Biomarkers of Tumor Invasiveness in Proteomics (Review)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annexin A2 Flop-Out Mediates the Non-Vesicular Release of Damps/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions
cells Article Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions Hayato Matsunaga 1,2,† , Sebok Kumar Halder 1,3,† and Hiroshi Ueda 1,4,* 1 Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; [email protected] (H.M.); [email protected] (S.K.H.) 2 Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan 3 San Diego Biomedical Research Institute, San Diego, CA 92121, USA 4 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan * Correspondence: [email protected]; Tel.: +81-75-753-4536 † These authors contributed equally to this work. Abstract: Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum- free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 Citation: Matsunaga, H.; Halder, through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 S.K.; Ueda, H. Annexin A2 Flop-Out antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1. -
Calreticulin Controlling the Membrane Translocation of Immunogenicity Of
ERP57 Membrane Translocation Dictates the Immunogenicity of Tumor Cell Death by Controlling the Membrane Translocation of Calreticulin This information is current as of September 25, 2021. Michel Obeid J Immunol 2008; 181:2533-2543; ; doi: 10.4049/jimmunol.181.4.2533 http://www.jimmunol.org/content/181/4/2533 Downloaded from References This article cites 26 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/181/4/2533.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology ERP57 Membrane Translocation Dictates the Immunogenicity of Tumor Cell Death by Controlling the Membrane Translocation of Calreticulin1 Michel Obeid2 Several pieces of experimental evidence indicate the following: 1) the most efficient antitumor treatments (this principle applies on both chemotherapy and radiotherapy) are those that induce immunogenic cell death and are able to trigger a specific antitumor immune response; and 2) the immunogenicity of cell death depends very closely on the plasma membrane quantity of calreticulin (CRT), an endoplasmic reticulum (ER) stress protein exposed to the cell membrane after immunogenic treatment. -
The Impact of Endogenous Annexin A1 on Glucocorticoid Control of Infl Ammatory Arthritis
Basic and translational research Ann Rheum Dis: first published as 10.1136/annrheumdis-2011-201180 on 5 May 2012. Downloaded from EXTENDED REPORT The impact of endogenous annexin A1 on glucocorticoid control of inß ammatory arthritis Hetal B Patel,1 Kristin N Kornerup,1 AndreÕ LF Sampaio,1 Fulvio DÕAcquisto,1 Michael P Seed,1 Ana Paula Girol,2 Mohini Gray,3 Costantino Pitzalis,1 Sonia M Oliani,2 Mauro Perretti1 ▶ Additional (Þ gures and tables) ABSTRACT Annexin A1 (AnxA1) is an effector of resolution.4 are published online only. To view Objectives To establish the role and effect of Highly expressed in immune cells (eg, polymorpho- these Þ les please visit the journal nuclear cells and macrophages), this protein is exter- online (http://ard.bmj.com/ glucocorticoids and the endogenous annexin A1 (AnxA1) content/early/recent). pathway in inß ammatory arthritis. nalised to exert paracrine and juxtacrine effects, the vast majority of which are mediated by the formyl- 1William Harvey Research Methods Ankle joint mRNA and protein expression Institute, Barts and The London of AnxA1 and its receptors were analysed in peptide receptor type 2 (FPR2/ALX ([Lipoxin A4 School of Medicine, London UK naive and arthritic mice by real-time PCR and receptor]) or FPR2, in rodents).5 Intriguingly, FPR2/ 2Department of Biology; 6 immunohistochemistry. Inß ammatory arthritis was ALX is also the lipoxin A4 receptor indicating the Instituto de Bioci•ncias, Letras +/+ existence of important – yet not fully appreci- e Ci•ncias Exatas (IBILCE), S‹o induced with the K/BxN arthritogenic serum in AnxA1 −/− ated – networks in resolution.7 Paulo State University, S‹o JosŽ and AnxA1 mice; in some experiments, animals Another receptor do Rio Preto, Brazil were treated with dexamethasone (Dex) or with human is also advocated to mediate the effects of AnxA1, 3Medical Research Council recombinant AnxA1 or a protease-resistant mutant the formyl-peptide receptor type 1 or FPR1 (FPR1 Centre for Inß ammation, (termed SuperAnxA1). -
