Algebraic and Geometric Methods in Enumerative Combinatorics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Counting Prime Polynomials and Measuring Complexity and Similarity of Information
Counting Prime Polynomials and Measuring Complexity and Similarity of Information by Niko Rebenich B.Eng., University of Victoria, 2007 M.A.Sc., University of Victoria, 2012 A Dissertation Submitted in Partial Fulllment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Electrical and Computer Engineering © Niko Rebenich, 2016 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Counting Prime Polynomials and Measuring Complexity and Similarity of Information by Niko Rebenich B.Eng., University of Victoria, 2007 M.A.Sc., University of Victoria, 2012 Supervisory Committee Dr. Stephen Neville, Co-supervisor (Department of Electrical and Computer Engineering) Dr. T. Aaron Gulliver, Co-supervisor (Department of Electrical and Computer Engineering) Dr. Venkatesh Srinivasan, Outside Member (Department of Computer Science) iii Supervisory Committee Dr. Stephen Neville, Co-supervisor (Department of Electrical and Computer Engineering) Dr. T. Aaron Gulliver, Co-supervisor (Department of Electrical and Computer Engineering) Dr. Venkatesh Srinivasan, Outside Member (Department of Computer Science) ABSTRACT This dissertation explores an analogue of the prime number theorem for polynomi- als over nite elds as well as its connection to the necklace factorization algorithm T-transform and the string complexity measure T-complexity. Specically, a precise asymptotic expansion for the prime polynomial counting function is derived. The approximation given is more accurate than previous results in the literature while requiring very little computational eort. In this context asymptotic series expan- sions for Lerch transcendent, Eulerian polynomials, truncated polylogarithm, and polylogarithms of negative integer order are also provided. -
Catalan Numbers Modulo 2K
1 2 Journal of Integer Sequences, Vol. 13 (2010), 3 Article 10.5.4 47 6 23 11 Catalan Numbers Modulo 2k Shu-Chung Liu1 Department of Applied Mathematics National Hsinchu University of Education Hsinchu, Taiwan [email protected] and Jean C.-C. Yeh Department of Mathematics Texas A & M University College Station, TX 77843-3368 USA Abstract In this paper, we develop a systematic tool to calculate the congruences of some combinatorial numbers involving n!. Using this tool, we re-prove Kummer’s and Lucas’ theorems in a unique concept, and classify the congruences of the Catalan numbers cn (mod 64). To achieve the second goal, cn (mod 8) and cn (mod 16) are also classified. Through the approach of these three congruence problems, we develop several general properties. For instance, a general formula with powers of 2 and 5 can evaluate cn (mod k 2 ) for any k. An equivalence cn ≡2k cn¯ is derived, wheren ¯ is the number obtained by partially truncating some runs of 1 and runs of 0 in the binary string [n]2. By this equivalence relation, we show that not every number in [0, 2k − 1] turns out to be a k residue of cn (mod 2 ) for k ≥ 2. 1 Introduction Throughout this paper, p is a prime number and k is a positive integer. We are interested in enumerating the congruences of various combinatorial numbers modulo a prime power 1Partially supported by NSC96-2115-M-134-003-MY2 1 k q := p , and one of the goals of this paper is to classify Catalan numbers cn modulo 64. -
Motzkin Paths, Motzkin Polynomials and Recurrence Relations
Motzkin paths, Motzkin polynomials and recurrence relations Roy Oste and Joris Van der Jeugt Department of Applied Mathematics, Computer Science and Statistics Ghent University B-9000 Gent, Belgium [email protected], [email protected] Submitted: Oct 24, 2014; Accepted: Apr 4, 2015; Published: Apr 21, 2015 Mathematics Subject Classifications: 05A10, 05A15 Abstract We consider the Motzkin paths which are simple combinatorial objects appear- ing in many contexts. They are counted by the Motzkin numbers, related to the well known Catalan numbers. Associated with the Motzkin paths, we introduce the Motzkin polynomial, which is a multi-variable polynomial “counting” all Motzkin paths of a certain type. Motzkin polynomials (also called Jacobi-Rogers polyno- mials) have been studied before, but here we deduce some properties based on recurrence relations. The recurrence relations proved here also allow an efficient computation of the Motzkin polynomials. Finally, we show that the matrix en- tries of powers of an arbitrary tridiagonal matrix are essentially given by Motzkin polynomials, a property commonly known but usually stated without proof. 1 Introduction Catalan numbers and Motzkin numbers have a long history in combinatorics [19, 20]. 1 2n A lot of enumeration problems are counted by the Catalan numbers Cn = n+1 n , see e.g. [20]. Closely related to Catalan numbers are Motzkin numbers M , n ⌊n/2⌋ n M = C n 2k k Xk=0 similarly associated to many counting problems, see e.g. [9, 1, 18]. For example, the number of different ways of drawing non-intersecting chords between n points on a circle is counted by the Motzkin numbers. -
