WRA Species Report

Total Page:16

File Type:pdf, Size:1020Kb

WRA Species Report Family: Apocynaceae Taxon: Wrightia antidysenterica Synonym: Nerium antidysentericum L. (basionym) Common Name: snowflake Nerium zeylanicum L. artic snow Walidda antidysenterica (L.) Pichon milky way Wrightia zeylanica (L.) R. Br. Easter tree Holarrhena antidysenterica (L.) Wall. Questionaire : current 20090513 Assessor: Assessor Designation: L Status: Assessor Approved Data Entry Person: Assessor WRA Score 0 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens y=1, n=0 n 407 Causes allergies or is otherwise toxic to humans y=1, n=0 408 Creates a fire hazard in natural ecosystems y=1, n=0 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 Print Date: 7/10/2013 Wrightia antidysenterica (Apocynaceae) Page 1 of 6 410 Tolerates a wide range of soil conditions (or limestone conditions if not a volcanic island) y=1, n=0 y 411 Climbing or smothering growth habit y=1, n=0 n 412 Forms dense thickets y=1, n=0 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n 504 Geophyte (herbaceous with underground storage organs -- bulbs, corms, or tubers) y=1, n=0 n 601 Evidence of substantial reproductive failure in native habitat y=1, n=0 n 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally y=1, n=-1 604 Self-compatible or apomictic y=1, n=-1 605 Requires specialist pollinators y=-1, n=0 606 Reproduction by vegetative fragmentation y=1, n=-1 607 Minimum generative time (years) 1 year = 1, 2 or 3 years = 0, 4+ years = -1 701 Propagules likely to be dispersed unintentionally (plants growing in heavily trafficked y=1, n=-1 areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant y=1, n=-1 n 704 Propagules adapted to wind dispersal y=1, n=-1 y 705 Propagules water dispersed y=1, n=-1 706 Propagules bird dispersed y=1, n=-1 n 707 Propagules dispersed by other animals (externally) y=1, n=-1 708 Propagules survive passage through the gut y=1, n=-1 801 Prolific seed production (>1000/m2) y=1, n=-1 802 Evidence that a persistent propagule bank is formed (>1 yr) y=1, n=-1 803 Well controlled by herbicides y=-1, n=1 804 Tolerates, or benefits from, mutilation, cultivation, or fire y=1, n=-1 805 Effective natural enemies present locally (e.g. introduced biocontrol agents) y=-1, n=1 Designation: L WRA Score 0 Print Date: 7/10/2013 Wrightia antidysenterica (Apocynaceae) Page 2 of 6 Supporting Data: 101 1965. Ngan, P.T.. A Revision of the Genus [Is the species highly domesticated? No] No evidence Wrightia (Apocynaceae). Annals of the Missouri Botanical Garden. 52(2): 114-175. 102 2013. WRA Specialist. Personal Communication. NA 103 2013. WRA Specialist. Personal Communication. NA 201 1965. Ngan, P.T.. A Revision of the Genus [Species suited to tropical or subtropical climate(s) 2-High] "W. antidysenterica, is Wrightia (Apocynaceae). Annals of the Missouri endemic to Ceylon" Botanical Garden. 52(2): 114-175. 202 1965. Ngan, P.T.. A Revision of the Genus [Quality of climate match data 2-High] Wrightia (Apocynaceae). Annals of the Missouri Botanical Garden. 52(2): 114-175. 203 2013. Dave's Garden. Gardening Website. [Broad climate suitability (environmental versatility)? No] "Hardiness: USDA Zone http://davesgarden.com/ 10a: to -1.1 °C (30 °F) USDA Zone 10b: to 1.7 °C (35 °F) USDA Zone 11: above 4.5 °C (40 °F)" 204 1965. Ngan, P.T.. A Revision of the Genus [Native or naturalized in regions with tropical or subtropical climates? Yes] "W. Wrightia (Apocynaceae). Annals of the Missouri antidysenterica, is endemic to Ceylon" Botanical Garden. 52(2): 114-175. 205 2005. Imada, C.T./Staples, G.W./Herbst, D.R.. [Does the species have a history of repeated introductions outside its natural Annotated Checklist of Cultivated Plants of range?] "Locations: Waimea Arboretum & Botanical Garden " Hawai‘i. The Bishop Museum, http://www2.bishopmuseum.org/HBS/botany/cultiv atedplants/ 205 2008. Sato, H.D. Specimen Details for Wrightia [Does the species have a history of repeated introductions outside its natural antidysenterica (L.) R.Br. [BISH 732938]. Bishop range?] "Small shrub 4-6 ft tall, flowering year round. Original plant purchased at Museum, Koolau Farmers Kaneohe. Sold in garden and floral shops in Japan as Minato-no- http://nsdb.bishopmuseum.org/2C474AEF-B5FF- hi (Harbor Lights)." 