Minutes of the 53Nd Annual Meeting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
Butterflies and Moths of Yavapai County, Arizona, United States
Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail -
Dickel, T. S. 1991. New Records of Noctuid Moths from Florida
Vol. 2 No. 1 1991 DICKEL: Florida Noctuid Records 53 TROPICAL LEPIDOPTERA, 2(1): 53-58 NEW RECORDS OF NOCTUID MOTHS FROM FLORIDA (LEPIDOPTERA: NOCTUIDAE) TERHUNE S. DICKEL1 Box 385. Homestead, FL 33090, USA ABSTRACT.- New Florida records are reported for 30 species of Neotropical Noctuidae, with most of the new records also new for the continental United States fauna. KEY WORDS: Achaea, Aglaonice, Anacardiaceae, Anomis, Bleptina, Callopistria, Condica, distribution, Elaphria, Elousa, Epidromia, Eulepidotis, Euscirrhopterus, Gonodonta, hostplants, Hypena, Leucania, Litoprosopus, Macristis, Metalectra, Mimophisma, Mods, Myrtaceae, Neotuerta, Paectes, Pseudaletia, Ptichodis, Spodoptera, West Indies. This paper reports 30 species of Noctuidae collected in Florida, Dade Co.: Fuchs Hammock (Homestead) and Charles Deering primarily extreme southern Florida, of which 26 represent new Estate (Miami). Monroe Co.: Long Key St. Rec. Area, Bahia records for the continental United States. Most of these Neotrop- Honda St. Rec. Area, and N. Key Largo. Numerous records both ical species have not been illustrated previously and were not at MV light and at bait dating from 18 Jan 1985. Det. M. S. included in the North American MONA checklist (Hodges et al., Adams. 1983). Some of these species are now established in south Florida, particularly the Florida Keys and the Homestead, Dade 5. HYPENA SUBIDALIS Guenee Fig. 5 Co., area. One species, Metalectra geminicincta Schaus, de- Hypena subidalis Guenee, 1854. Brazil. scribed from Cuba and Mexico, is unusual in being established in Monroe Co.: Long Key St. Rec. Area, 18 Jan 1985 (1$); Bahia central and north Florida but as yet not recorded from south Honda St. Rec. -
Patterns of Herbivory in a Tropical Deciduous Forest1
Patterns of Herbivory in a Tropical Deciduous Forest1 Daniel H. Janzen Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A. ABSTRACT In the lowland deciduous and riparian evergreen forests of Guanacaste Province, Costa Rica, the insect seed predators are highly host-specific and display a variery of traits suggesting that the ways they use hosts are not randomly distributed. The vertebrate seed predators may feed on many species of seeds over the course of a year or within the animal popula tion, but, at any one time or with any one individual, strong facultative host-specificiry occurs. Furthermore, the verte brates have a variery of species-specific behaviors that suggest specialization to overcome the defenses of particular seed species. Even the dispersal agents kill seeds as they pass through their guts, and the details of seed-defecation patterns should be important to the seed. Within this forest, leaf-eating caterpillars seem to be either specialized on one or a few species of plants, or spread over many. While an entire forest is never defoliated at one time, defoliations and severe herbivory occur with many plant species in various seasons or years. Herbivory by large herbivores is probably trivial when compared to that of the insects. Furthermore, the defenses that the large herbivores have to overcome may well have been selected for by both insects and extinct Pleistocene large herbivores. I suspect that many of the animal-plant interactions in this forest are not coevolved, and those that are coevolved will be difficult to distinguish from those that are not. -
A List of Cuban Lepidoptera (Arthropoda: Insecta)
TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3384: 1–59 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A list of Cuban Lepidoptera (Arthropoda: Insecta) RAYNER NÚÑEZ AGUILA1,3 & ALEJANDRO BARRO CAÑAMERO2 1División de Colecciones Zoológicas y Sistemática, Instituto de Ecología y Sistemática, Carretera de Varona km 3. 5, Capdevila, Boyeros, Ciudad de La Habana, Cuba. CP 11900. Habana 19 2Facultad de Biología, Universidad de La Habana, 25 esq. J, Vedado, Plaza de La Revolución, La Habana, Cuba. 3Corresponding author. E-mail: rayner@ecologia. cu Table of contents Abstract . 1 Introduction . 1 Materials and methods. 2 Results and discussion . 2 List of the Lepidoptera of Cuba . 4 Notes . 48 Acknowledgments . 51 References . 51 Appendix . 56 Abstract A total of 1557 species belonging to 56 families of the order Lepidoptera is listed from Cuba, along with the source of each record. Additional literature references treating Cuban Lepidoptera are also provided. The list is based primarily on literature records, although some collections were examined: the Instituto de Ecología y Sistemática collection, Havana, Cuba; the Museo Felipe Poey collection, University of Havana; the Fernando de Zayas private collection, Havana; and the United States National Museum collection, Smithsonian Institution, Washington DC. One family, Schreckensteinidae, and 113 species constitute new records to the Cuban fauna. The following nomenclatural changes are proposed: Paucivena hoffmanni (Koehler 1939) (Psychidae), new comb., and Gonodontodes chionosticta Hampson 1913 (Erebidae), syn. -