Algebra & Number Theory Vol. 7 (2013)
Algebra & Number Theory Volume 7 2013 No. 3 msp Algebra & Number Theory msp.org/ant EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Raman Parimala Emory University, USA John H. Coates University of Cambridge, UK Jonathan Pila University of Oxford, UK J-L. Colliot-Thélène CNRS, Université Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hélène Esnault Freie Universität Berlin, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universität, Germany Joseph H. Silverman Brown University, USA Edward Frenkel University of California, Berkeley, USA Michael Singer North Carolina State University, USA Andrew Granville Université de Montréal, Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Virginia, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale University, USA Ravi Vakil Stanford University, -
Motzkin Paths
Discrete Math. 312 (2012), no. 11, 1918-1922 Noncrossing Linked Partitions and Large (3; 2)-Motzkin Paths William Y.C. Chen1, Carol J. Wang2 1Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P.R. China 2Department of Mathematics Beijing Technology and Business University Beijing 100048, P.R. China emails: [email protected], wang [email protected] Abstract. Noncrossing linked partitions arise in the study of certain transforms in free probability theory. We explore the connection between noncrossing linked partitions and (3; 2)-Motzkin paths, where a (3; 2)-Motzkin path can be viewed as a Motzkin path for which there are three types of horizontal steps and two types of down steps. A large (3; 2)-Motzkin path is a (3; 2)-Motzkin path for which there are only two types of horizontal steps on the x-axis. We establish a one-to-one correspondence between the set of noncrossing linked partitions of f1; : : : ; n + 1g and the set of large (3; 2)- Motzkin paths of length n, which leads to a simple explanation of the well-known relation between the large and the little Schr¨odernumbers. Keywords: Noncrossing linked partition, Schr¨oderpath, large (3; 2)-Motzkin path, Schr¨odernumber AMS Classifications: 05A15, 05A18. 1 1 Introduction The notion of noncrossing linked partitions was introduced by Dykema [5] in the study of the unsymmetrized T-transform in free probability theory. Let [n] denote f1; : : : ; ng. It has been shown that the generating function of the number of noncrossing linked partitions of [n + 1] is given by 1 p X 1 − x − 1 − 6x + x2 F (x) = f xn = : (1.1) n+1 2x n=0 This implies that the number of noncrossing linked partitions of [n + 1] is equal to the n-th large Schr¨odernumber Sn, that is, the number of large Schr¨oderpaths of length 2n. -
Asymptotics of Multivariate Sequences, Part III: Quadratic Points
Asymptotics of multivariate sequences, part III: quadratic points Yuliy Baryshnikov 1 Robin Pemantle 2,3 ABSTRACT: We consider a number of combinatorial problems in which rational generating func- tions may be obtained, whose denominators have factors with certain singularities. Specifically, there exist points near which one of the factors is asymptotic to a nondegenerate quadratic. We compute the asymptotics of the coefficients of such a generating function. The computation requires some topological deformations as well as Fourier-Laplace transforms of generalized functions. We apply the results of the theory to specific combinatorial problems, such as Aztec diamond tilings, cube groves, and multi-set permutations. Keywords: generalized function, Fourier transform, Fourier-Laplace, lacuna, multivariate generating function, hyperbolic polynomial, amoeba, Aztec diamond, quantum random walk, random tiling, cube grove. Subject classification: Primary: 05A16 ; Secondary: 83B20, 35L99. 1Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ 07974-0636, [email protected] labs.com 2Research supported in part by National Science Foundation grant # DMS 0603821 3University of Pennsylvania, Department of Mathematics, 209 S. 33rd Street, Philadelphia, PA 19104 USA, pe- [email protected] Contents 1 Introduction 1 1.1 Background and motivation . 1 1.2 Methods and organization . 4 1.3 Comparison with other techniques . 7 2 Notation and preliminaries 8 2.1 The Log map and amoebas . 9 2.2 Dual cones, tangent cones and normal cones . 10 2.3 Hyperbolicity for homogeneous polynomials . 11 2.4 Hyperbolicity and semi-continuity for log-Laurent polynomials on the amoeba boundary 14 2.5 Critical points . 20 2.6 Quadratic forms and their duals . -