47A3-9366-B6626FCD8DA6 205 2009. Chong, K.Y./Tan, H.T.W./Corlett, R.T.. A [Does the species have a history of repeated introductions outside its natural Checklist of the Total Vascular Plant Flora of range? Singapore] ]"Wrightia antidysenterica (L.) R. Br.; Apocynaceae; cultivated Singapore: Native, Naturalized and Cultivated only" Species. Raffles Museum of Biodiversity Research, National University of Singapore, Singapore 205 2009. Middleton, D.J.. An update on the [Does the species have a history of repeated introductions outside its natural Apocynaceae in Thailand. Thai Forest Bulletin range? Thailand] "Wrightia antidysenterica L. should now be included as it has (Botany). Special Issue: 143–155. become a common sight throughout Thailand." 205 2012. Nickrent, D.L./Barcelona, J./Pelser, [Does the species have a history of repeated introductions outside its natural P./Molina, J.E./Callado, J.R.. Co's Digital Flora of range? Philippines] "Cultivated: Wrightia antidysenterica" the Philippines. http://www.philippineplants.org/ 205 2013. Dave's Garden. Gardening Website. [Does the species have a history of repeated introductions outside its natural http://davesgarden.com/ range? Florida] "This plant has been said to grow in the following regions: Big Pine Key, Florida Boca Del Mar, Florida Marathon Shores, Florida Pembroke Pines, Florida" 301 2007. Middleton, D.J.. A new species of Wrightia [Naturalized beyond native range? No evidence in Thailand] "There are now a (Apocynaceae: Apocynoideae) from Thailand. total of 12 species of Wrightia known from Thailand, one of which, W. Thai Forest Bulletin (Botany). 35: 80–85. antidysenterica (L.) R.Br., is only known from cultivation." … "In addition to these wild species Wrightia antidysenterica, native to Sri Lanka, has become very widely cultivated in Thailand since 1999." 301 2012. Randall, R.P.. A Global Compendium of [Naturalized beyond native range? No evidence] Weeds. 2nd Edition. Department of Agriculture and Food, Western Australia 302 2009. Nursery & Garden Industry Australia. Grow [Garden/amenity/disturbance weed? No evidence] "Beautiful compact evergreen Me Instead - A Guide for Gardeners in perennial shrub growing up to 1.5m. It has glossy green leaves and is covered in Queensland Sub Tropics. 2.5cm white star shaped flowers throughout the warmer months. A relatively new http://www.growmeinstead.com.au/public/GMI- release well worth trying." [Recommended as a non invasive alternative to brochure-Qld-Sub-Tropics.pdf Catharanthus roseus and Ochna serrulata] 302 2012. Randall, R.P.. A Global Compendium of [Garden/amenity/disturbance weed? No] No evidence Weeds. 2nd Edition. Department of Agriculture and Food, Western Australia Print Date: 7/10/2013 Wrightia antidysenterica (Apocynaceae) Page 3 of 6 303 2012. Randall, R.P.. A Global Compendium of [Agricultural/forestry/horticultural weed? No] No evidence Weeds. 2nd Edition. Department of Agriculture and Food, Western Australia 304 2012. Randall, R.P.. A Global Compendium of [Environmental weed? No] No evidence Weeds. 2nd Edition. Department of Agriculture and Food, Western Australia 305 2012. Randall, R.P.. A Global Compendium of [Congeneric weed? No] No evidence Weeds. 2nd Edition. Department of Agriculture and Food, Western Australia 401 1965. Ngan, P.T.. A Revision of the Genus [Produces spines, thorns or burrs? No] "Small shrubs as much as 2 m. high; Wrightia (Apocynaceae). Annals of the Missouri branchlets gray to dark brown, lenticellate and glabrous. Leaves obovate to Botanical Garden. 52(2): 114-175. elliptic, occasionally narrowly elliptic, acuminate to caudate-acuminate at the apex, acute at the base, 3-10 cm. long, 1.5-3.5 cm. broad, membranaceous to subcoriaceous, glabrous even when immature, the midrib more or less elevated above, prominent beneath, the secondary veins 6-9 pairs, arcuate, sometimes obscure above, conspicuous beneath; petiole 2-3 mm. long, glabrous to minutely puberulent." 402 2013.