Biotic Resources of Indio Mountains Research Station
BIOTIC RESOURCES OF INDIO MOUNTAINS RESEARCH STATION Southeastern Hudspeth County, Texas A HANDBOOK FOR STUDENTS AND RESEARCHERS Compiled by: Richard D. Worthington Carl Lieb Wynn Anderson Pp. 1 - 85 El Paso, Texas Fall, 2004 (Continually Reviewed and Updated) by Jerry D. Johnson (Last Update) 16 September 2010 1 TABLE OF CONTENTS INTRODUCTION - Pg. 3 COLLECTING IMRS RESOURCES – Pg. 4 POLICIES FOR THE PROTECTION OF RESOURCES – Pg. 4 PHYSICAL SETTING – Pg. 5 CHIHUAHUAN DESERT – Pg. 6 CLIMATE – Pg. 6 GEOLOGY – Pg. 8 SOILS – Pg. 12 CULTURAL RESOURCES – Pg. 13 PLANT COMMUNITIES – Pg. 14 LICHENS – Pg. 15 NONVASCULAR PLANTS – Pg. 18 VASCULAR PLANTS – Pg. 19 PROTOZOANS – Pg. 34 FLATWORMS – Pg. 34 ROUNDWORMS – Pg. 34 ROTIFERS – Pg. 35 ANNELIDS – Pg. 36 MOLLUSKS – Pg. 36 ARTHROPODS – Pg. 37 VERTEBRATES – Pg. 64 IMRS GAZETTEER – Pg. 80 2 INTRODUCTION It is our pleasure to welcome students and visitors to the Indio Mountains Research Station (IMRS). A key mission of this facility is to provide a research and learning experience in the Chihuahuan Desert. We hope that this manual will assist you in planning your research and learning activities. You will probably be given a short lecture by the station Director upon entering the station. Please pay attention as IMRS is not without potential hazards and some long-term research projects are underway that could be disturbed if one is careless. Indio Mountains Research Station came into being as a result of the generosity of a benefactor and the far-sighted vision of former UTEP President Haskell Monroe. Upon his death in 1907, the will of Boston industrialist Frank B. -
Impacts of Native and Non-Native Plants on Urban Insect Communities: Are Native Plants Better Than Non-Natives?
Impacts of Native and Non-native plants on Urban Insect Communities: Are Native Plants Better than Non-natives? by Carl Scott Clem A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 12, 2015 Key Words: native plants, non-native plants, caterpillars, natural enemies, associational interactions, congeneric plants Copyright 2015 by Carl Scott Clem Approved by David Held, Chair, Associate Professor: Department of Entomology and Plant Pathology Charles Ray, Research Fellow: Department of Entomology and Plant Pathology Debbie Folkerts, Assistant Professor: Department of Biological Sciences Robert Boyd, Professor: Department of Biological Sciences Abstract With continued suburban expansion in the southeastern United States, it is increasingly important to understand urbanization and its impacts on sustainability and natural ecosystems. Expansion of suburbia is often coupled with replacement of native plants by alien ornamental plants such as crepe myrtle, Bradford pear, and Japanese maple. Two projects were conducted for this thesis. The purpose of the first project (Chapter 2) was to conduct an analysis of existing larval Lepidoptera and Symphyta hostplant records in the southeastern United States, comparing their species richness on common native and alien woody plants. We found that, in most cases, native plants support more species of eruciform larvae compared to aliens. Alien congener plant species (those in the same genus as native species) supported more species of larvae than alien, non-congeners. Most of the larvae that feed on alien plants are generalist species. However, most of the specialist species feeding on alien plants use congeners of native plants, providing evidence of a spillover, or false spillover, effect. -
Insecta Mundi 0789: 1–56
InsectaA journal of world insect systematics Mundi 0789 A new genus and 37 new noctuoid species from peninsular Page Count: 56 Florida and the Keys (Lepidoptera: Noctuoidea) J. T. Troubridge 23396 Mullins Ave Port Charlotte, FL, U.S.A. 33954 Date of issue: September 25, 2020 Center for Systematic Entomology, Inc., Gainesville, FL Troubridge JT. 2020. A new genus and 37 new noctuoid species from peninsular Florida and the Keys (Lepidop- tera: Noctuoidea). Insecta Mundi 0789: 1–56. Published on September 25, 2020 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medi- cal entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources, including the Zoological Record and CAB Abstracts. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology. Guidelines and requirements for the preparation of manuscripts are available on the Insecta Mundi website at http://centerforsystematicentomology.org/insectamundi/ Chief Editor: David Plotkin, [email protected] Assistant Editor: Paul E. -
Characteristics of Mixed-Oak Forest Ecosystems in Southern Ohio Prior to the Reintroduction of Fire