Some Identities on the Catalan, Motzkin and Schr¨Oder Numbers
Discrete Applied Mathematics 156 (2008) 2781–2789 www.elsevier.com/locate/dam Some identities on the Catalan, Motzkin and Schroder¨ numbers Eva Y.P. Denga,∗, Wei-Jun Yanb a Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, PR China b Department of Foundation Courses, Neusoft Institute of Information, Dalian 116023, PR China Received 19 July 2006; received in revised form 1 September 2007; accepted 18 November 2007 Available online 3 January 2008 Abstract In this paper, some identities between the Catalan, Motzkin and Schroder¨ numbers are obtained by using the Riordan group. We also present two combinatorial proofs for an identity related to the Catalan numbers with the Motzkin numbers and an identity related to the Schroder¨ numbers with the Motzkin numbers, respectively. c 2007 Elsevier B.V. All rights reserved. Keywords: Catalan number; Motzkin number; Schroder¨ number; Riordan group 1. Introduction The Catalan, Motzkin and Schroder¨ numbers have been widely encountered and widely investigated. They appear in a large number of combinatorial objects, see [11] and The On-Line Encyclopedia of Integer Sequences [8] for more details. Here we describe them in terms of certain lattice paths. A Dyck path of semilength n is a lattice path from the origin (0, 0) to (2n, 0) consisting of up steps (1, 1) and down steps (1, −1) that never goes below the x-axis. The set of Dyck paths of semilength n is enumerated by the n-th Catalan number 1 2n cn = n + 1 n (sequence A000108 in [8]). The generating function for the Catalan numbers (cn)n∈N is √ 1 − 1 − 4x c(x) = . -
Motzkin Numbers of Higher Rank: Generating Function and Explicit Expression
1 2 Journal of Integer Sequences, Vol. 10 (2007), 3 Article 07.7.4 47 6 23 11 Motzkin Numbers of Higher Rank: Generating Function and Explicit Expression Toufik Mansour Department of Mathematics University of Haifa Haifa 31905 Israel [email protected] Matthias Schork1 Camillo-Sitte-Weg 25 60488 Frankfurt Germany [email protected] Yidong Sun Department of Mathematics Dalian Maritime University 116026 Dalian P. R. China [email protected] Abstract The generating function for the (colored) Motzkin numbers of higher rank intro- duced recently is discussed. Considering the special case of rank one yields the corre- sponding results for the conventional colored Motzkin numbers for which in addition a recursion relation is given. Some explicit expressions are given for the higher rank case in the first few instances. 1All correspondence should be directed to this author. 1 1 Introduction The classical Motzkin numbers (A001006 in [1]) count the numbers of Motzkin paths (and are also related to many other combinatorial objects, see Stanley [2]). Let us recall the definition of Motzkin paths. We consider in the Cartesian plane Z Z those lattice paths starting from (0, 0) that use the steps U, L, D , where U = (1, 1) is× an up-step, L = (1, 0) a level-step and D = (1, 1) a down-step.{ Let} M(n, k) denote the set of paths beginning in (0, 0) and ending in (n,− k) that never go below the x-axis. Paths in M(n, 0) are called Motzkin paths and m := M(n, 0) is called n-th Motzkin number. -
Generalized Catalan Numbers and Some Divisibility Properties
UNLV Theses, Dissertations, Professional Papers, and Capstones December 2015 Generalized Catalan Numbers and Some Divisibility Properties Jacob Bobrowski University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Mathematics Commons Repository Citation Bobrowski, Jacob, "Generalized Catalan Numbers and Some Divisibility Properties" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2518. http://dx.doi.org/10.34917/8220086 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. GENERALIZED CATALAN NUMBERS AND SOME DIVISIBILITY PROPERTIES By Jacob Bobrowski Bachelor of Arts - Mathematics University of Nevada, Las Vegas 2013 A thesis submitted in partial fulfillment of the requirements for the Master of Science - Mathematical Sciences College of Sciences Department of Mathematical Sciences The Graduate College University of Nevada, Las Vegas December 2015 Thesis Approval The Graduate College The University of Nevada, Las Vegas November 13, 2015 This thesis prepared by Jacob Bobrowski entitled Generalized Catalan Numbers and Some Divisibility Properties is approved in partial fulfillment of the requirements for the degree of Master of Science – Mathematical Sciences Department of Mathematical Sciences Peter Shive, Ph.D. -
Number Pattern Hui Fang Huang Su Nova Southeastern University, [email protected]