Recommended publications
  • In Vitro Screening of Antimicrobial Activity of Wrightia Tinctoria (Roxb.) R
    Academic Sciences Asian Journal of Pharmaceutical and Clinical Research Vol 5, Issue 4, 2012 ISSN - 0974-2441 Research Article Vol. 4, Issue 3, 2011 IN VITRO SCREENING OF ANTIMICROBIAL ACTIVITY OF WRIGHTIA TINCTORIA (ROXB.) R. BR. ISSN - 0974-2441 MOORTHY K.*1 APARNA ARAVIND.1 PUNITHA T.1 VINODHINI R.1 SURESH M.2 AND THAJUDDIN N.3 1Department of Microbiology, Vivekanandha College of Arts and Sciences for Women,Elayampalayam, Tiruchengode, Namakkal - 637 205,2Department of Microbiology and Molecular Biology, Doctors’ Diagnostic Centre,Tiruchirappalli - 620 018.3Department of Microbiology,Bharathidasan University,Tiruchirappalli - 620 024 , Email: [email protected] Received: 1 June 2012, Revised and Accepted:21 June 2012 ABSTRACT An in-vitro antimicrobial study was done using methanolic and petroleum ether extracts from the leaves of Wrightia tinctoria (Roxb.) R.Br. Bauer- Kirby (disc diffusion) and broth dilution methods were employed for the assessment of antimicrobial activity against 14 microorganisms. Methanolic extract of Wrightia tinctoria leaves showed significant antimicrobial activity against Cryptococcus neoformans (36.0mm), Staphylococcus aureus (27.2mm), Candida albicans (25.0mm), S.epidermidis (23.2mm) and Bacillus subtilis (20.2mm), whereas petroleum ether leaves extract showed significant antimicrobial activity against S.aureus (25.0mm), C.neoformans (21.8mm), S.epidermidis (18.5mm) and C.albicans (16.0mm) were observed. According to broth dilution method, the methanolic extract of plant material showed the MIC values against C.neoformans (256µg/ml), S.aureus and C.albicans (512µg/ml) respectively. Whereas, the petroleum ether extract of Wrightia tinctoria showed the MIC values against S.aureus and C.neoformans (512µg/ml) and S.epidermidis and C.albicans (1,024µg/ml) with a significant inhibitory activity.
    [Show full text]
  • An Isoflavone from Wrightia Pubescens
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2015; 7(2); 353-355 ISSN: 0975-4873 Research Article An Isoflavone from Wrightia pubescens Consolacion Y. Ragasa1,2*, Vincent Antonio S. Ng2, Mariquit M. De Los Reyes3,4, Emelina H. Mandia4, and Chien-Chang Shen5 1Chemistry Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna 4024, Philippines 2Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines 3Biology Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna 4024, Philippines 4Biology Department, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines 5National Research Institute of Chinese Medicine, 155-1, Li-Nong St., Sec. 2, Taipei 112, Taiwan Available Online: 15th March, 2015 ABSTRACT Chemical investigation of the dichloromethane extract of the twigs of Wrightia pubescens (R.Br.) led to the isolation of an isoflavone, wrightiadione (1). The structure of 1 was elucidated by extensive 1D and 2D NMR spectroscopy and confirmed by mass spectrometry. Keywords: Wrightia pubescens (R.Br.), Apocynaceae, isoflavone, wrightiadione INTRODUCTION Woodson afforded isoscopoletin from the twigs and Wrightia pubescens (R.Br.) of the family Apocynaceae is ursolic acid, squalene, α-amyrin acetate and lupeol acetate one of the eight known species of Wrightia in Malesia1. from both leaves and twigs11. Pipturus arborescens (Link) Locally known as “lanete” in the Philippines, Wrightia C.B. Rob. yielded ursolic acid, oleanolic acid, friedelin, β- pubescens, which can grow up to 35 m tall in deciduous sitosterol, and stigmasterol from the twigs, while the leaves lowland thickets and forests, is also found in mainland afforded β-sitosterol, stigmasterol, squalene, chlorophyll a, China, India and Australia2,3.
