k Sm 1 = h i 6 , 2 k! m k k= m/2 ✓ ◆ Xd e m m+1 ( 1) 1/2 k 2k m 1 k S = h i 6 , m 1. m 2 k! m k + 1 k= (m+1)/2 ✓ ◆ d X e The explicit formula (1.4) is thus proved once again. INTEGERS: 16 (2016) 12

Proof of the formula (1.5). The generating function (1.1) can be rearranged as

1 1 6 1 G(x) = 1 1 + , x > 0. 2 x x x2 ✓ r ◆ Then, by virtue of the formulas (2.1) and (2.6), we see that the nth derivative of G(x) for n N equals 2 n n (n) ( 1) n! (k) (n k+1) 2G (x) = pu B u0(x), u00(x), . . . , u (x) xn+1 n,k kX=0 n 1/2 k ( 1)nn! 1 6 1 = n+1 1 + 2 x 2 k x x kX=0⌧ ✓ ◆ 6 2 12 6 n k 6(n k + 1)! B , + , . . . , ( 1) ⇥ n,k x2 x3 x3 x4 xn k+2 ✓ n k+1 (n k + 2)! + ( 1) xn k+3 ◆ n 1/2 k ( 1)nn! 1 6 1 = n+1 1 + 2 x 2 k x x kX=0⌧ ✓ ◆ n 6 12 ` r 6(` r + 1)! B`,r 2 , 3 , . . . , ( 1) ` r+2 ⇥ ` x x x r+Xs=k `+Xm=n ✓ ◆ ✓ ◆ 2 6 m s+1 (m s + 2)! B , , . . . , ( 1) , ⇥ m,s x3 x4 xm s+3 ✓ ◆ 6 1 where u(x) = 1 x + x2 . Further making use of the formulas (2.2), (2.7), and (2.8) results in INTEGERS: 16 (2016) 13

n n 1/2 k ( 1) n! 1 6 1 2G(n)(x) = 1 + xn+1 2 x x2 k=0 k X⌧ ✓ ◆ n r `+r 1 6 ( 1) B`,r(1!, 2!, . . . , (` r + 1)!) ⇥ ` x`+r r+s=k `+m=n ! X X m 1 ( 1) Bm,s(2!, 3!, . . . , (m s + 2)!) ⇥ xm+2s n n 1/2 k ( 1) n! 1 6 1 n = 1 + 6r( 1)m+`+r xn+1 2 x x2 ` k=0 k r+s=k `+m=n ! X⌧ ✓ ◆ X X s 1 ` ` 1 1 s q s (m + 2q 1)! (` r)! ( 1) ⇥ xm+2s+`+r r r 1 s! q (2q 1)! ! ! q=0 ! X n n n 1/2 k ( 1) n! ( 1) 1 6 1 1 n = 1 + 6r xn+1 xn 2 x x2 xk ` k=0 k r+s=k `+m=n ! X⌧ ✓ ◆ X X r s ( 1) ` ` 1 1 s q s (m + 2q 1)! (` r)! ( 1) ⇥ xs r r 1 s! q (2q 1)! ! ! q=0 ! X n n ( 1) 1 2 1/2 k k n r r = n! x 6x + 1 x 6 ( 1) xn+1 2 ` " k=0 k r+s=k `+m=n ! X⌧ X X s 1 ` ` 1 1 s q s (m + 2q 1)! (` r)! ( 1) ⇥ xs r r 1 s! q (2q 1)! ! ! q=0 ! # X n ( 1)n 1 n ` ` 1 lim n! 6r( 1)r ! (n + 1)! x 0+ 2 ` r r 1 " k=0 k r+s=k `+m=n ! ! ! ! X⌧ X X s (n+1) (` r)! s q s (m + 2q 1)! 2 1/2 k k s ( 1) x 6x + 1 x ⇥ s! q (2q 1)! q=0 ! # X n ( 1)n+1 1 n ` ` 1 (` r)! = 6r( 1)r (n + 1)! 2 ` r r 1 s! k=0 k r+s=k `+m=n ! ! ! X⌧ X X s s q s (m + 2q 1)! 2 1/2 k k s (n+1) ( 1) lim x 6x + 1 x ⇥ q (2q 1)! x 0+ q=0 ! ! X ⇥ ⇤ n+1 n s ( 1) 1 n r r ` ` 1 (` r)! s q = 6 ( 1) ( 1) (n + 1)! 2 ` r r 1 s! k=0 k r+s=k `+m=n ! ! ! q=0 X⌧ X X X n+1 s (m + 2q 1)! n + 1 2 1/2 k (n p+1) k s (p) lim x 6x + 1 x ⇥ q (2q 1)! x 0+ p ! ! p=0 ! X ⇥ ⇤ n+1 n s ( 1) 1 n r r ` ` 1 (` r)! s q = 6 ( 1) ( 1) (n + 1)! 2 ` r r 1 s! k=0 k r+s=k `+m=n ! ! ! q=0 X⌧ X X X s (m + 2q 1)! n + 1 2 1/2 k (n k+s+1) (k s)! lim x 6x + 1 ⇥ q (2q 1)! k s x 0+ ! ! ! ⇥ ⇤ INTEGERS: 16 (2016) 14 as t 0+. By the formulas (2.1), (2.2), and (2.3), we have ! 1/2 k (n k+s+1) lim x2 6x + 1 x 0+ ! ⇥n k+s 1 ⇤ 1/2 k (j) = lim u Bn k+s+1,j(2x 6, 2, 0 . . . , 0) x 0+ ! j=0 X n k+s 1 1 1/2 k j = lim k u Bn k+s+1,j(2x 6, 2, 0 . . . , 0) x 0+ 2 j=0 j ! X ⌧ n k+s 1 1 = k Bn k+s+1,j( 6, 2, 0 . . . , 0) 2 j=0 j X ⌧ n k+s 1 2j n+k s 1 1 (n k j + s + 1)! = ( 1) k 2 6n k 2j+s+1 j=0 j X ⌧ n k + s + 1 j , ⇥ j n k j + s + 1 ✓ ◆✓ ◆ where u = u(x) = x2 6x + 1. As a result, from the generating function (1.1), it follows that 1 S = G(n)(0) n n! 1 ( 1)n+1 n 1 n ` ` 1 (` r)! = 6r( 1)r 2 (n + 1)! 2 k ` r r 1 s! kX=0⌧ r+Xs=k `+Xm=n ✓ ◆ ✓ ◆✓ ◆ s n k+s 1 s q s (m + 2q 1)! n + 1 2j n+k s 1 ( 1) (k s)! ( 1) ⇥ q (2q 1)! k s q=0 j=0 X ✓ ◆ ✓ ◆ X 1 (n k j + s + 1)! n k + s + 1 j k ⇥ 2 6n k 2j+s+1 j n k j + s + 1 ⌧ j ✓ ◆✓ ◆ which can be simplified as the formula (1.5). The proof of Theorem 1 is complete.