Transformations Volume 2 Article 5 Issue 2 Winter 2016 12-27-2016 Number Pattern Hui Fang Huang Su Nova Southeastern University, [email protected] Denise Gates Janice Haramis Farrah Bell Claude Manigat See next page for additional authors Follow this and additional works at: https://nsuworks.nova.edu/transformations Part of the Curriculum and Instruction Commons, Science and Mathematics Education Commons, Special Education and Teaching Commons, and the Teacher Education and Professional Development Commons Recommended Citation Su, Hui Fang Huang; Gates, Denise; Haramis, Janice; Bell, Farrah; Manigat, Claude; Hierpe, Kristin; and Da Silva, Lourivaldo (2016) "Number Pattern," Transformations: Vol. 2 : Iss. 2 , Article 5. Available at: https://nsuworks.nova.edu/transformations/vol2/iss2/5 This Article is brought to you for free and open access by the Abraham S. Fischler College of Education at NSUWorks. It has been accepted for inclusion in Transformations by an authorized editor of NSUWorks. For more information, please contact [email protected]. Number Pattern Cover Page Footnote This article is the result of the MAT students' collaborative research work in the Pre-Algebra course. The research was under the direction of their professor, Dr. Hui Fang Su. The ap per was organized by Team Leader Denise Gates. Authors Hui Fang Huang Su, Denise Gates, Janice Haramis, Farrah Bell, Claude Manigat, Kristin Hierpe, and Lourivaldo Da Silva This article is available in Transformations: https://nsuworks.nova.edu/transformations/vol2/iss2/5 Number Patterns Abstract In this manuscript, we study the purpose of number patterns, a brief history of number patterns, and classroom uses for number patterns and magic squares. -
The Q , T -Catalan Numbers and the Space of Diagonal Harmonics
The q, t-Catalan Numbers and the Space of Diagonal Harmonics with an Appendix on the Combinatorics of Macdonald Polynomials J. Haglund Department of Mathematics, University of Pennsylvania, Philadel- phia, PA 19104-6395 Current address: Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395 E-mail address: [email protected] 1991 Mathematics Subject Classification. Primary 05E05, 05A30; Secondary 05A05 Key words and phrases. Diagonal harmonics, Catalan numbers, Macdonald polynomials Abstract. This is a book on the combinatorics of the q, t-Catalan numbers and the space of diagonal harmonics. It is an expanded version of the lecture notes for a course on this topic given at the University of Pennsylvania in the spring of 2004. It includes an Appendix on some recent discoveries involving the combinatorics of Macdonald polynomials. Contents Preface vii Chapter 1. Introduction to q-Analogues and Symmetric Functions 1 Permutation Statistics and Gaussian Polynomials 1 The Catalan Numbers and Dyck Paths 6 The q-Vandermonde Convolution 8 Symmetric Functions 10 The RSK Algorithm 17 Representation Theory 22 Chapter 2. Macdonald Polynomials and the Space of Diagonal Harmonics 27 Kadell and Macdonald’s Generalizations of Selberg’s Integral 27 The q,t-Kostka Polynomials 30 The Garsia-Haiman Modules and the n!-Conjecture 33 The Space of Diagonal Harmonics 35 The Nabla Operator 37 Chapter 3. The q,t-Catalan Numbers 41 The Bounce Statistic 41 Plethystic Formulas for the q,t-Catalan 44 The Special Values t = 1 and t =1/q 47 The Symmetry Problem and the dinv Statistic 48 q-Lagrange Inversion 52 Chapter 4. -
In Combinatorics, the Eulerian Number A(N, M), Is the Number of Permutations of the Numbers 1 to N in Which Exactly M Elements A
From Wikipedia, the free encyclopedia In combinatorics, the Eulerian number A(n, m), is the number of permutations of the numbers 1 to n in which exactly m elements are greater than the previous element (permutations with m "ascents"). They are the coefficients of the Eulerian polynomials: The Eulerian polynomials are defined by the exponential generating function The Eulerian polynomials can be computed by the recurrence An equivalent way to write this definition is to set the Eulerian polynomials inductively by Other notations for A(n, m) are E(n, m) and . 1History 2 Basic properties 3 Explicit formula 4 Summation properties 5 Identities 6 Eulerian numbers of the second kind 7 References 8 External links In 1755 Leonhard Euler investigated in his book Institutiones calculi differentialis polynomials α1(x) = 1, α2(x) = x + 1, 2 α3(x) = x + 4x + 1, etc. (see the facsimile). These polynomials are a shifted form of what are now called the Eulerian polynomials An(x). For a given value of n > 0, the index m in A(n, m) can take values from 0 to n − 1. For fixed n there is a single permutation which has 0 ascents; this is the falling permutation (n, n − 1, n − 2, ..., 1). There is also a single permutation which has n − 1 ascents; this is the rising permutation (1, 2, 3, ..., n). Therefore A(n, 0) and A(n, n − 1) are 1 for all values of n. Reversing a permutation with m ascents creates another permutation in which there are n − m − 1 ascents. Therefore A(n, m) = A(n, n − m − 1).