    [Show full text]
  • Wrightia Antidysenterica
    Wrightia antidysenterica Scientific classification Kingdom: Plantae Order: Gentianales Family: Apocynaceae Genus: Wrightia W. Species: antidysenterica Botanical Name: Wrightia antidysenterica (synonym: Holarrhena pubescens) Common Name: Snowflake, Milky Way, Arctic Snow, Winter Cherry Tree, Sweet Indrajao, Pudpitchaya, Hyamaraca Plant type: A perennial ornamental small tree or shrub, native to Sri Lanka. Light: Prefers bright light or full sun; Can tolerate partial shade but will result in less flowers. Moisture: Regular watering and moderately. Soil: Well-drained loamy soil. Features: Wrightia antidysenterica is a small and compact semi-deciduous shrub, reaching 1.2-2 meters in height, with a spread of about 1.5 meter .A moderate grower with several short and divaricate branches that turn chocolaty brown as it ages, and adorned with dark green, ovate and acuminate leaves (2.5-6cm long) that are oppositely arranged. And, pure white tubular 5-petaled flowers with yellow centers appear in corymb-like cymes at the end of branches. The Snowflake or Milky Way as commonly known, is a beautiful shrub that will be studded with showy 2.5-3.5cm star-shaped flowers all year round. There is a related species, Wrightia tinctoria, whose blooms look quite identical. Usage: Wrightia antidysenterica will be most ideal as a container specimen for patio or houseplant. Excellent too for planting on ground in limited garden space and will brighten any garden corner with those starry white blooms that resemble snow flakes or little stars from afar. Besides, in India, it is considered a medicinal plant. The bark has anti-microbial and anti-inflammatory properties, and is used as an adulterant for the well known drug, Holarrhena antidysenterica.
    [Show full text]
  • International Journal of Pharmaceutical Science and Health Care Issue 1
    DOI : https://dx.doi.org/10.26808/rs.st.i9v4.01 International Journal of Advanced Scientific and Technical Research ISSN 2249-9954 Available online on http://www.rspublication.com/ijst/index.html Issue 9 volume 4 July- August 2019 Phytochemical and Antioxidant Activities of Selected Ornamental Plants in the Philippines Ruth T. Libag1,2 1College of Arts & Sciences, Pampanga State Agricultural University, PAC Magalang, Pampanga, Philippines, Phone No. +6345 866 0800, [email protected] 2Graduate School, Angeles University Foundation, Angeles City 2009, Philippines ABSTRACT The Philippines being considered as an important biodiversity hotspot in the world, possess a rich source of flora. Some ornamental plants are found to be sources of drugs being used to treat various ailments. This study aimed to focus on screening phytochemicals natural antioxidants present in locally available ornamental plants in the Philippines. The samples used in the study were the crude ethanolic leaf extracts of White angel (Wrightia antidysenterica L. R.Br.), Cabbage rose (Rosa sp.), Calachuchi (Plumiera alba) and,Ilang ilang (Cananga odorata). Phytochemicals from the samples were qualitatively identified using different spray reagents by Thin Layer Chromatography (TLC), while Free Radical Scavenging Activities of the samples were determined using DPPH Assay and Ascorbic acid as standard. Results showed that the plant samples are positive for the presence of anthraquinones, coumarins, phenols, steroids/sterols. All have triterpenes except, Cananga odorata. Furthermore, bothWrightia antidysenterica L. R.Br.and Plumiera Alba have alkaloids, while flavonoids, sugars, and tannins are present in Wrightia antidysenterica L. R.Br.andCananga odorata. All have antioxidant activities (expressed as EC50) against the free radical DPPH at varying amounts.Antioxidant activity of the plant samples were found in following order: Ascorbic acid (38 μg/ml) >Rosa sp.(76 μg/mL) >Wrightia antidysenterica L.