Remark 1. This paper is a slightly revised version of the preprint [11] and a companion of the preprint [10].

Acknowledgements. The authors thank Professor Wiwat Wanicharpichat at Naresuan University in Thailand for recommending his paper [16] through Research- Gate on 3 January 2016. The authors appreciate Professor Bruce Landman for his careful corrections in English and mathematics to the original version of this paper. INTEGERS: 16 (2016) 15

References

[1] A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint (2014), available online at http://arxiv.org/abs/1402.2960. [2] N. Bourbaki, Elements of Mathematics: Functions of a Real Variable: Elementary The- ory, Translated from the 1976 French original by Philip Spain. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2004; Available online at http://dx.doi.org/10.1007/ 978-3-642-59315-4. [3] R. A. Brualdi, Introductory Combinatorics, Fifth edition, Pearson Prentice Hall, Upper Saddle River, NJ, 2010. [4] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974. [5] B.-N. Guo and F. Qi, Explicit formulas for special values of the Bell polynomials of the second kind and the , ResearchGate Technical Report (2015), available online at http://dx.doi.org/10.13140/2.1.3794.8808. [6] F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput. 268 (2015), 844–858; Available online at http://dx.doi.org/10.1016/j.amc.2015.06.123. [7] F. Qi, Diagonal recurrence relations for the Stirling numbers of the first kind, Contrib. Discrete Math. 11 (2016), no. 2, in press. [8] F. Qi, Some properties and generalizations of the Catalan, Fuss, and Fuss-Catalan numbers, ResearchGate Research (2015), available online at http://dx.doi.org/10.13140/RG.2.1. 1778.3128. [9] F. Qi and R. J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89–100; Available online at http://dx.doi.org/10.1016/j.jnt.2015.07.021. [10] F. Qi, X.-T. Shi, and B.-N. Guo, Integral representations of the large and little Schr¨oder numbers, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10. 13140/RG.2.1.1988.3288. [11] F. Qi, X.-T. Shi, and B.-N. Guo, Two explicit formulas of the Schr¨oder numbers, Research- Gate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.1.2676. 3283. [12] F. Qi and M.-M. Zheng, Explicit expressions for a family of the Bell polynomials and ap- plications, Appl. Math. Comput. 258 (2015), 597–607; Available online at http://dx.doi. org/10.1016/j.amc.2015.02.027. [13] N. J. A. Sloane, Large Schr¨oder numbers, From The On-Line Encyclopedia of Integer Se- quences; Available online at http://oeis.org/A006318. [14] N. J. A. Sloane, Schroeder’s second problem, From The On-Line Encyclopedia of Integer ; Available online at https://oeis.org/A001003. [15] R. Stanley and E. W. Weisstein, Schr¨oder number, From MathWorld–A Wolfram Web Re- source; Available online at http://mathworld.wolfram.com/SchroederNumber.html. [16] W. Wanicharpichat, Explicit minimum polynomial, eigenvector and inverse formula of doubly Leslie matrix, J. Appl. Math. Inform. 33 (2015), no. 3-4, 247–260; Available online at http: //dx.doi.org/10.14317/jami.2015.247 [17] C.-F. Wei and F. Qi, Several closed expressions for the Euler numbers, J. Inequal. Appl. 2015, 2015:219, 8 pages; Available online at http://dx.doi.org/10.1186/s13660-015-0738-9. [18] Wikipedia, Catalan number, From the Free Encyclopedia; Available online at https://en. wikipedia.org/wiki/Catalan_number. [19] Wikipedia, Schr¨oder-Hipparchus number, From the Free Encyclopedia; Available online at https://en.wikipedia.org/wiki/Schr%C3%B6der%E2%80%93Hipparchus_number. [20] Wikipedia, Schr¨oder number, From the Free Encyclopedia; Available online at https://en. wikipedia.org/wiki/Schr%C3%B6der_number. [21] Wikipedia, Schur complement, From the Free Encyclopedia; Available online at https:// en.wikipedia.org/wiki/Schur_complement.