Profiling of Transcripts and Proteins Modulated by the E7 Oncogene in the Lung Tissue of E7-Tg Mice by the Omics Approach
MOLECULAR MEDICINE REPORTS 2: 129-137, 2009 129 Profiling of transcripts and proteins modulated by the E7 oncogene in the lung tissue of E7-Tg mice by the omics approach EUNJIN KIM1*, JEONGWOO KANG1,3*, MINCHUL CHO1, SOJUNG LEE1, EUNHEE SEO1, HEESOOK CHOI1, YUMI KIM1, JUNGHEE KIM1, KUM YONG KANG2, KWANG PYO KIM2, JAEYONG HAN3, YHUNYHONG SHEEN4, YOUNG NA YUM5, SUE-NIE PARK5 and DO-YOUNG YOON1 Departments of 1Bioscience and Biotechnology, and 2Molecular Biotechnology, Konkuk University, Hwayang-dong 1, Gwangjin-gu, Seoul 143-701; 3Laboratory of Animal Genetic Engineering, Department of Food and Animal Biotechnology, Seoul National University, Seoul 151-742; 4School of Pharmacy, Ewha Womans University, Seoul 120-750; 5Korea Food and Drug Administration, #194 Tongil-ro, Eunpyung-gu, Seoul 122-704, Korea Received August 18, 2008; Accepted November 10, 2008 DOI: 10.3892/mmr_00000073 Abstract. The E6 and E7 oncoproteins of human papilloma suggest that the E7 oncogene modulates the expression levels virus (HPV) type 16 have been known to cooperatively induce of cell cycle-related (cyclin B1, cyclin E2) and cell adhesion- the immortalization and transformation of primary keratino- and migration-related (actinin ·1, CD166) factors, which may cytes. We established an E7 transgenic mouse model to play important roles in cellular transformation in cancer. In screen HPV-related biomakers using the omics approach. addition, the solubilization of the rigid intermediate filament The methods used to identify HPV-modulated factors were network by specific proteolysis mediated via up-regulating genomics analysis by microarray using the Affymetrix 430 gelsolin and down-regulating cofilin-1, as well as increased 2.0 array to screen E7-modulated genes, and proteomics levels of endoplasmic reticulum protein calnexin with chap- analysis using nano-LC-ESI-MS/MS to screen E7-modulated erone functions, might also be involved in E7-lung epithelial proteins with the lung tissue of E7 transgenic mice. -
Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth
International Journal of Molecular Sciences Article Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth Daniel J. Owens 1,2 , Julien Messéant 1, Sophie Moog 3, Mark Viggars 2, Arnaud Ferry 1,4, Kamel Mamchaoui 1,5, Emmanuelle Lacène 5 , Norma Roméro 5,6, Astrid Brull 1 , Gisèle Bonne 1 , Gillian Butler-Browne 1 and Catherine Coirault 1,* 1 Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; [email protected] (D.J.O.); [email protected] (J.M.); [email protected] (A.F.); [email protected] (K.M.); [email protected] (A.B.); [email protected] (G.B.); [email protected] (G.B.-B.) 2 Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK; [email protected] 3 Inovarion, 75005 Paris, France; [email protected] 4 Université de Paris, 75006 Paris, France 5 Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; [email protected] (E.L.); [email protected] (N.R.) 6 APHP, Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Institute of Myology, 75013 Paris, France * Correspondence: [email protected]; Tel.: +33-1-1-4216-5708 Abstract: Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle muscular Citation: Owens, D.J.; Messéant, J.; dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). -
ARVC-Variants.Pdf
Updated gene list responsible for ARVC/D pathology Subtype Gene Location Reference ARVC1 TGFB3 14q24.3 Beffagna G, Occhi G, Nava A, et al. Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res. 2005;65:366–73. ARVC2 RYR2 1q43 Tiso N, Stephan DA, Nava A, et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001;10:189–94. ARVC3 Unknown 14q12-q22 Severini GM, Krajinovic M, Pinamonti B, et al. A new locus for arrhythmogenic right ventricular dysplasia on the long arm of chromosome 14. Genomics. 1996;31:193–200. ARVC4 TTN 2q32.1-q32.3 Taylor M, Graw S, Sinagra G, et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation. 2011;124:876–85. ARVC5 TMEM43 3p25.1 Merner ND, Hodgkinson KA, Haywood AF, et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet. 2008;82:809–21. ARVC6 Unknown 10p14-p12 Li D, Ahmad F, Gardner MJ, et al. The locus of a novel gene responsible for arrhythmogenic right- ventricular dysplasia characterized by early onset and high penetrance maps to chromosome 10p12-p14. Am J Hum Genet. 2000;66:148–56. ARVC7 DES 2q35 Klauke B, Kossmann S, Gaertner A, et al. De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum Mol Genet. 2010;19:4595–607. -