    [Show full text]
  • A Selection of Flowering Shrubs and Trees for Color in Miami-Dade Landscapes
    A Selection of Flowering Shrubs and Trees for Color in Miami-Dade Landscapes If no ‘Season for Flowering’ is indicated, flowering occurs periodically throughout the year (usually less so in cooler weather). If water needs are not shown (see key below: drought tolerance/need for moist soil), provide supplemental water once per week to established plants in prolonged hot dry conditions; reduce frequency during cooler winter weather. KEY: sm.tr - Small tree; lg.tr - Large tree; shr – Shrub; cl.sh - Climbing shrub (requires some support); m - Moist soil (limited drought tolerance); dr - Drought Tolerant; fs - Full sun; ss - Some shade. Shrub/Tree Season for Flowering WHITE Beaumontia grandiflora (cl.sh; fs) -> winter (Herald’s Trumpet)1 Brunfelsia jamaicensis (shr; ss; m) -> late fall – winter (Jamaica Raintree)1 Ceiba insignis (lg.tr; fs; dr) -> fall (White Silk Floss Tree) Cordia boissieri (sm.tr; fs; dr) (Texas white olive)2 Dombeya burgessiae (shr; fs) cream – pale pink -> late fall – winter (Apple Blossom, Pink Pear Blossom)1 Eranthemum nigrum (see E. pulchellum below) (Ebony) Euphorbia leucophylla (shr/sm.tr; fs) white/pink -> winter (Little Christmas Tree, Pascuita)1, 2 Fagrea ceylanica (shr/sm.tr; fs/ss; dr) (Ceylon Fagrea) 1,2 Gardenia taitensis (shr/sm.tr; fs; dr) (Tahitian Gardenia)1,2 Jacquinia arborea, J. keyensis (sm.tr/shr; fs; dr) -> spring – summer (Bracelet Wood)1 (Joewood) 1, 2 1 Fragrant 2 Adapts especially well to limestone Kopsia pruniformis (shr/sm.tr; fs/ss.)♣ (Java plum) Mandevilla boliviensis (cl.sh/ss) -> spring
    [Show full text]
  • Download Download
    Int. J. Ayur. Pharma Research, 2014; 2(2): 47-52 ISSN: 2322 - 0910 International Journal of Ayurveda and Pharma Research Research Article ANALYSIS OF THE ESSENTIAL OIL FROM THE LEAVES OF WRIGHTIA TINCTORIA R. BR. FROM SOUTH INDIA Beena Jose1*, L.R. Joji2 *1Assistant Professor, Department of Chemistry, Vimala College, Thrissur, Kerala, India. 2Associate Professor, Department of Biotechnology, Loyola Academy, Degree& PG College, Secunderabad, Andhra Pradesh, India. Received on: 23/04/2014 Revised on: 25/04/2014 Accepted on: 28/04/2014 ABSTRACT Wrightia tinctoria R.Br. (Apocyanaceae) is considered to be therapeutically very effective jaundice plant in Indian indigenous system of medicine. The juice of the tender leaves is used efficaciously in jaundice. The plant is known to be used for psoriasis and other skin diseases. In the present study, the chemical composition of the essential oil from the leaves of Wrightia tinctoria was analyzed by GC-MS (Gas Chromatography- Mass Spectrometry). GC-MS analytical technique provides conclusive confirmatory evidence for the identification and characterization of essential oil components. Thirty seven known compounds have been identified and quantified from the leaf essential oil of Wrightia tinctoria by GC-MS analysis. The major compounds present in the leaf essential oil are urs-12-en-24-oic acid-3-oxo-methyl ester (34.28%), hydroquinone (13.24%), 1, 6-cyclodecadiene,1-methyl-5-methylene- 8- (1-methylethyl) (9.70%), 3- methyl-2-(2-pentenyl)- 2-cyclopentene-1-one (6.76%) and 9, 12, 15-octadecatrienoic acid (4.52%). This is the first report of extraction of essential oil from the leaves of Wrightia tinctoria.