United States Department of Characteristics of Mixed-Oak Agriculture Forest Service Forest Ecosystems in Northeastern Research Station Southern Ohio Prior to the General Technical Reintroduction of Fire Report NE-299 Abstract Mixed-oak forests occupied much of the Unglaciated Allegheny Plateau region of southern Ohio at the onset of Euro-American settlement (ca. 1800). Historically, Native Americans used fire to manage the landscape and fire was frequent throughout the 19th and early 20th centuries during extensive forest harvesting and then re-growth. Today, though mixed-oak forests remain dominant across much of the region, oak regeneration is often poor as other tree species (e.g., maples) are becoming much more abundant. This shift has occurred concurrently with fire suppression policies that began in 1923. A multidisciplinary experiment was initiated in southern Ohio to explore the use of prescribed fire as a tool to improve the sustainability of mixed-oak forests. This report describes the experimental design and study areas, and provides baseline data on ecosystem characteristics prior to prescribed fire treatments. Chapters describe forest history, an integrated moisture index, geology and soils, understory light environments, understory vegetation, tree regeneration, overstory vegetation, foliar nutrient status, arthropods, and breeding birds. The use of trade, firm or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by -
1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. -
Thaumetopoea Pityocampa
Thaumetopoea pityocampa Scientific Name Thaumetopoea pityocampa Denis & Schiffermüller, 1775 Synonyms: Bombyx pityocampa Denis & Schiffermüller, 1774 Traumatocampa pityocampa (Denis & Schiffermüller, 1775) Cnethocampa pityocampa Denis & Schiffermüller, 1928 Common Name Pine processionary moth, pine Figure 1. Adult male T. pityocampa (Photo courtesy processionary caterpillar, stone-pine of Philippe Mothiron, Lepinet.fr) processionary caterpillar, winter pine processionary moth Type of Pest Moth, defoliator Taxonomic Position Class: Insecta, Order: Lepidoptera, Family: Notodontidae Reason for Inclusion in Manual Pests of Economic and Environmental Importance – 2017 Pest Description Eggs: Eggs are yellowish to white in color, typically laid in cylindrical batches around the needle starting at the base and on the lower branches of the crown (Romanyk and Cadahía, 1992; Schmidt et al., 1999). The number of eggs laid per batch varies, but can range from 37 to 312 eggs per batch (Schmidt et al., 1999). Egg masses can range in 9 3 size 25 to 40 mm (1 to 1 /16 in.) wide and about 5 mm (~ /16 in.) high (EPPO, 2004) and are covered with scales from the adult females (Schmidt et al., 1999). Larvae: The larval stages consists of five instars with the first instar being dull green in color with the urticating hairs appearing after the second molt (Romanyk and Cadahía, 1 3 1992). The fifth instar larva is 38 to 45 mm (1 /2 to 1 /4 in.) long and is covered in urticating hairs arranged in pairs on each body segment (EPPO, 2004) (Fig. 2). Coloration varies, depending on the locality of the moth, but in general the integument is 1 a dull bluish-grey to black with the lateral and ventral hairs varying from white to dark yellow and the dorsal hairs yellow to orange (Romanyk and Cadahía, 1992). -
Moth Records
MOTHS of the University of Guelph Arboretum Contributions by Candice Talbot (2012-2014) and Andrew Bendall (2013-present) Other contributors: Andalyne Tofflemire, Chris Earley, Fiona Reid, Mike Kent The 2018 edition of the Arboretum list contains 851 species of moth. Most adults were seen at or near the J.C. Taylor Nature Centre, being attracted to the white building lights, or to a black light and sheet hung by the building, or to painted bait on nearby trees. Semi-regular monitoring was started by Candice Talbot in the spring of 2012, with a small number of incidental observations pre-dating that time. First record dates, where known, are shown at right as YYYYMMDD. Those with an asterisk represent a first documented sighting if the date of an earlier record was not available. We now follow the taxonomy outlined in Pohl, Patterson & Pelham (2016) Annotated taxonomic checklist of the Lepidoptera of North America, North of Mexico, and adopt their revised numbering system for all valid North American species. Identifications are made (with varying degrees of certainty) from photographs using a variety of published print and online resources for comparison. This is a work in progress and identifications are revisited from time to time. We acknowledge that definitive identification of some species is not possible without dissection of the genitalia or, in the case of some microlepidoptera, rearing larvae collected from the host plant. Our uncertainty is indicated in various ways, including the use of [t] for a tentative identification, by indicating a group of species that can't be separated from external features, or by identifying to genus only.