Annexin A1 Expression Is Associated with Epithelial–Mesenchymal Transition (EMT), Cell Proliferation, Prognosis, and Drug Response in Pancreatic Cancer
cells Article Annexin A1 Expression Is Associated with Epithelial–Mesenchymal Transition (EMT), Cell Proliferation, Prognosis, and Drug Response in Pancreatic Cancer Masanori Oshi 1,2 , Yoshihisa Tokumaru 1,3 , Swagoto Mukhopadhyay 1, Li Yan 4, Ryusei Matsuyama 2, Itaru Endo 2 and Kazuaki Takabe 1,2,5,6,7,8,* 1 Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; [email protected] (M.O.); [email protected] (Y.T.); [email protected] (S.M.) 2 Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan; [email protected] (R.M.); [email protected] (I.E.) 3 Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan 4 Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; [email protected] 5 Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan 6 Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo the State University of New York, Buffalo, NY 14263, USA 7 Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan Citation: Oshi, M.; Tokumaru, Y.; 8 Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan Mukhopadhyay, S.; Yan, L.; * Correspondence: [email protected]; Tel.: +1-716-8-455-540; Fax: +1-716-8-451-668 Matsuyama, R.; Endo, I.; Takabe, K. Annexin A1 Expression Is Associated Abstract: Annexin A1 (ANXA1) is a calcium-dependent phospholipid-binding protein overexpressed with Epithelial–Mesenchymal in pancreatic cancer (PC). -
Discovery of Endoplasmic Reticulum Calcium Stabilizers to Rescue ER-Stressed Podocytes in Nephrotic Syndrome
Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome Sun-Ji Parka, Yeawon Kima, Shyh-Ming Yangb, Mark J. Hendersonb, Wei Yangc, Maria Lindahld, Fumihiko Uranoe, and Ying Maggie Chena,1 aDivision of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; bNational Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850; cDepartment of Genetics, Washington University School of Medicine, St. Louis, MO 63110; dInstitute of Biotechnology, University of Helsinki, Helsinki, Finland 00014; and eDivision of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 Edited by Martin R. Pollak, Beth Israel Deaconess Medical Center, Brookline, MA, and approved May 28, 2019 (received for review August 16, 2018) Emerging evidence has established primary nephrotic syndrome activating transcription factor 6 (ATF6), which act as proximal (NS), including focal segmental glomerulosclerosis (FSGS), as a sensors of ER stress. ER stress activates these sensors by inducing primary podocytopathy. Despite the underlying importance of phosphorylation and homodimerization of IRE1α and PERK/ podocyte endoplasmic reticulum (ER) stress in the pathogenesis of eukaryotic initiation factor 2α (eIF2α), as well as relocalization of NS, no treatment currently targets the podocyte ER. In our mono- ATF6 to the Golgi, where it is cleaved by S1P/S2P proteases from genic podocyte ER stress-induced NS/FSGS mouse model, the 90 kDa to the active 50-kDa ATF6 (8), leading to activation of podocyte type 2 ryanodine receptor (RyR2)/calcium release channel their respective downstream transcription factors, spliced XBP1 on the ER was phosphorylated, resulting in ER calcium leak and (XBP1s), ATF4, and p50ATF6 (8–10). -
The Atf6β-Calreticulin Axis Promotes Neuronal Survival Under Endoplasmic Reticulum Stress and Excitotoxicity
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429116; this version posted February 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 1 The ATF6β-calreticulin axis promotes neuronal survival under 2 endoplasmic reticulum stress and excitotoxicity 3 4 Dinh Thi Nguyen1, Thuong Manh Le1, Tsuyoshi Hattori1, Mika Takarada-Iemata1, 5 Hiroshi Ishii1, Jureepon Roboon1, Takashi Tamatani1, Takayuki Kannon2, 6 Kazuyoshi Hosomichi2, Atsushi Tajima2, Shusuke Taniuchi3, Masato Miyake3, Seiichi 7 Oyadomari3, Shunsuke Saito4, Kazutoshi Mori4, Osamu Hori1* 8 9 10 1.Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa 11 University, Kanazawa, Japan 12 2.Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive 13 Medical Sciences, Kanazawa University, Kanazawa, Japan 14 3.Division of Molecular Biology, Institute for Genome Research, Institute of Advanced 15 Medical Sciences, Tokushima University, Tokushima, Japan 16 4.Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan 17 18 19 Running title: Neuroprotective role of the ATF6β-calreticulin axis 20 21 22 23 24 25 26 * Corresponding author: 27 Dr. Osamu Hori 28 Department of Neuroanatomy, Kanazawa University Graduate School of Medical 29 Sciences, 30 13-1 Takara-Machi, Kanazawa City, 31 Ishikawa 920-8640, Japan 32 Tel: +81-76-265-2162 33 Fax: +81-76-234-4222 34 E-mail: [email protected] 35 36 37 38 39 Key words: neurodegeneration, Ca2+ homeostasis, ER stress 40 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429116; this version posted February 2, 2021. -
Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance As a Prognostic Biomarker in Ovarian
cells Review Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients Michal Kielbik *, Izabela Szulc-Kielbik and Magdalena Klink Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; [email protected] (I.S.-K.); [email protected] (M.K.) * Correspondence: [email protected]; Tel.: +48-42-27-23-636 Abstract: Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an “eat me” signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor’s antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant dis- ease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients. -
Electronic Supplementary Material (ESI) for Molecular Biosystems
Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2015 Table S5 Mass data of proteins identified with label free shotgun proteomics a #Alt. Proteins; b Scores; c #Peptides; d SC [%]; e RMS90 [ppm]; f Rank; g Median(Controls:GLP1); h #(Controls:GLP1); i CV [%](Controls:GLP1); l Median(Controls:Palmitate); m #(Controls:Palmitate) ; n CV [%](Controls:Palmitate); o Median(Controls:GLP1 + Palmitate); p #(Controls:GLP1 + Palmitate); q CV [%](Controls:GLP1 + Palmitate) MW OK Accession Protein pI a b c d e f g h i l m n o p q [kDa] 78 kDa glucose-regulated protein OS=Rattus 1672.6 true GRP78_RAT 72.3 4.9 1 22 39 1.48 1 1.16 6 20.53 1.18 9 9.56 1.24 10 13.52 norvegicus GN=Hspa5 PE=1 SV=1 (M:1672.6) Endoplasmin OS=Rattus norvegicus 1253.0 true ENPL_RAT 92.7 4.6 1 23 29 3.34 2 0.85 8 33.34 1.19 6 39.58 1.18 10 28.11 GN=Hsp90b1 PE=1 SV=2 (M:1253.0) Stress-70 protein, mitochondrial OS=Rattus 1138.8 true GRP75_RAT 73.8 5.9 1 17 28.7 1.18 3 1.21 5 7.62 0.78 1 1.1 8 8.04 norvegicus GN=Hspa9 PE=1 SV=3 (M:1138.8) Protein disulfide-isomerase A3 OS=Rattus 1035.4 true PDIA3_RAT 56.6 5.8 1 16 35.2 2.84 4 0.94 3 17.22 1.15 4 26.62 1.25 4 7.86 norvegicus GN=Pdia3 PE=1 SV=2 (M:1035.4) Aconitate hydratase, mitochondrial 983.8 true ACON_RAT OS=Rattus norvegicus GN=Aco2 PE=1 85.4 8.7 1 19 31.4 2.72 5 0.89 2 23.6 1.21 2 9.25 0.89 3 32.87 (M:983.8) SV=2 60 kDa heat shock protein, mitochondrial 906.9 true CH60_RAT OS=Rattus norvegicus GN=Hspd1 PE=1 60.9 5.8 1 13 32.5 3.26 6 1.05 5 13.15 1.01 2 32.54 1.01 -
Annexin A1 Is a New Functional Linker Between Actin Filaments and Phagosomes During Phagocytosis
578 Research Article Annexin A1 is a new functional linker between actin filaments and phagosomes during phagocytosis Devang M. Patel1, Syed Furquan Ahmad1, Dieter G. Weiss1, Volker Gerke2 and Sergei A. Kuznetsov1,* 1Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein Straße 3, Rostock 18059, Germany 2Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Straße 56, Münster 48149, Germany *Author for correspondence ([email protected]) Accepted 19 October 2010 Journal of Cell Science 124, 578-588 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.076208 Summary Remodelling of the actin cytoskeleton plays a key role in particle internalisation and the phagosome maturation processes. Actin- binding proteins (ABPs) are the main players in actin remodelling but the precise role of these proteins in phagocytosis needs to be clarified. Annexins, a group of ABPs, are known to be present on phagosomes. Here, we identified annexin A1 as a factor that binds to isolated latex bead phagosomes (LBPs) in the presence of Ca2+ and facilitates the F-actin–LBP interaction in vitro. In macrophages the association of endogenous annexin A1 with LBP membranes was strongly correlated with the spatial and temporal accumulation of F-actin at the LBP. Annexin A1 was found on phagocytic cups and around early phagosomes, where the F-actin was prominently concentrated. After uptake was completed, annexin A1, along with F-actin, dissociated from the nascent LBP surface. At later stages of phagocytosis annexin A1 transiently concentrated only around those LBPs that showed transient F-actin accumulation (‘actin flashing’).