    [Show full text]
  • 2636-2640 E-ISSN:2581-6063 (Online), ISSN:0972-5210
    Kaur Amrinder and Kumar Deepak 1 Plant Archives Vol. 21, Supplement 1, 2021 pp. 2636-2640 e-ISSN:2581-6063 (online), ISSN:0972-5210 Plant Archives Journal homepage: http://www.plantarchives.org doi link : https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.429 REVIEW ARTICLE: PHARMACOGNOSTIC, PHARMACOLOGICAL AND TOXICOLOGICAL REVIEW OF SEEDS OF HOLARRHENA ANTIDYSENTERICA (APOCYNACEAE) Kaur Amrinder and *Kumar Deepak Department of Ayurveda, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India *E-mail: [email protected] Holarrhena antidysenterica belongs to the family Apocynaceae is commonly known as kurchi in Hindi, Tellicherry bark in English is a small deciduous tree which is distributed throughout the world and in India, it is found in dry forests. In Indian traditional medicine, H. Antidysenterica is popularly used as a medication for dysentery, diarrhoea and intestinal worms. Plant parts such as bark are used to treat anti-microbial, anti-inflammatory, analgesics, amoebiasis, chronic bronchitis, locally for boils, ulcers; The phytochemicals present in the plant include coumarins, ABSTRACT ergosterol, flavonoids, phenolic acids, resins, saponins, steroidal alkaloids, tannins, triterpenoids. Pharmacological studies include anti-amnesic, anti-diabetic, antibacterial activity, anti-inflammatory, anti-diarrhoeal, antioxidant/free radical scavenging property, diuretic activity, anti-amoebic, anthelminthic, anti-microbial properties of Holarrhena antidysenterica. This review article explored the detailed
    [Show full text]
  • Apocynaceae-Apocynoideae)
    THE NERIEAE (APOCYNACEAE-APOCYNOIDEAE) A. J. M. LEEUWENBERG1 ABSTRACT The genera of tribe Nerieae of Apocynaceae are surveyed here and the relationships of the tribe within the family are evaluated. Recent monographic work in the tribe enabled the author to update taxonomie approaches since Pichon (1950) made the last survey. Original observations on the pollen morphology ofth egener a by S.Nilsson ,Swedis h Natural History Museum, Stockholm, are appended to this paper. RÉSUMÉ L'auteur étudie lesgenre s de la tribu desNeriea e desApocynacée s et évalue lesrelation s del a tribu au sein de la famille. Un travail monographique récent sur la tribu a permit à l'auteur de mettre à jour lesapproche s taxonomiques depuis la dernière étude de Pichon (1950). Lesobservation s inédites par S. Nilsson du Muséum d'Histoire Naturelle Suédois à Stockholm sur la morphologie des pollens des genres sontjointe s à cet article. The Apocynaceae have long been divided into it to generic rank and in his arrangement includ­ two subfamilies, Plumerioideae and Apocynoi- ed Aganosma in the Echitinae. Further, because deae (Echitoideae). Pichon (1947) added a third, of its conspicuous resemblance to Beaumontia, the Cerberioideae, a segregate of Plumerioi­ it may well be that Amalocalyx (Echiteae— deae—a situation which I have provisionally ac­ Amalocalycinae, according to Pichon) ought to cepted. These subfamilies were in turn divided be moved to the Nerieae. into tribes and subtribes. Comparative studies Pichon's system is artificial, because he used have shown that the subdivision of the Plume­ the shape and the indumentum of the area where rioideae is much more natural than that of the the connectives cohere with the head of the pistil Apocynoideae.
    [Show full text]
  • Morphological and Molecular Identification of an Endemic Species from Tamil Nadu, India: Wrightia Indica Ngan (Apocynaceae)
    J. Indian bot. Soc. e-ISSN:2455-7218, ISSN:0019 - 4468 Vol. 101 (1&2) 2021: 49-57 MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF AN ENDEMIC SPECIES FROM TAMIL NADU, INDIA: WRIGHTIA INDICA NGAN (APOCYNACEAE) SATHYA ELAVARASAN1, MUTHULAKSHMIPECHIAMMAL PECHIMUTHU, RAJENDRAN ARUMUGAM AND SEKAR THANGAVEL1 Phytochemistry Laboratory1, Department of Botany, Bharathiar University, Coimbatore 641046, Tamilnadu, India. E-mail:[email protected] Date of online publication: 31st March 2021 DOI:10.5958/2455-7218.2021.00013.9 Wrightia indica Ngan is an endemic Apocynaceae species collected from Sitheri hills of Dharmapuri district in the Southern Eastern Ghats of Tamil Nadu. Morphological and molecular identification of species was observed by analyzing the chloroplast DNA regions using ITS marker and generated sequences. The present study confirms the molecular sequence of Wrightia indica for the first time and voucher specimen deposited in NCBI. They allow us to infer the phylogenetic relationships among other taxa within the same genus and those of other genera detailed description, ecological notes, and photographs of the species are provided for a better understanding of this little known endemic taxa. Keywords: DNA barcoding, Endemic, Morphology, Tamil Nadu, Wrightia indica. The Apocynaceae was first explained as savannas and sandy thickets on the strand "Apocinae" (de Jussieu, 1789). They are (Middleton 2007a). Many of these taxa are commonly known as the Dogbane family local endemics from karst limestone habitats (Gentianales) usually consisting of trees, and several others are threatened due to shrubs, vines, relatives with white latex or quarrying for cement (Clements et al. 2006). hardly ever watery juice, smooth margined and DNA based identification is a high through out opposite or whorled leaves.
    [Show full text]
  • Ethnobotanical Study of Medicinal Plants in Forest Region of Chimur Tahsil, Chandrapur District, Maharashtra
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Asian Journal of Plant Science and Research, 2015, 5(12):24-28 ISSN : 2249-7412 CODEN (USA): AJPSKY Ethnobotanical study of medicinal plants in forest region of Chimur Tahsil, Chandrapur District, Maharashtra S. K. Bodele and N. H. Shahare Department of Botany, Brijlal Biyani Science College, Amravati, Maharashtra (India) ________________________________________________________________________________________________________________________________________________ ABSTRACT An ethnobotanical survey was carried out among the tribes to identify folk medicines used for the treatment of various ailments in Chimur tahsil of Chandrapur district, Maharashtra. During the year 2013-2014, visited to tribal settlements, and interviewed to medicine men, Mukhia, Vaidus and some experienced persons. Information on plant species used by these tribal for treatment of various diseases was collected. The study was focused on identifying the medicinal plants, plant parts used and disease treated. Total 49 plant species have been recorded during the survey which belongs to 49 genera and 30 families used as a medicine in the health care treatment. It is also recorded that the tribes of forest region of Chimur tahsil were consuming various plant parts mostly the leaves (25%) and roots (24%) curing various diseases. Keywords- Ethnobotanical, wild plants, Medicinal value, Maharashtra _____________________________________________________________________________________________ INTRODUCTION On a global scale, the current dependence on traditional medicine system remains high, with the majority of world population still dependent on medicinal plants to fulfill most of their healthcare needs. It is estimated that about 64% of the total global population depend on traditional medicines [1-2]. Nearly 8000 plants species have been recognized as the plant of ethnobotanical importance [3].
    [Show full text]
  • On the Flora of Australia
    L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.
    [Show full text]
  • Investigating the Characterization of Fiber Extracted from Wrightia
    International Journal of Applied Research 2017; 3(7): 731-736 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Investigating the characterization of fiber extracted Impact Factor: 5.2 IJAR 2017; 3(7): 731-736 from Wrightia tinctoria (Roxb.) R. BR www.allresearchjournal.com Received: 12-05-2017 Accepted: 14-06-2017 Dr. S Grace Annapoorani and S Divya Dr. S Grace Annapoorani Associate Professor, Abstract Department of Textile and Natural fibers are one of the good alternative sources for replacing synthetic fiber and reinforcing Apparel Design, Bharathiar polymer matrices because of their eco-friendly nature. The present study was undertaken to investigate University, Coimbatore, Tamil the fibers extract from Wrightia tinctoria (Roxb.) R. Br. (Apocynaceae). seedpod and to analyze their Nadu, India mechanical behavior of the fiber. Physical and mechanical characterizations were carried out on Wrightia tinctoria (Roxb.) R. Br fiber (WTF): fibre strength, elongation, fiber length, fineness, diameter S Divya Research Scholar, Department and chemical composition. The microstructure and functional elements of fiber were studied using of Textile and Apparel Design, Field Emission Scanning Electron Microscopy and FTIR spectroscopy for better understands their Bharathiar University, behavior. Thermal analysis was studied using Differential Scanning Calorimetry (DSC). The Coimbatore, Tamil Nadu, crystallinity indexes (CrI) and crystallite size (CS) of WTF were studied using X-ray diffraction (XRD) India spectroscopy. The results showed a strong influence of extraction parameters on the characteristics of fibers. The XRD showed the highest degree of crystallinity and the lower moisture content and water absorption. The WTF has no hemicelluloses, as verified by FTIR. Thus the above characteristics confirm that this fibre has wide scope in the field of textiles application.
    [Show full text]